Supplementary Information

DDQ-catalyzed oxidative α-allylation of isochromans under aerobic condition

Sujin Lee, ^{1,2}† Sunhwa Jung, ^{1,2}† Suyeon Hyeon, ¹† Kyungmin Kim, ^{1,2} Sun-Joon Min^{1,2,3*}

¹Department of Applied Chemistry, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
²Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
³Department of Chemical & Molecular Engineering, Hanyang University, Ansan, Gyeonggido, 15588, Republic of Korea
E-mail: sjmin@hanyang.ac.kr

Table of Contents

I.	Experimental Procedures	S2
II.	Spectral Data	S16
III.	References	S49

I. Experimetnal Procedures

General: All reactions were conducted using oven-dried glassware under an atmosphere of argon (Ar). All commercially available reagents and anhydrous solvents were obtained from Sigma Aldrich, TCI, Alfa, Junsei, Samchun, DaeJung Chemical and were used without further purification. Solvents CH₂Cl₂ was dried and distilled following usual protocols. Organic solvents were evaporated with reduced pressure using a rotary evaporator. Reactions were followed by TLC analysis using silica gel 60 F₂₅₄ with fluorescent indicator using UV lamp and ninhydrin solution with heat as visualizing agents. Flash chromatography was carried out using Merck silica gel 60 (0.063-0.200 mm) and KANTO silica gel 60N (spherical, neutral). The ¹H NMR spectra and ¹³C NMR spectra were measured with Bruker AVANCE III HD 400. ¹H NMR chemical shifts are expressed in parts per million (δ) downfield to CHCl₃ (δ = 7.26), ¹³C NMR chemical shifts are expressed in parts per million (δ) relative to the central CDCl₃ resonance ($\delta = 77.0$). Coupling constants in ¹H NMR are in Hz. The following abbreviations were used to designate multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd =doublet of doublets, m = multiplet. CDCl₃ was used as NMR solvent and standard material TMS (tetramethylsilane) wasn't contained. Low-resolution mass spectral analyses (LRMS) were performed on Agilent 6125 SQ LCMS system. High-resolution mass spectral analysis (HRMS) data was acquired on a Bruker Compact Ultra High Resolution ESI Q-TOF mass spectrometer at the OCRC (Organic Chemistry Research Center), Sogang University (Seoul, Republic of Korea).

1-Allylisochromane (8a).¹ Dichloroethane (3.7 mL) was bubbled with O_2 for 1 h. To a solution of isochroman **6a** (50 mg, 0.37 mmol) in dichloroethane was added DDQ (17 mg, 0.074 mol) and TBN (8.86 μ L, 0.074 mmol). The reaction mixture was allowed to stir at room temperature for 36 h. The solvent was removed under reduced pressure, and dichloroethane (3.7 mL) was

added to the crude oil again. To this solution was added LiPF₆ (28 mg, 0.18 mmol) and methanesulfonic acid (6.7 µL, 0.074 mmol). Allyltributyl stannane (0.23 mL, 0.74 mmol) was added dropwise to the above mixture. The reaction mixture was allowed to stir at 80 °C for 24 h. After completion of the reaction (monitored by TLC), it was quenched with saturated aqueous NaHCO₃ (10 mL), extracted with CH₂Cl₂ (3 x 10 mL) and washed with brine. The combined organic layer was dried over anhydrous MgSO₄ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (ether/*n*-hexane = 1:50) to afford compound **8a** (49 mg, 76%) as colorless oil. ¹H-NMR (400 MHz, CDCl₃) δ 7.18–7.16 (m, 2H), 7.11–7.10 (m, 2H), 5.96–5.85 (m, 1H), 5.17–5.07 (m, 2H), 4.84 (dd, *J* = 7.8, 3.0 Hz, 1H), 4.19–4.14 (m, 1H), 3.81–3.75 (m, 1H), 3.02–2.96 (m, 1H), 2.71–2.66 (m, 2H), 2.62–2.55 (m, 1H). ¹³C-NMR (100 MHz, CDCl₃) δ 137.5, 135.0, 134.0, 129.0, 126.3, 126.1, 124.8, 117.2, 75.5, 63.6, 40.3, 29.0.

1-Allyl-7-methylisochromane (8b) and 7-methylisochroman-1-one (8b'). Following the same procedure used for the synthesis of **8a**, the reaction of isochroman **6b** (55 mg, 0.37 mmol), DDQ (17 mg, 0.074 mol), TBN (8.86 μ L, 0.074 mmol), LiPF₆ (28 mg, 0.18 mmol), methanesulfonic acid (6.7 μ L, 0.074 mmol) and allyltributyl stannane (0.23 mL, 0.74 mmol) in dichloroethane (3.7 mL) afforded compound **8b** (53 mg, 76%) as colorless oil after purification by flash column chromatography on silica gel (ether/n-hexane = 1:50) along with lactone **8b'** (4.8 mg, 8%).

8b: ¹H-NMR (400 MHz, CDCl₃) *δ* 7.01–6.98 (m, 2H), 6.91 (s, 1H), 5.95–5.88 (m, 1H), 5.18– 5.07 (m, 2H), 4.80 (dd, *J* = 8.2, 3.3 Hz, 1H), 4.17–4.12 (m, 1H), 3.78–3.72 (m, 1H), 2.94 (m, 1H), 2.70–2.55 (m, 3H), 2.31 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) *δ* 137.5, 135.5, 135.2, 130.9, 128.8, 127.1, 125.3, 116.8, 75.5, 63.4, 40.4, 28.7, 21.2. HRMS (ESI) calcd for C₁₃H₁₆NaO [M+Na]⁺ 211.1098, found 211.1096.

S3

8b': ¹H-NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.34 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.15 (d, *J* = 7.8 Hz, 1H), 4.51 (t, *J* = 6.0 Hz, 2H), 3.01 (t, *J* = 6.0 Hz, 2H), 2.38 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 165.4, 137.5, 136.5, 134.5, 130.6, 127.1, 125.0, 67.4, 27.4, 21.0.

