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Supplementary Note 1: Experimental optical crosstalk and losses

Optical crosstalk in our experimental setup can be assessed by a geometric approach (see SUPP. NOTE 2

for scaled-up system including effects of diffraction). The schematic of ray-tracing through the optical layer

describes the relationship between parameters and crosstalk (SUPP. FIG. 2).

We choose parameters for the LED die size, LED spacing, PD active area, PD spacing, and M to min-

imize crosstalk between the LED and PD pairs and the weights (see SUPP. TABLE 3 for details). Optical

propagation progresses from the LED layer to a weight layer (d1) and from the weight layer to the PD layer

(d2). We define a system magnification M = (d1 + d2)/d1 which describes the displacement and scaling of a

primary ray. The spot size from a LED of width wLED propagating through a square aperture of size wamp

to the photodiode plane is the convolution of two squares of size (M − 1)wLED and Mwamp. The maximum

extent of the spread is the sum of the sides, or M(wLED + wamp) − wLED and the center region of size

M(wamp−wLED)+wLED has uniform intensity. The weights are positioned such that the center spot of each

weight is exactly mapped to a single LED-PD pair.

To prevent any crosstalk between adjacent weights, the maximum spread from a LED-weight pair cannot

overlap the active surface of an adjacent PD of width wPD, or we require (M(wLED + wamp) − wLED)/2 +

wPD/2 ≤ sPD, where s stands for size.

For an optical layer of size n × n to size m × m, the width of the LED array is n · sLED and the width

of the PD array is m · sPD. With a magnification M the size of the mask associated with a single LED is

m · sPD/M . This results in two constraints: sLED ≥ m·sPD

M−1 , which limits the minimum size of the LED array

to n·m·sPD

M−1 , and the weight spacing samp = sPD/M . Generally we aim to maximize the size of the PD active

area and minimize the magnification in order to maximize the energy efficiency of the approach. This results

in aiming to use as small of an LED die size as possible and minimizing sLED.

Total optical losses in our experimental setup depend on both our optical parameters, choice of components,

and the implemented network. While increased wPD or decreased wamp reduces optical crosstalk, these

changes also increase collection efficiency. Similarly, while changes to d1, d2 have a complicated relationship

with crosstalk and optical signal (see SUPP. NOTE 3), increases to the propagation distance generally reduce

the amount of total light collected. For a discussion of the effects of component choice on efficiency, see SUPP.

NOTE 2. The implemented network (averaged weights in the trained network were approximately 0.5, and

averaged differenced weights in the network had a value of approximately 0.1).
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Supplementary Note 2: Electronic circuit

The circuits implemented on the printed circuit boards (PCBs) that comprise the electronic part of the

optoelectronic neural network are shown in SUPP. FIG. 5. The optoelectronic implementation consists of

three circuits: one for the source, one for intermediate processing, and one for detection.

The source circuit, as depicted in SUPP. FIG. 5b, receives a 64-channel input signal from a digital-to-analog

converter (DAC) and converts this voltage signal to drive the 64 LED outputs arranged in an 8 × 8 grid.

The signal from the input board, after optical matrix-vector multiplication, is incident on a well-positioned

intermediate board, shown in SUPP. FIG. 5b.

The intermediate board consists of balanced photodetection, whose signal is then amplified before being

converted to a current signal to drive the LED that serves as the source for the next layer of the intermediate

board.

A detector PCB is positioned at the end of the optical train to collect the light after processing through

all the neural network layers. The output PCB consists of an array of photodetectors, spatially arranged as

a matrix to retain the spatial information of the signal. The detected signal is then converted to a voltage

signal and digitized using an analog-to-digital converter (ADC).

The parts used in the electronic circuit are tabulated in SUPP. TABLE 4
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Supplementary Note 3: Analytical optical propagation solution

We approximate an analytical solution to the spread of light from a point source through our optical layers

using optical parameters given in SUPP. TABLE 5. Here we describe the spread of light from a point source

at x′′
0 = 0, y′′0 = 0 that passes through a Gaussian aperture at x′

1, y
′
1 on a plane d1 away, and onto the plane

(x, y). In this solution, we describe our propagation in a rotated basis where the propagation axis is defined

along the vector between the source position and the aperture position.

The rotation in propagation axis results in three effective changes to our optical parameters, all determined

by the scaling factor η. 1. The total distances between the source, aperture, and PD plane are scaled to

∆z1,∆z2. 2. The Gaussian aperture is scaled in the direction parallel to the x, y displacement of the aperture

by 1/
√
η. 3. The output PD has to be projected back to the original PD plane, with a scaling η in the direction

parallel to the displacement. Without loss of generality, for this calculation we consider the case where the

displacement of the weight x′
1 is set to be the direction parallel to the propagation and y′1 is the orthogonal

direction.

