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1 Model performance of link prediction across diverse PPI datasets
Figs. S1-S4 below illustrate the model’s performance on all four PPI datasets in terms of ROC-AUC, PR-AUC, balanced
accuracy, and F1-score, respectively. Figs. S5 and S6 illustrate the corresponding ROC and PR curves for each dataset,
respectively. These results demonstrate that DNE surpasses all eleven other network embedding methods across all PPI datasets.
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Fig. S1. ROC-AUC scores computed from 10 independent runs across four PPI datasets. Mean values are reported, with error
bars representing the standard deviations of the scores.
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Fig. S2. PR-AUC scores computed from 10 independent runs across four PPI datasets. Mean values are reported, with error
bars representing the standard deviations of the scores.
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Fig. S3. Balanced accuracy computed from 10 independent runs across four PPI datasets.
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Fig. S4. F1 scores computed from 10 independent runs across four PPI datasets.
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Fig. S5. ROC curves of DNE compared with eleven other network embedding methods for PPI prediction on four PPI datasets.
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Fig. S6. PR curves of DNE compared with eleven other network embedding methods for PPI prediction on four PPI datasets.



2 Model performance of link prediction on other network datasets
Beyond the four PPI datasets analyzed, we expanded our evaluation of DNE’s effectiveness to include three distinct networks:
(1) The Cora dataset [44], which is a citation network consisting of 2,708 scientific publications and 5,278 citation links; (2)
The Power dataset [45], representing the topology of the Western States Power Grid of the United States with 4,941 nodes and
6,594 edges; and (3) The Router dataset [46], showcasing the router-level architecture of the Internet with 5,022 nodes and
6,258 edges. For details on dataset properties and statistics, refer to Supplementary Section 5. Across these diverse network
datasets, the DNE method consistently outperformed competing approaches.
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Fig. S7. ROC-AUC scores computed from 10 independent runs across three different network datasets.



3 Model robustness against link perturbations for link prediction
The robustness of the model was evaluated on the A. thaliana dataset by randomly removing varying fractions of edges from the
network. DNE exhibits robustness against network perturbations and consistently outperforms other methods across different
perturbation ratios (Fig. S8).

Fig. S8. Robustness evaluation showing the ROC-AUC scores of DNE compared with nine other network embedding methods
against link perturbations, where links are randomly removed with different ratios.



4 Model robustness against edge sampling parameters for link prediction
Here we performed an ablation study to examine the effects of edge sampling parameters (walk length l and walk number γ)
on link prediction using the S. cerevisiae dataset. In Fig. S9 (left), with the number of walks set at 10, we varied the walk
length. The link prediction performance, as measured by ROC-AUC, peaks at l = 50 and then declines slightly. This suggests
increasing the walk length to a certain threshold captures more neighborhood nodes as positive pairs, but further increases can
introduce noise by including distant nodes to positive pairs. In Fig. S9 (right), with the walk length set at 10, we varied the
walk number. We observed that the ROC-AUC improves by approximately 1.5% when the number of walks increases within
γ < 25. Beyond this point, the additional gains diminish to less than 0.5% as γ approaches 200. This suggests that increasing
the number of walks initially enhances coverage of neighboring nodes effectively for better performance, but further increases
lead to redundant sampling of the same neighboring nodes, with minimal further improvements in performance. Overall, the
outcome of DNE prediction is not highly sensitive to parameters variations.

Fig. S9. Sensitivity analysis of walk length l (left) and walk number γ (right) on link prediction performance.



5 Visualization of node embeddings
To validate that DNE (Fig. S10A) effectively captured biologically meaningful signals via its embeddings, we evaluated the
correlation between the distances in the embeddings of different proteins and both the functional similarity in terms of GOBP
(Fig. S10B) and the proximity within the PPI network (Fig. S10C). Our findings indicate that shorter cosine distances among
these embeddings correlate with both greater similarity in GOBP terms and closer connections in the PPI network.
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Fig. S10. Visualization of DNE protein embeddings. a) t-SNE projections of protein embeddings obtained from DNE,
colored by subcellular locations described by Gene Ontology Cellular Component (GOCC) terms. c) Distribution of
embedding distances for pairs of proteins sharing low (5th percentile), medium (25th–75th percentile), or high (95th percentile)
similarity of GOBP terms, measured by Jaccard similarity. Proteins with higher GOBP similarity have more similar
embeddings. c) Distribution of embedding distances for pairs of n-hop neighbors in the PPI network. Proteins that are closer
together in the network tend to exhibit more similar embeddings.



6 Performance comparison of link prediction methods using node features
Our proposed method uses a dual-encoder mechanism to integrate node features into the embedding learning process. In Fig. 5b
of the main manuscript, we assessed our method alongside baseline methods (DGI, GRACE, and VGAE) using the S. cerevisiae
dataset, which uniquely provides complete protein sequences for each protein in its PPI network, whereas other PPI datasets in
our study lack comprehensive protein features and were not suitable for this analysis. Similarly, we conducted an evaluation
on the Cora dataset—a citation network where node features are word vectors describing scientific publications (Fig. S11).
DNE consistently outperforms other baseline methods (DGI, GRACE, and VGNAE) in scenarios both with and without node
features. By incorporating features, DNE achieved an approximate 2% improvement compared to versions not using features.
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Fig. S11. ROC-AUC scores for DNE and other baseline methods on the Cora dataset, derived from 10 independent runs. Gray
boxes indicate cases considering only network structures, while red boxes depict cases incorporating both network structures
and node features.



7 Summary of network datasets
Details on the characteristics and statistics of the datasets, such as the number of nodes and edges, average clustering coefficient
(ACC), edge density, as well as the average and maximum node degree, are provided in Table S1 below. The ACC calculates
network clustering by averaging the individual clustering coefficients of all nodes. It effectively indicates the local connectivity
within a social network and the tendency for nodes in a graph to cluster together. Edge density measures the ratio of existing
edges to total possible edges in a graph, reflecting network connectivity. The average node degree represents the mean number
of edges connected to nodes, providing an overview of network connectivity. Meanwhile, the maximum node degree indicates
the highest number of edges connected to a single node.

Table S1. Network dataset characteristics and statistics

Dataset A. thaliana C. elegans S. cerevisiae H. sapiens Cora Power Router

Num of nodes 2774 2528 2674 8272 2708 4941 5022
Num of edges 6205 3864 7075 52548 5278 6594 6258
ACC 0.049 0.019 0.190 0.059 0.241 0.080 0.012
Density 1.61e-3 1.21e-3 1.98e-3 1.54e-3 1.44e-3 5.40e-4 4.96e-4
Average degree 4.47 3.06 5.29 12.71 3.90 2.67 2.49
Max degree 268 101 140 500 168 19 106

8 Model parameters
The DNE parameters used to reproduce the results are summarized in Table S2 below.

Table S2. DNE model default parameters

Parameter name Value

Embedding size 128
Walk length 10
Walk number 100
Epochs 10
Learning rate 1e-3
Batch size 1000
Optimizer Adam
Positional encoding LE
Dropout rate 0.3
Number of MLP layers 2
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