1-Allyl-4-methylisochromane (8c) and 4-methylisochroman-1-one (8c'). Following the same procedure used for the synthesis of **8a**, the reaction of isochroman **6c** (55 mg, 0.37 mmol), DDQ (17 mg, 0.074 mol), TBN (8.86 μ L, 0.074 mmol), LiPF₆ (28 mg, 0.18 mmol), methanesulfonic acid (6.7 μ L, 0.074 mmol) and allyltributyl stannane (0.23 mL, 0.74 mmol) in dichloroethane (3.7 mL) afforded a 2.2:1 diasteromeric mixture of compound **8c** (56 mg, 80%) as colorless oil after purification by flash column chromatography on silica gel (ether/n-hexane = 1:50) along with lactone **8c'** (4.2 mg, 7%). Each isomer was partially separated for characterization.

8c (Major isomer): ¹H-NMR (400 MHz, CDCl₃) δ 7.29–7.10 (m, 4H), 5.99–5.87 (m, 1H), 5.19– 5.10 (m, 2H), 4.84 (dd, J = 7.6, 3.4 Hz, 1H), 4.12–4.08 (m, 0.5H), 3.92–3.85 (m, 1H), 3.49– 3.45 (m, 0.5H), 3.08–2.58 (m, 3H), 1.38 (d, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 139.6, 139.3, 137.1, 137.0, 135.1, 134.9, 128.4, 126.9, 126.5, 126.4, 126.0, 125.9, 124.7, 124.6, 117.0, 116.9, 75.9, 75.8, 69.2, 69.1, 40.3, 40.2, 32.9, 31.9, 21.1, 17.4. HRMS (ESI) calcd for C₁₃H₁₆NaO [M+Na]⁺ 211.1092, found 211.1098. **8c** (Minor isomer): ¹H-NMR (400 MHz, CDCl₃) δ 7.29–7.10 (m, 4H), 5.99–5.87 (m, 1H), 5.19–5.10 (m, 2H), 4.89 (dd, J = 8.0, 3.6 Hz, 1H), 4.12–4.08 (m, 0.5H), 3.92–3.85 (m, 1H), 3.49–3.45 (m, 0.5H), 3.08–2.58 (m, 3H), 1.26 (d, J = 7.0 Hz, 3H).

8c': ¹H-NMR (400 MHz, CDCl₃) δ 8.09 (dd, J = 7.8, 1.2 Hz, 1H), 7.57 (td, J = 7.6, 1.4 Hz, 1H), 7.39 (td, J = 7.6, 0.7 Hz, 1H), 7.30-7.28 (m, 1H), 4.51 (dd, J = 10.9, 4.1 Hz, 1H), 4.24 (dd, J = 10.9, 6.6 Hz, 1H), 3.15 (m, 1H), 1.37 (d, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 165.1, 144.5, 133.9, 130.4, 127.5, 125.7, 124.3, 72.4, 31.7, 16.6.

1-Allyl-3-methylisochromane (8d) and 3-methylisochroman-1-one (8d'). Following the

same procedure used for the synthesis of **8a**, the reaction of isochroman **6d** (55 mg, 0.37 mmol), DDQ (17 mg, 0.074 mol), TBN (8.86 μ L, 0.074 mmol), LiPF₆ (28 mg, 0.18 mmol), methanesulfonic acid (6.7 μ L, 0.074 mmol) and allyltributyl stannane (0.23 mL, 0.74 mmol) in dichloroethane (3.7 mL) afforded a 2.9:1 diastereomeric mixture of compound **8d** (50 mg, 72%) as colorless oil after purification by flash column chromatography on silica gel (ether/nhexane = 1:50) along with lactone **8d'** (5.9 mg, 10%). Each isomer was partially separated for characterization.

8d (Major isomer): ¹H-NMR (400 MHz, CDCl₃) δ 7.17–7.13 (m, 2H), 7.09–7.04 (m, 2H), 6.05–5.94 (m, 1H), 5.16–5.11 (m, 2H), 4.89 (dd, J = 9.8, 3.9 Hz, 1H), 4.11–4.03 (m, 1H), 2.7–2.61 (m, 3H), 2.52–2.46 (m, 1H), 1.30 (d, J = 6.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 137.7, 135.6, 133.5, 128.9, 126.5, 125.9, 125.4, 116.9, 74.6, 63.9, 40.6, 36.0, 21.4. HRMS (ESI) calcd for C₁₃H₁₆NaO [M+Na]⁺ 211.1098, found 211.1091. **8d** (Minor isomer): ¹H-NMR (400 MHz, CDCl₃) δ 7.20–7.08 (m, 4H), 5.94–5.84 (m, 1H), 5.13 (dd, J = 17.2, 1.5 Hz, 1H), 5.05 (d, J = 10.2 Hz, 1H), 4.88–4.87 (m, 1H), 3.83–3.77 (m, 1H), 2.8–2.53 (m, 4H), 1.35 (d, J = 6.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 137.7, 135.1, 134.7, 128.8, 126.3, 126.1, 124.6, 116.8, 76.4, 70.5, 40.3, 36.8, 21.9.

8d': ¹H-NMR (400 MHz, CDCl₃) δ 8.08 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.52 (td, *J* = 7.5, 1.4 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.23 (d, *J* = 7.6 Hz, 1H), 4.67 (m, 1H), 2.95-2.92 (m, 2H), 1.51 (d, *J* = 6.3 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 165.6, 139.1, 133.6, 130.2, 127.6, 127.3, 124.9, 75.0, 34.8, 20.9.

1-Allyl-7-methoxyisochromane (8e) and 7-methoxyisochroman-1-one (8e'). Following the same procedure used for the synthesis of **8a**, the reaction of isochroman **6e** (53.6 mg, 0.33 mmol), DDQ (15 mg, 0.067 mol), TBN (8.0 μ L, 0.067 mmol), LiPF₆ (25 mg, 0.16 mmol), methanesulfonic acid (6.7 μ L, 0.074 mmol) and allyltributyl stannane (0.21 mL, 0.67 mmol) in dichloroethane (3.3 mL) afforded compound **8e** (34 mg, 50%) as colorless oil by purification

by flash column chromatography on silica gel (ether/n-hexane = 1:50) along with lactone **8e'** (8.1 mg, 14%).