With this rotation, the conditions for Fresnel diffraction are satisfied for output field positions nearby the

propagation direction of the light. Field of Fresnel diffraction of a point source:

U(x′, y′) =
eikz

iλ

∆z1√
∆z21 + x′2 + y′2

e
ik

2∆z1
(x′2+y′2) (1)

When comparing the nearby points in x′,y′, this approximates to:

U(x′, y′) =
eikz

iλ
e

ik
2∆z1

(x′2+y′2) (2)

A single weight at x′
1, y

′
1 is described as:

e−(η(x′−x′
1)

2+(y′−y′
1)

2)/σ2
1 (3)

With these, we can assemble the representation of the field at the output plane using the Fraunhofer

diffraction equation:

U(x, y) =

∫ ∞

−∞

∫ ∞

−∞
U(x′, y′)e

−ik
∆z2

(xx′+yy′)dx′dy′ (4)
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U(x, y) =

∫ ∞

−∞

∫ ∞

−∞

eikz

iλ

∆z1e
−(η(x′−x′

1)
2+(y′−y′

1)
2)/σ2

1√
∆z21 + x′2 + y′2

e
ik

2∆z1
(x′2+y′2) e

ikz

iλ
e

ik
2∆z1

(x′2+y′2)e
−ik
∆z2

(xx′+yy′)dx′dy′ (5)

The solution of:

∫ ∞

−∞
ei(c1u

′2−c2u
′u)−c3(u

′−u′
1)

2

du′ =

√
π

c3 − c1i
e

−c3+c1i

4(c21+c23)
(c22u

2+4ic2c3u
′
1u−4ic1c3u

′2
1 )

(6)

using the substitutions of c1 = k
2∆z1

, c2 = k
∆z2

, c3y = 1
σ2
1
for the y direction and c3x = η

σ2
1
for the x

direction.

The above solution may be rearranged as:

√
π

c3 − c1i
e−c3u

′2
1 e

ic23u′2
1

c1 e
−c22c3

4(c21+c23)
(u− 2c1u′

1
c2

)2

e
ic1c22

4(c21+c23)
(u+

2c33u′
1

c2c1
)2

(7)

or

Aeiθe
(u−u2)2

s2amp e
i(u−ui2)2

s2
phase (8)

where samp =
√

4(c21+c23)

c22c3
, sphase =

√
4(c21+c23)

c1c22
, u2 =

2c1u
′
1

c2
, and ui2 = − 2c33u

′
1

c2c1

The precursor Aeiθ represents a static scaling factor for the amplitude and phase offset, and the rest of

the expression represents Gaussian amplitude spread samp centered at u2 and quadratic phase spread sphase

centered at ui2.

After substitution for x, y and rotation, the field incident on the photodiode plane is given by:

U(x, y) =
e

(x−x2)2

s2ampx e
i(x−xi2)2

s2
phasex e

(y−y2)2

s2ampy e
i(y−yi2)2

sphasey2
eix

′
1(x−xi2)/∆z1√

c3y − ic1∆z1
√
η(s2ampxs

2
ampy)

1
4

(9)

where sampx =
√

4(c21+c23x)η

c22c3x
, sphasex =

√
4(c21+c23x)

c1c22
, x2 =

2c1x
′
1

c2
, xi2 = − 2c33xx

′
1

c2c1
, sampy =

√
4(c21+c23y)

c22c3y
,

sphasey =

√
4(c21+c23y)

c1c22
, y2 =

2c1y
′
1

c2
, and yi2 = − 2c33yy

′
1

c2c1
.

In order to minimize crosstalk between adjacent weights, the most important parameters are sampx and

sampy, which describe the spread of a weight on the PD plane. By choosing parameters such that total spread

and crosstalk off-axis is minimized and the total integrated signal on PDs is maximized (SUPP. FIG. 22), we

can optimize the performance of our approach.

This equation approximates the spread on the PD plane from a point source going through the optical
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layers. In addition to this, the total spread is increased by two additional factors: the change in spread due

to LED size and the frequency spread of the wavelength.

The width ±ω0/2 of the LED die can be described as a shift of basis where x0 → x0 ± ω0/2, which is

approximately equal to x′
1 → x′

1 ± ω0/2. This shift of basis results in:

x2 =
2c1(x

′
1±ω0/2)
c2

The change in the real center of 2c1/c2 = ∆z2/∆z1 is exactly equal to the geometric shift from raytracing

and so we approximate these spreads using a convolution of the intensity with a square of size ω0∆z2/∆z1.

