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As illustrated in the figure above, we describe the approximation to the short-term probability
of a specific event. Let T be the time until event and C = j, j = 1,2,...,k, be the type of event
(here, the time is time until recurrence of cardiac arrest, and the type of event is the clinical arrest
state the patient returns to). Let /; be the corresponding specific hazard rate for this event in
a multi-state model. The event j specific hazard rate (often called cause-specific hazard rate)
function is given as

Pt <T <t4+MNC=j|T >t
hf'(t):Al,imo (t<T< +At JIT >1)
—

or approximately
hj(t)Adt =~ P(t <T <t+AtNC=j|T >1t)

If the time scale is such that one time unit is “small” , then we further get:
hj(t) =~ P(t<T <t+1NC=j|T >1)

So roughly, the hazard for event C = j at time ¢ is approximately equal to the probability that
event j happens the next time unit, given that no event has happened up to time ¢. This is an
acceptable approximation if all competing events have small probabilities of happening during
one time unit.

Assuming constant hazards

If one, as in a time-homogeneous Markov process, can assume constant hazard rates A; for
all the competing risks i, we can illustrate this further. Let 7; be the time until event i, and
let T = min(7y,73,...,T;). Due to the constant hazard assumption 7; will have an exponential
distribution with rate A. Then:
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The Taylor expansion (using only the first term) becomes more precise the smaller the A Az -
terms are. If A;Ar < 0.1 and Yitj AiAr < 0.1, the error term will be of the order of 0.01, and so on
(error ~ term?). E.g., for combinations of A’s and At such that A;At < 0.1 and YizjAiAt < 0.1 the
approximation

hj(t)At = P(t <T; <t+At|T >t)

is OK. So, if the time scale is chosen such that 4;Ar < 0.1 and Y, ; ;;At are both small (e.g. <
0.1) even when Ar=1, we get

Ai=hij(t) =Pt <T;<t+1|T >1)