8e: ¹H-NMR (400 MHz, CDCl₃) δ 7.03 (d, *J* = 8.3 Hz, 1H), 6.75 (dd, *J* = 8.4, 2.5 Hz, 1H), 6.64 (d, *J* = 2.3 Hz, 1H), 5.96–5.85 (m, 1H), 5.16 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.10 (d, *J* = 10.2 Hz, 1H), 4.80 (dd, *J* = 7.7, 3.3 Hz, 1H), 4.17–4.12 (m, 1H), 3.78 (s, 3H), 3.76–3.71 (m, 1H), 2.96–2.88 (m, 1H), 2.71–2.54 (m, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 157.9, 138.8, 135.1, 129.9, 126.2, 117.1, 112.3, 110.2, 75.6, 63.7, 55.4, 40.4, 28.3. HRMS (ESI) calcd for C₁₃H₁₆NaO₂ [M+Na]⁺ 227.1047, found 227.1046.

8e': ¹H-NMR (400 MHz, CDCl₃) δ 7.58 (dd, J = 2.7 Hz, 1H), 7.16 (d, J = 8.1 Hz, 1H), 7.09 (dd, J = 8.4, 2.7 Hz, 1H), 4.51 (t, J = 6.0, 2H), 3.83 (s, 3H), 2.99 (t, J = 6.0 Hz, 2H). ¹³C-NMR (100 MHz, CDCl₃) δ 165.2, 159.0, 131.8, 128.4, 126.0, 121.6, 112.9, 67.6, 55.6, 27.0.

1-Allyl-6-methoxyisochromane (8f). Following the same procedure used for the synthesis of **8a**, the reaction of isochroman **6f** (53.6 mg, 0.32 mmol), DDQ (14.8 mg, 0.065 mol), TBN (7.8 μL, 0.065 mmol), LiPF₆ (25 mg, 0.16 mmol), methanesulfonic acid (4.2 μL, 0.065 mmol) and allyltributyl stannane (0.21 mL, 0.65 mmol) in dichloroethane (3.3 mL) afforded compound **8f** (44 mg, 66%) as colorless oil by purification by flash column chromatography on silica gel (ether/n-hexane = 1:50). ¹H-NMR (400 MHz, CDCl₃) *δ* 7.18–7.16 (m, 2H), 7.11–7.10 (m, 2H), 5.96–5.85 (m, 1H), 5.17–5.07 (m, 2H), 4.84 (dd, *J* = 7.8, 3.0 Hz, 1H), 4.19–4.14 (m, 1H), 3.81–3.75 (m, 1H), 3.02–2.96 (m, 1H), 2.71–2.66 (m, 2H), 2.62–2.55 (m, 1H). ¹³C-NMR (100 MHz, CDCl₃) *δ* 158.0, 135.5, 135.2, 130.1, 126.0, 117.0, 113.5, 112.5, 75.4, 63.5, 55.3, 40.5, 29.5. HRMS (ESI) calcd for C₁₃H₁₆NaO₂ [M+Na]⁺ 227.1047, found 227.1045.

1-Allyl-6,7-dimethoxyisochromane (8g) and 6,7-dimethoxyisochroman-1-one (8g'). Following the same procedure used for the synthesis of 8a, the reaction of isochroman 6g (72.4 mg, 0.37 mmol), DDQ (17 mg, 0.074 mol), TBN (8.86 μ L, 0.074 mmol), LiPF₆ (28 mg, 0.18 mmol), methanesulfonic acid (6.7 μ L, 0.074 mmol) and allyltributyl stannane (0.23 mL, 0.74 mmol) in dichloroethane (3.7 mL) afforded compound **8g** (42 mg, 48%) as colorless oil by purification by flash column chromatography on silica gel (ether/n-hexane = 1:50) along with lactone **8g'** (33 mg, 42%).

8g: ¹H-NMR (400 MHz, CDCl₃) δ 6.59 (d, J = 4.8, 2H), 5.93–5.86 (m, 1H), 5.17–5.08 (m, 2H), 4.77 (dd, J = 7.6, 3.4 Hz, 1H), 4.16–4.11 (m, 1H), 3.78–3.72 (m, 1H), 2.95–2.87 (m, 1H), 2.71– 2.52 (m, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 147.5, 147.4, 135.1, 129.5, 126.1, 116.9, 111.4, 107.9, 75.1, 63.4, 56.0, 55.8, 40.5, 28.5. HRMS (ESI) calcd for C₁₄H₁₈NaO₃ [M+Na]⁺ 257.1153, found 257.1149.

8g': ¹H-NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 6.67 (s, 1H), 4.50 (t, *J* = 6.0 Hz, 2H), 3.92 (s, 3H), 3.89 (s, 3H), 2.97 (t, *J* = 6.0 Hz, 2H). ¹³C-NMR (100 MHz, CDCl₃) δ 165.2, 153.6, 148.4, 133.9, 117.4, 111.8, 109.1, 67.3, 56.1, 56.1, 27.4.