The change in spread due to wavelength:

δk = 2π
15nm

causes the real spread of the amplitude samp to change depending on the λ, ∆z1, and σ1, with a maximum

change in the spread from 1 to δλ
λ

2
. In the case of our parameters, the value is 0.35δλ

λ

2
which results in a

relatively minor ±2% change in the spread of the output region as a function of the input wavelength.

With these expressions, we now estimate the total crosstalk as a function of the field offset. The field due

to an adjacent weight positioned δ1 away from x′
1 or y′1 has the same samp and sphase but with x2 =

2c1x
′
1

c2
,

xi2 = − 2c33x
′
1

c2c1
. This calculation suggests, upon the scale-up of our approach, there is a limited range of

angles that can be efficiently used for matrix multiplication before diffractive effects dominate and limit useful

computation. To surpass these limitations, the use of additional optics for beam-shaping/beam-steering would

be required.
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Supplementary Note 4: Optical propagation

We simulate the optical layers of our approach using two different optical propagation methods, a Monte

Carlo raytracing approach (no diffraction) and using a modified angular spectrum propagation method. Code

implementing both these approaches are included in the repository linked in Code Availability.

Monte Carlo Raytracing: Our Monte Carlo Raytracing approach samples individual rays with a starting

position and propagation direction from a known distribution for each LED and propagates them through

each optical component within our system until they intersect the photodiode plane. The distribution of rays

emitted from an LED is modeled using a uniform distribution in space within the LED die of width w0 and

the angular distribution is taken from the WURTH datasheet. These rays then propagate a distance ∆z1 until

incident with the weight matrix W . The propagation vector is described is ∆z1[tan(θ)sin(ϕ), tan(θ)cos(ϕ), 1]

where θ, ϕ are the heading angle of the ray. The weight matrix is represented as an amplitude mask with

a transparency equal to individual weights. A ray passing through this mask is mapped to a corresponding

transparency, which represents the probability of the ray being absorbed within this layer. Fresnel equations

are used to determine if total internal reflection occurs due to the incident angle of the ray. These rays are

further propagated a distance ∆z2 until incident with the photodiode plane, where they are binned.

Modified angular spectrum propagation: Simulation of our system using the angular spectrum method

models the emission of an incoherent light source as the averaged intensity response of point sources sampled

over the die size w0. We extend this to include the emission of an LED by averaging the output of multiple

propagations following the distribution of wavelengths λ given by the LED datasheet.

Angular spectrum propagation was implemented using the Rayleigh-Sommerfeld (RS) diffraction integral

with the propagator dzeik
√

dz2+ρ2

iλ(dz2+ρ2) . The sampling constraint for RS propagation is given as λ
√

∆z2+L2/2
L2 ≈ 0.8λ

where L is the field size. Given these constraints, we tiled the angular spectrum propagation to effectively

sample the output region. As before, weight matrices are described using amplitude masks.
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Supplementary Note 5: Throughput and Efficiency

The designed system serves as a prototype for demonstrating stackable non-linear layers along with an inco-

herent optical matrix-vector multiplication. However, the performance of the system can be evaluated and

compared to other existing optical and electronic implementations by calculating the throughput and efficiency

of the system.

Throughput represents the number of units of information that a system can process in a given unit of

time. In the context of neural networks, throughput is measured by the number of operations per second. Each

operation refers to a multiply and accumulate (MAC) operation, where the input signal from the previous layer

is multiplied with the learned weights of the current layer, and the products for a given weight are summed

together. Efficiency, on the other hand, captures the energy used for processing a unit of information per unit

time and is represented in operations-per-second-per-watt. It provides a measure of how effectively the system

utilizes energy resources.

To calculate these parameters for the system, the following steps were followed:

1. Calculate throughput for the system: Throughput was calculated based on the number of neurons in

each layer of the designed optoelectronic neural network and the frequency of operation of the system.

2. Measure the power consumption by the experimental intermediate circuit

3. Calculate the expected power consumption of the scaled-up model

4. Calculate the efficiency: The efficiency of each system was calculated based on the throughput and power

consumption of the system for the current experimental setup as well as the sacled-up model

The details for each of these steps are provided in the following sections.

5.1 Throughput Calculation

The implementation presented in this work consists of multiple layers within an optoelectronic neural network.

