Supplemental Material

Supplemental Table I

Crosstabulation Table used for Statistical Analysis of Aneurysm Severity by Treatment								
Genotype	Aneurysm Type							
		none	Type I	Type II Type III	Type IV	total		
ApoE-/-TLR2+/+	Count	16	3	7	21	7	54	
	%	30	5	13	39	13	100	
ApoE-/-TLR2-/	Count	6	6	12	8	20	52	
	%	12	12	23	15	38	100	

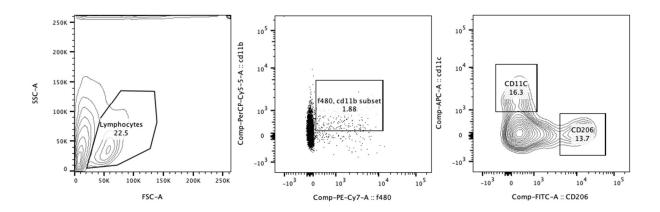
Treatment	Aneurysm Type						
		none	Type I	Type II	Type III	Type IV	total
AngII+Placebo	Count	7	2	4	10	3	26
	%	27	8	15	38	12	100
AngII+Pam3CSK4	Count	17	2	3	2	2	26
	%	65	8	11	8	8	100

Supplemental Table II

	ApoE-/-			ApoE-/-TLR2-/-		
	Control (n=10)	AngII (n=10)	AngII+Pam3CSK4 (n=10)	Control (n=10)	AngII (n=10)	
SBP (mmHg)	102±3	152±7*	151±9*	110±6	164±10*	
Total cholesterol (mg/dL)	322±37	369±49	267±30	315±23	302±35	
Body weight (g)	29.8±0.7	30.2±1.5	29.8±1.0	29.5±1.4	30.3±0.7	

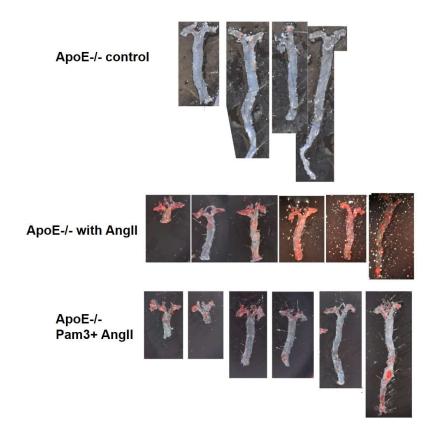
Systolic blood pressure, total cholesterol and body weight in ApoE-/- mice treated with AngII, and AngII+Pam3CSK4, and in AngII treated ApoE-/-TLR2-/- mice

SBP was measured using a tail-cuff system. Total cholesterol and body weight were determined at the end of the study. All results are expressed as mean \pm SEM. **P*<0.05 compared with control.


Supplemental Table III

		Angli		Pam3	Pam3+Angll	
	day 3	day 7	day 28	day 28	day 28	
Aneurysm	0 %	14 <mark>%</mark>	70%	0%	35%	
CCL5/ Rantes	1.1	1.9	7.1	12.1	1.2	
CCL3	1.6	3.8	8.3	35.3	4.3	
CCR5	11.9	12.5	110.7	3.4	1.6	
CXCL10	5.6	9.3	71.3	3.0	1.2	
CXCR3	2.2	3.7	11.8	3.1	1.1	
CCL22	7.2	7.7	13.3	5.5	2.8	
CCR4	7.2	9.2	7.4	2.2	4.9	
CCL2/ MCP-1	5.8	7.0	10.2	32.1	1.4	
CCL8/ MCP-2	18.7	48.5	189.3	0.5	N.D.	
CCL7/ MCP-3	14.9	15.7	37.7	23.1	1.1	
CCL12/ MCP-5	41.9	31.1	191.4	4.2	1.4	
CCR3	11.8	10.2	136.5	2.9	3.4	
CCR6	5.5	7.6	57.3	1.1	5.1	
CCL19	4.2	7.2	8.5	5.5	1.3	
CX3CL1	0.9	1.0	4.1	5.8	1.5	

qRT-PCR array for chemokines & chemokine receptors in suprarenal aorta from ApoE-/mice treated with vehicle, Angll, Pam3CSK4 alone, or Pam3CSK4+Angll


* Fold changes in the expression of chemokines/ chemokine receptors in suprarenal aorta from AngII, PAM3 or PAM3+AngII treated ApoE-/- mice were determined compared with levels in the corresponding region of vehicle treated ApoE-/- mice. N.D. denotes not detectable.

Supplemental Figure1

Figure. S1. The picture of the gating strategy used. First forward and side scatter were gated to isolate lymphocytes. Then lineage positive cells were excluded and CD11b+F4/80+ were identified. Expression of CD206 and CD11c were identified in this population.

Supplemental Figure2

Figure. S2. The treatment of Pam3CSK4 does not increase atherosclerosis in AngII treated ApoE-/- mice.