1-Ally1-7-fluoroisochromane (8h). Following the same procedure used for the synthesis of **8**a, the reaction of isochroman **6**h (56.7 mg, 0.37 mmol), DDQ (17 mg, 0.074 mol), TBN (8.86 μL, 0.074 mmol) LiPF₆ (28 mg, 0.18 mmol), methanesulfonic acid (6.7 μL, 0.074 mmol) and allyltributyl stannane (0.23 mL, 0.74 mmol) in dichloroethane (3.7 mL) afforded compound **8**h (16 mg, 18%) as colorless oil after purification by flash column chromatography on silica gel (ether/n-hexane = 1:50). ¹H-NMR (400 MHz, CDCl₃) *δ* 7.08–7.04 (m, H), 6.87 (td, *J* = 8.5, 2.5 Hz, 1H), 6.81 (dd, *J* = 9.8, 24 Hz, 1H), 5.93–5.83 (m, 1H), 5.15 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.10 (d, *J* = 10.2 Hz, 1H), 4.79 (dd, *J* = 7.5, 3.3 Hz, 1H), 4.18–4.13 (m, 1H), 3.77–3.71 (m, 1H), 2.98–2.90 (m, 1H), 2.71 – 2.66 (m, 3H). ¹³C-NMR (100 MHz, CDCl₃) *δ* 161.2 (d, ^{*I*}*J* = 243.5 Hz), 139.6 (d, ³*J* = 6.1 Hz), 134.6, 130.4 (d, ³*J* = 7.7 Hz), 129.7 (d, ⁴*J* = 3.0 Hz), 117.4, 113.6 (d, ²*J* = 21.2 Hz), 111.6 (d, ²*J* = 22.0 Hz), 75.4 (d, ⁴*J* = 2.2 Hz), 63.6, 40.2, 28.4. ¹⁹F NMR (376 MHz, CDCl₃) *δ* -116.2. HRMS (ESI) calcd for C₁₂H₁₃FNaO [M+Na]⁺ 215.0847, found 215.0837.

1-Allyl-7-chloroisochromane (8i). Following the same procedure used for the synthesis of **8a**, the reaction of isochroman **6i** (62.8 mg, 0.37 mmol), DDQ (17 mg, 0.074 mol), TBN (8.86 μ L, 0.074 mmol), LiPF₆ (28 mg, 0.18 mmol), methanesulfonic acid (6.7 μ L, 0.074 mmol) and allyltributyl stannane (0.23 mL, 0.74 mmol) in dichloroethane (3.7 mL) afforded compound **8i** (25 mg, 33%) as colorless oil after purification by flash column chromatography on silica gel (ether/n-hexane = 1:50). ¹H-NMR (400 MHz, CDCl₃) δ 7.14–7.03 (m, 3H), 5.91–5.84 (m, 1H), 5.17–5.09 (m, 2H), 4.78 (dd, *J* = 7.8, 3.3 Hz, 1H), 4.17–4.12 (m, 1H), 3.77–3.70 (m, 1H), 2.96–2.90 (m, 1H), 2.71–2.54 (m, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 139.6, 134.6, 132.6, 131.7, 130.3, 126.6, 125.0, 117.4, 75.3, 63.4, 40.2, 28.5. HRMS (ESI) calcd for C₁₂H₁₃ClNaO [M+Na]⁺ 231.0552, found 231.0550.

1-Allyl-7-bromoisochromane (8j). Following the same procedure used for the synthesis of **8a**, the reaction of isochroman **6j** (79.4 mg, 0.37 mmol), DDQ (17 mg, 0.074 mol), TBN (8.86 μL, 0.074 mmol), LiPF₆ (28 mg, 0.18 mmol), methanesulfonic acid (6.7 μL, 0.074 mmol), and allyltributyl stannane (0.23 mL, 0.74 mmol) in dichloroethane (3.7 mL) afforded compound **8j** (32 mg, 34%) as colorless oil after purification by flash column chromatography on silica gel (ether/n-hexane = 1:50). ¹H-NMR (400 MHz, CDCl₃) *δ* 7.29–7.25 (m, 2H), 6.99 (d, *J* = 8.1 Hz, 1), 5.91–5.84 (m, 1H), 5.18–5.08 (m, 2H), 4.78 (dd, *J* = 7.9, 3.4 Hz, 1H), 4.17–4.12 (m, 1H), 3.76–3.70 (m, 1H), 2.95–2.88 (m, 1H), 2.72–2.52 (m, 3H). ¹³C-NMR (100 MHz, CDCl₃) *δ* 140.0, 134.6, 133.1, 130.7, 129.5, 127.9, 119.7, 117.5, 75.2, 63.3, 40.2, 28.6. HRMS (ESI) calcd for C₁₂H₁₃BrNaO [M+Na]⁺ 275.0047, found 275.0046.

1-Allyl-6-fluoroisochromane (8k). Following the same procedure used for the synthesis of **8a**, the reaction of isochroman **6k** (56.7 mg, 0.37 mmol), DDQ (17 mg, 0.074 mol), TBN (8.86 μ L, 0.074 mmol), LiPF₆ (28 mg, 0.18 mmol), methanesulfonic acid (6.7 μ L, 0.074 mmol) and allyltributyl stannane (0.23 mL, 0.74 mmol) in dichloroethane (3.7 mL) afforded compound **8k** (30 mg, 41%) as colorless oil after purification by flash column chromatography on silica gel

(ether/n-hexane = 1:50). ¹H-NMR (400 MHz, CDCl₃) δ 7.06 (q, J = 4.7 Hz, 1H), 6.88 (td, J = 8.5, 2.6 Hz, 1H), 6.81 (dd, J = 9.3, 2.5 Hz, 1H), 5.93–5.83 (m, 1H), 5.16–5.07 (m, 2H), 4.80 (dd, J = 7.3, 2.9 Hz, 1H), 4.17–4.12 (m, 1H), 3.78–3.72 (m, 1H), 3.02–2.95 (m, 1H), 2.72–2.63 (m, 2H), 2.60–2.52 (m, 1H). ¹³C-NMR (100 MHz, CDCl₃) δ 161.2 (d, ¹J = 244.9 Hz), 136.4 (d, ³J = 7.3 Hz), 134.8, 133.5 (d, ⁴J = 2.9 Hz), 126.5 (d, ³J = 8.2 Hz), 117.2, 115.2 (d, ²J = 20.5 Hz), 113.3 (d, ²J = 21.2 Hz), 75.2, 63.1, 40.3, 29.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.8. HRMS (ESI) calcd for C₁₂H₁₃FNaO [M+Na]⁺ 215.0847, found 215.0860.

1-Allyl-6-chloroisochromane (8l). Following the same procedure used for the synthesis of **8a**, the reaction of isochroman **6l** (62.8 mg, 0.37 mmol), DDQ (17 mg, 0.074 mol), TBN (8.86 μ L, 0.074 mmol), LiPF₆ (28 mg, 0.18 mmol), methanesulfonic acid (6.7 μ L, 0.074 mmol) and allytributyl stannane (0.23 mL, 0.74 mmol) in dichloroethane (3.7 mL) after compound **8l** (29 mg, 37%) as colorless oil purification by flash column chromatography on silica gel (ether/n-hexane = 1:50). ¹H-NMR (400 MHz, CDCl₃) δ 7.15-7.10 (m, 2H), 7.03 (dd, *J* = 8.5, 2.6 Hz, 1H), 5.92–5.82 (m, 1H), 5.15–5.07 (m, 2H), 4.79 (dd, *J* = 7.6, 3.4 Hz, 1H), 4.17–4.12 (m, 1H), 3.77–3.71 (m, 1H), 3.00–2.93 (m, 1H), 2.71–2.52 (m, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 136.3, 136.1, 134.6, 132.0, 128.8, 126.4, 126.4, 117.4, 75.3, 63.2, 40.3, 29.0. HRMS (ESI) calcd for C₁₂H₁₃ClNaO [M+Na]⁺ 231.0552, found 231.0548.

1-Allylisochroman-7-yl acetate (8m). Following the same procedure used for the synthesis of **8a**, the reaction of isochroman **6m** (71.6 mg, 0.37 mmol), DDQ (17 mg, 0.074 mol), TBN (8.86 μ L, 0.074 mmol), LiPF₆ (28 mg, 0.18 mmol), methanesulfonic acid (6.7 μ L, 0.074 mmol) and allyltributyl stannane (0.23 mL, 0.74 mmol) in dichloroethane (3.7 mL) afforded compound **8m** (10 mg, 12%) as colorless oil after purification by flash column chromatography on silica gel (ether/n-hexane = 1:50). ¹H-NMR (400 MHz, CDCl₃) δ 7.12 (d, *J* = 8.2 Hz, 1H), 6.89 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.84 (d, *J* = 2.0 Hz, 1H), 5.94–5.83 (m, 1H), 5.16–5.08 (m, 2H), 4.81 (dd, *J* = 7.7, 3.3 Hz, 1H), 4.18–4.13 (m, 1H), 3.78–3.72 (m, 1H), 3.00–2.93 (m, 1H), 2.71–2.53 (m, 1H), 2.71–2.53 (m, 1H), 3.78–3.72 (m, 1H), 3.00–2.93 (m, 1H), 2.71–2.53 (m, 1H), 3.78–3.72 (m, 1H), 3.00–2.93 (m, 1H), 2.71–2.53 (m, 1H), 3.78–3.72 (m, 1H), 3.00–2.93 (m, 1H), 2.71–2.53 (m, 1H), 3.78–3.72 (m, 1H), 3.00–2.93 (m, 1H), 2.71–2.53 (m, 1H), 3.78–3.72 (m, 1H), 3.00–2.93 (m, 2H), 4.81 (m, 2H),

3H). ¹³C-NMR (100 MHz, CDCl₃) δ 169.7, 148.8, 139.1, 134.7, 131.8, 130.0, 119.8, 117.9, 117.3, 75.5, 63.5, 40.2, 28.6, 21.2. HRMS (ESI) calcd for C₁₄H₁₆NaO₃ [M+Na]⁺ 255.0996, found 255.0995.

4-Allyl-1,4-dihydro-2*H*-benzo[f]isochromene (8p) and 1,2-dihydro-4*H*-benzo [f]isochromen-4-one (8p'). Following the same procedure used for the synthesis of 8a, the reaction of isochroman 6p (68.6 mg, 0.37 mmol), DDQ (17 mg, 0.074 mol), TBN (8.86 μ L, 0.074 mmol), LiPF₆ (28 mg, 0.18 mmol), methanesulfonic acid (6.7 μ L, 0.074 mmol) and allyltributyl stannane (0.23 mL, 0.74 mmol) in dichloroethane (3.7 mL) afforded compound 8p (72 mg, 86%) as colorless oil after purification by flash column chromatography on silica gel (ether/n-hexane = 1:50) along with lactone 8p' (5.9 mg, 8%).

8p: ¹H-NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.3 Hz, 1H), 7.83 (d, *J* = 7.6 Hz, 1H), 7.70 (d, *J* = 8.5 Hz, 1H), 7.54 (td, *J* = 11.9, 1.2 Hz, 1H), 7.49 (d, *J* = 7.4, 1.0 Hz, 1H), 7.24 (d, *J* = 8.6 Hz, 1H), 5.97–5.87 (m, 1H), 5.17 (dd, J = 17.2, 1.7 Hz, 1H), 5.09 (d, J = 10.2 Hz, 1H), 5.0–4.9 (m, 1H), 4.37–4.32 (m, 1H), 3.95–3.89 (m, 1H), 3.28–3.20 (m, 1H), 3.13–3.07 (m, 1H), 2.83– 2.77 (m, 1H), 2.69–2.62 (m, 1H). ¹³C-NMR (100 MHz, CDCl₃) δ 135.0, 134.8, 132.1, 132.0, 129.5, 128.5, 126.4, 125.6, 123.2, 122.9, 117.1, 75.8, 63.0, 40.3, 25.7. HRMS (ESI) calcd for C₁₆H₁₆NaO [M+Na]⁺ 247.1098, found 247.1092.

8p': ¹H-NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.6 Hz, 1H), 8.04-8.02 (s, 1H), 7.92-7.90 (m, 1H), 7.84 (d, J = 8.6 Hz, 1H), 7.67-7.60 (m, 2H), 4.68 (t, J = 6.1 Hz, 2H), 3.45 (t, J = 6.1 Hz, 2H). ¹³C-NMR (100 MHz, CDCl₃) δ 165.4, 138.5, 135.6, 129.8, 128.9, 128.6, 127.7, 127.2, 125.2, 124.3, 122.4, 66.6, 24.2.

1-Allyl-7-(*p*-tolyl)isochroman (8q) and 7-(p-tolyl)isochroman-1-one (8q'). Following the same procedure used for the synthesis of 8a, the reaction of isochroman 6q (83.6 mg, 0.37 mmol), DDQ (17 mg, 0.074 mol), TBN (8.86 μ L, 0.074 mmol), LiPF₆ (28 mg, 0.18 mmol), methanesulfonic acid (6.7 μ L, 0.074 mmol) and allyltributyl stannane (0.23 mL, 0.74 mmol)

in dichloroethane (3.7 mL) afforded compound **8q** (48.2 mg, 57%) as colorless oil after purification by flash column chromatography on silica gel (ether/n-hexane = 1:50) along with lactone **8q'** (19 mg, 21%).

8q: ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.1 Hz, 2H), 7.39 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.31 (s, 1H), 7.25 (dd, *J* = 8.7, 0.8 Hz, 2H), 7.18 (d, *J* = 7.9 Hz, 1H), 6.00-5.90 (m, 1H), 5.20-5.09 (m, 2H), 4.90 (dd, *J* = 8.0, 3.5 Hz, 1H), 4.22-4.17 (m, 1H), 3.84-3.78 (m, 1H), 3.07-2.99 (m, 1H), 2.82-2.61 (m, 3H), 2.40 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 138.4, 138.2, 137.2, 135.2, 129.6, 129.4, 127.0, 125.2, 123.5, 75.8, 63.5, 40.6, 28.9, 21.2. HRMS-ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₀NaO 287.1406, found 287.1409.

8q': ¹H-NMR (400 MHz, CDCl₃) δ 8.33 (d, J = 1.9 Hz, 1H), 7.76 (dd, J = 7.9, 2.0 Hz, 1H), 7.52-7.50 (m, 2H), 7.32 (dd, J = 7.9, 0.4 Hz, 1H), 7.27-7.25 (m, 2H), 4.57 (t, J = 6.0 Hz, 2H), 3.09 (t, J = 6.0 Hz, 2H). ¹³C-NMR (100 MHz, CDCl₃) δ 165.2, 140.8, 137.9, 137.8, 136.5, 132.0, 129.6, 128.5, 127.7, 126.8, 125.6, 67.3, 27.5, 21.1.

1-Allyl-7-(4-(trifluoromethoxy)phenyl)isochroman (8r) and 7-(4-(trifluoromethoxy) **phenyl)isochroman-1-one (8r').** Following the same procedure used for the synthesis of 8a, the reaction of isochroman 6r (109.6 mg, 0.37 mmol), DDQ (17 mg, 0.074 mol), TBN (8.86 μ L, 0.074 mmol), LiPF₆ (28 mg, 0.18 mmol), methanesulfonic acid (6.7 μ L, 0.074 mmol) and allyltributyl stannane (0.23 mL, 0.74 mmol) in dichloroethane (3.7 mL) afforded compound 8r (39.7 mg, 40%) as colorless oil after purification by flash column chromatography on silica gel (ether/n-hexane = 1:50) along with lactone 8r' (20 mg, 17%).

8r: ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.6 Hz, 2H), 7.33 (d, J = 7.7 Hz, 1H), 7.25 (d, J = 7.7 Hz, 2H), 7.17 (d, J = 7.9 Hz, 1H), 5.97-5.87 (m, 1H), 5.17-5.08 (m, 2H), 4.87 (d, 4J = 4.6 Hz, 1H), 4.20-4.15 (m, 1H), 3.81-3.75 (m, 1H), 3.05-2.99 (m, 1H), 2.77-2.59 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 140.0, 138.5, 137.9, 135.0, 133.9, 129.6, 128.5, 125.3, 123.7,

121.4, 119.4, 117.3, 75.7, 63.4, 40.5, 28.9. HRMS-ESI (m/z): $[M+Na]^+$ calcd. for C₁₉H₁₇F₃NaO₂ 357.1073, found 357.1072.

8r': ¹H-NMR (400 MHz, CDCl₃) δ 8.32 (d, J = 1.8 Hz, 1H), 7.74 (dd, J = 7.9, 2.0 Hz, 1H), 7.63-7.61 (m, 2H), 7.36 (dd, J = 7.9, 0.5 Hz, 1H), 7.31-7.29 (m, 2H), 4.58 (t, J = 6.0 Hz, 2H), 3.11 (t, J = 6.0 Hz, 2H). ¹³C-NMR (100 MHz, CDCl₃) δ 164.9, 149.1, 139.5, 138.7, 138.2, 132.0, 128.7, 128.4, 127.9, 125.8, 121.4, 67.3, 27.5.

1-Allyl-1,3-dihydroisobenzofuran (8s).² Following the same procedure used for the synthesis of **8a**, the reaction of isochroman **6q** (44.8 mg, 0.37 mmol), DDQ (17 mg, 0.074 mol), TBN (8.86 μ L, 0.074 mmol), LiPF₆ (28 mg, 0.18 mmol), methanesulfonic acid (6.7 μ L, 0.074 mmol) and allyltributyl stannane (0.23 mL, 0.37 mmol) in dichloroethane (3.7 mL) afforded compound **8q** (17.9 mg, 30%) as colorless oil after purification by flash column chromatography on silica gel (ether/n-hexane = 1:50). ¹H-NMR (400 MHz, CDCl₃) δ 7.28–7.18 (m, 2H), 5.92–5.82 (m, 1H), 5.31–5.28 (m, 1H), 5.18–5.17 (m, 0.5H), 5.15–5.10 (m, 2H), 5.09–5.08 (m, 0.5H), 5.07–5.04 (m, 1H). ¹³C-NMR (100 MHz, CDCl₃) δ 141.6, 139.5, 134.2, 127.5, 127.2, 121.4, 121.0, 117.7, 83.3, 72.7, 40.8.

7-Allyl-4,7-dihydro-5H-thieno[2,3-c]pyran (8t). Following the same procedure used for the synthesis of **8a**, the reaction of isochroman **6s** (52.2 mg, 0.37 mmol), DDQ (17 mg, 0.074 mol), TBN (8.86 μ L, 0.074 mmol), LiPF₆ (28 mg, 0.18 mmol), methanesulfonic acid (6.7 μ L, 0.074 mmol) and allyltributyl stannane (0.23 mL, 0.74 mmol) in dichloroethane (3.7 mL) afforded compound **8s** (19.5 mg, 29%) as yellow oil after purification by flash column chromatography on silica gel (ether/*n*-hexane = 1:50). ¹H-NMR (400 MHz, CDCl₃) δ 7.14 (d, *J* = 5.0 Hz, 1H), 6.81 (d, *J* = 5.0 Hz, 1H), 5.98–5.88 (m, 1H), 5.22–5.13 (m, 2H), 4.85 (td, *J* = 4.6, 2.1 Hz, 1H), 4.23 (qd, *J* = 5.7, 2.0 Hz, 1H), 3.76 (td, *J* = 14.0, 7.8 Hz, 1H), 2.92–2.83 (m, 1H), 2.67–2.52 (m, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 134.7, 134.0, 133.6, 127.1, 122.7, 117.8, 74.7, 64.5, 41.4, 26.2. HRMS (ESI) calcd for C₁₀H₁₂NaOS [M+Na]⁺ 203.0506, found 203.0504.

tert-Butyl 4-(4-fluorophenyl)piperazine-1-carboxylate (15a).³ A solution of 1-bromo-4fluorobenzene 14 (0.57 mmol), N-Boc-piperazine 13 (0.85 mmol), sodium tert-butoxide (1.66 mmol), tris(dibenzylideneacetone)dipalladium $(Pd_2(dba)_3,$ 0.017 mmol), and 2dicyclohexylphosphino-2',6'-diisopropoxy-1,1'-biphenyl (0.05 mmol) in toluene (1.0 mL) was stirred at 105°C for 4 hours. After the reaction was completed, the mixture was diluted with ethyl acetate and washed with water and saturated aqueous NaCl. The organic layer was dried over anhydrous MgSO₄ and concentrated under reduced pressure. The crude residue was then purified by column chromatography on silica gel (n-hexane/EtOAc = 10:1) to afford the desired compound 15a (0.17 g, quant) as yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 6.96-6.92 (m, 2H), 6.87-6.83 (m, 2H), 3.55 (t, J = 5.1 Hz, 4H), 3.01 (t, J = 5.1 Hz, 4H), 1.46 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 157.5 (d, ¹J = 238 Hz), 154.6, 148.0 (d, ⁴J = 2 Hz), 118.5 (d, ³J = 8 Hz), 115.6 (d, ${}^{2}J = 22$ Hz), 79.8, 50.4, 28.4. LRMS (ESI) calcd for C₁₅H₂₂FN₂O₂ [M+H]⁺ 281.2, found 281.1.

1-(4-Fluorophenyl)piperazine (15). A solution of *tert*-butyl 4-(4-fluorophenyl)piperazine-1carboxylate **15a** (0.17 mmol) was added to HCl (2.0 M in diethyl ether, 0.8 mL) and the reaction mixture was stirred for 23 hours at room temperature. After completion, the mixture was washed with a small amount of methanol and excess diethyl ether to obtain a white solid. The product was then washed with 2M NaOH and extracted with EtOAc. The organic layer was dried over MgSO₄, evaporated under reduced pressure, and 1-(4-fluorophenyl)piperazine **15** was obtained without further purification as yellow liquid in 68% yield. R_{*f*} = 0.11 (DCM:MeOH = 2:1). ¹H NMR (400 MHz, MeOH-*d*₄) HCl salt form. δ 7.42-7.39 (m, 2H), 7.17-7.12 (m, 2H), 3.64 (dd, *J* = 6.9, 3.5 Hz, 4H), 3.57 (dd, *J* = 6.8, 3.4 Hz, 4H), 3.26 (m, 1H). ¹³C NMR (100 MHz, MeOH-*d*₄) δ 160.3 (d, ¹*J* = 243 Hz), 142.5, 121.0 (d, ³*J* = 8 Hz), 116.1 (d, ²*J* = 23 Hz), 115.6 (d, ²*J* = 22 Hz), 49.3, 42.4. LRMS (ESI) calcd for C₁₀H₁₄FN₂ [M+H]⁺ 181.1, found 181.1. **2-(6,7-Dimethoxyisochroman-1-yl)acetaldehyde** (16).⁴ To a solution of 1-allyl-6,7dimethoxyisochromane **8g** (15.0 mg, 0.064 mmol) in a 4:1 mixture of dioxane and water (1.0 mL) were added 2,6-lutidine (37.0 µL, 0.32 mmol), OsO₄ (40 µL, 4% solution in H₂O), and NaIO₄ (68.0 mg, 0.32 mmol) sequentially at 35°C. The mixture was stirred for 22 hours. Once the reaction was completed, the dioxane was removed under reduced pressure and the remaining aqueous layer was extracted with DCM. The combined organic layer was washed with 1 N HCl to remove excess 2,6-lutidine, followed by treatment with brine. The organic layer was dried over anhydrous MgSO₄ and concentrated under reduced pressure. The crude residue was then purified by column chromatography on silica gel (n-hexane/EtOAc = 2:1) to afford aldehyde **16** (9.8 mg, 65%) as clear oil. $R_f = 0.42$ (n-hexane/EtOAc = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 9.81 (t, J = 2.4 Hz, 1H), 6.61 (s, 1H), 6.49 (s, 1H), 5.22 (t, J = 5.8 Hz, 1H), 4.13 (m, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 3.78 (m, 1H), 2.94 (m, 1H), 2.87 (dd, J = 5.8, 2.4 Hz, 2H), 2.61 (dt, J = 16.0, 3.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 201.5, 148.0, 147.7, 127.9, 126.1, 111.7, 107.4, 71.4, 63.7, 56.0, 55.9, 49.5, 28.3. LRMS (ESI) calcd for C₁₃H₁₇O₄ [M+H]⁺ 237.1, found 237.1.

1-(2-(6,7-Dimethoxyisochroman-1-yl)ethyl)-4-(4-fluorophenyl)piperazine (2).⁵ To a solution of 2-(6,7-dimethoxyisochroman-1-yl)acetaldehyde **16** (5.0 mg, 0.021 mmol) in DCM (0.2 mL), 1-(4-fluorophenyl)piperazine **15** (4.5 mg, 0.025 mmol) and NaBH(OAc)₃ (6.0 mg, 0.028 mmol) were added, and the mixture was stirred at room temperature for 2 hours. Once the reaction was completed, the aqueous layer was extracted with DCM. The combined organic layer was dried over anhydrous MgSO₄ and concentrated under reduced pressure. The crude residue was then purified by column chromatography on silica gel (EtOAc Only) to afford compound **2** (5.8 mg, 68%) as yellowish oil. R_f = 0.43 (n-hexane/EtOAc = 1:20). ¹H NMR (400 MHz, CDCl₃) δ 6.97-6.93 (m, 2H), 6.88-6.85 (m, 2H), 6.59 (d, *J* = 3.2 Hz, 2H), 4.78 (d, *J* = 6.2 Hz, 1H), 4.11 (m, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.74 (m, 1H), 3.15 (t, *J* = 4.8, 4H), 2.90

(m, 1H), 2.68-2.57 (m, 7H), 2.16-2.01 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 157.2 (d, ¹*J* = 245 Hz), 147.9, 147.6, 147.5, 129.7, 125.9, 117.9 (d, ³*J* = 8 Hz), 115.5 (d, ²*J* = 22 Hz), 111.5, 107.7, 74.4, 63.2, 56.0, 55.8, 54.9, 53.3, 50.0, 33.2, 28.5. ¹⁹F NMR (400 MHz, CDCl₃) δ -124.6. LRMS (ESI) calcd for C₂₃H₃₀FN₂O₃ [M+H]⁺ 401.2, found 401.2.

II. Spectral Data

Figure S1. 400 MHz ¹H and 100 MHz ¹³C NMR spectra of 8a in CDCl₃.

Figure S2. 400 MHz ¹H and 100 MHz ¹³C NMR spectra of 8b in CDCl₃.

Figure S4. 400 MHz ¹H and 100 MHz ¹³C NMR spectra of 8c in CDCl₃.

Figure S5. 400 MHz ¹H and 100 MHz ¹³C NMR spectra of 8c' in CDCl₃.

Figure S6. 400 MHz ¹H and 100 MHz ¹³C NMR spectra of 8d in CDCl₃.

CH₃

Figure S7. 400 MHz ¹H and 100 MHz ¹³C NMR spectra of 8d in CDCl₃.

Figure S9. 400 MHz ¹H and 100 MHz ¹³C NMR spectra of 8e in CDCl₃.

Figure S11. 400 MHz ¹H and 100 MHz ¹³C NMR spectra of 8f in CDCl₃.

Figure S12. 400 MHz 1 H and 100 MHz 13 C NMR spectra of 8g in CDCl₃.

Figure S14. 400 MHz ¹H and 100 MHz ¹³C NMR spectra of 8h in CDCl₃.

Figure S15. 376 MHz ¹⁹F NMR spectrum of 8h in CDCl₃.

Figure S16. 400 MHz ¹H and 100 MHz ¹³C NMR spectra of 8i in CDCl₃.

ppm

. Figure S18. 400 MHz 1 H and 100 MHz 13 C NMR spectra of 8k in CDCl₃.

90 80 70 60 50 40 30 20 10 0 -10 20 30 40 50 60 70 80 9010 1 1 2 1 31 40 50 60 70 80 90 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 0 pm

Figure S19. 376 MHz ¹⁹F NMR spectrum of 8k in CDCl₃.

Figure S20. 400 MHz ¹H and 100 MHz ¹³C NMR spectra of 8l in CDCl₃.

Figure S21. 400 MHz ¹H and 100 MHz ¹³C NMR spectra of 8m in CDCl₃.

Figure S22. 400 MHz ¹H and 100 MHz ¹³C NMR spectra of 8p in CDCl₃.

Figure S26. 400 MHz 1 H and 100 MHz 13 C NMR spectra of 8r in CDCl₃.

Figure S28. 400 MHz ¹H and 100 MHz ¹³C NMR spectra of 8s in CDCl₃.

Figure S29. 400 MHz 1 H and 100 MHz 13 C NMR spectra of 8t in CDCl₃.

Figure S31. 400 MHz ¹H and 100 MHz ¹³C NMR spectra of 16 in CDCl₃.

Figure S32. 400 MHz ¹H and 100 MHz ¹³C NMR spectra of 2 in CDCl₃.

-124.6145

40 30 20 10 0 -10-20-30-40-50-60-70-80-90-100110120130140150160170180190200210220230 pp_1 Figure S33. 376 MHz ¹⁹F NMR spectrum of 2 in CDCl₃.

III. References

- 1. K. Tomooka, L.-F. Wang, F. Okazaki and T. Nakai, Tetrahedron Lett., 2000, 41, 6121-6125.
- 2. R. Grigg, J. M. Sansano, V. Santhakumar, V. Sridharan, R. Thangavelanthum, M. Thornton-Pett and D. Wilson, *Tetrahedron*, 1996, **52**, 13441-13454.
- 3. F. Yu, C. Zhu, S. Ze, H. Wang, X. Yang, M. Liu, Q. Xie, W. Lu and Y. Wang, *J. Med. Chem.*, 2022, **65**, 4367-4386.
- 4. B. Padhi, G. S. Reddy and D. K. Mohapatra, J. Nat. Prod., 2016, 79, 2788-2796.
- 5. S. Sarkar, S. Sultana, K. Indukuri, R. Unnava and A. K. Saikia, *Synthesis*, 2016, **48**, 1727-1733.