Each layer is subdivided into two components: the electronic and the optical. The electronic component

includes a photodetector, amplification electronics, and a light source, while the optical component consists of

a mask that implements the weights. Matrix-vector multiplication and accumulation operations occur between

the light emitter of one layer and the detector of the subsequent layer. Consequently, the total number of

operations in the system is determined by the number of light emitters in the current layer and the number

of photodiodes in the following layer.

Consider an intermediate layer where n × n light emitters project to m × m photodetectors. By design,

the number of output neurons is m
2 ×m, since two photodiodes are required to implement the rectified linear

unit (ReLU) nonlinearity. The total number of operations at any given time step can be expressed as:

Throughput =
f

2

(
m2n2 +m2

)
(10)
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where the system operates at a frequency of f Hz. The first term corresponds to the optical matrix-vector

multiplication and the second term is the electronic integration and ReLU operation. This arrangement is

used for the experimental demonstration LED grid size of 8×8 projecting to a photodetector grid size of 8×8,

operating at 800kHz. Putting this into (f/2)(m2n2 +m2), we calculate a throughput of 1.7 GOPS.

For the scaled-up model, we have changed the geometry such that the number of output neurons equals

the number of input neurons, or m2 = 2n2. With this constraint, and given that the system is square, we

instead have:

Throughput = f · (n2 + 1)n2 (11)

For the scaled-up simulation with an LED grid size of 32 × 32 projecting to a photodetector grid size of

48×48 operating at 10MHz, we use the photodiode arrangement shown in SUPP. FIG. 20, resulting in 32×32

output neurons for a throughput of f(n2 + 1)n2 = 10.5 TOPS.

5.2 Measured Power Drawn by Different Components in the System

Since all power consumption in the optoelectronic neural network system stems from the electronic circuit,

estimating the power draw of this circuit is crucial for calculating the system’s efficiency. We experimentally

measured the power consumption using a circuit implementing one optoelectronic neuron on a matrix bread-

board, as shown in SUPP. FIG. 5b, and inserted probes to measure the current through the power terminals

of the operational amplifiers and the output branch using a microammeter.

To measure the power consumption accurately, we divided the circuit into four sub-circuits, as illustrated

in SUPP. FIG. 27: the photodiode detection stage (PD), two operational amplifier stages (OA1 and OA2),

and the output stage (OUT). We calculated the power draw for each sub-circuit individually, then summed

these values to obtain the total power consumption. Given that the system comprises of 32 identical circuits,

the total power draw of the system can be calculated as:

PTotal = 32× (PPD + POA1 + POA2 + POUT) (12)

The power draw for each sub-circuit is tabulated in SUPP. TABLE 6 for an illumination intensity of

200 mW cm−2. The overall power consumption as a function of the input intensity of a calibrated light source

is provided in SUPP. FIG. 28.

The power consumption in the photodiode section is primarily due to the dark current in the photodiode,

which is given by:

PPD = 2(Vr · Id) (13)

For the SFH 2704 photodiode used in the circuit, where the maximum dark current id is 25 nA, the resulting

maximum power draw is 125 nW at a reverse bias voltage of 5V. Since this value is negligible compared to
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the other power draws in the circuit, it can be safely disregarded in the total power calculation. The power

draw in the output branch, which is primarily influenced by the resistive load, can be calculated as:

POUT = I2OUT ·ROUT (14)

where IOUT is the current in the output branch, measured via a microammeter, and ROUT is the resistance

of the output branch, which corresponds to R5 in the circuit shown in SUPP. FIG. 27. The power draw

in the two operational amplifier stages was measured experimentally. The steps used for measuring power

consumption in these stages is depicted in SUPP. FIG. 29. The power draw through the first operational

amplifier, POA1, was determined by disconnecting the power supply to the second op-amp in the circuit

(LM358) and measuring the current at the positive and negative power supply terminals of the operational

amplifier. Assuming ideal operational amplifier behavior, where no current flows into the input terminals, the

current measured at these terminals is sufficient to calculate the power draw:

POA1 = (IOA1+ + IOA1-) · VOA1 (15)

Here, IOA1+ and IOA1- are the currents measured at the positive and negative power supply terminals,

respectively, and VOA1 is the supply voltage to the operational amplifier. After reconnecting the power supply

to the second op-amp stage, the current was measured again at the positive and negative terminals, under the

same assumption of no current flow into the input terminals. The power draw in the second op-amp stage,

POA2, was then calculated as follows:

POA2 = (IOA2+ + IOA2-) · VOA2 − POUT − POA1 (16)

In this equation, IOA2+ and IOA2- represent the currents measured at the positive and negative power supply

terminals, respectively, and VOA2 is the symmetric rail-to-rail supply voltage of the operational amplifier.

Using this fitted model of the total power consumption, we estimated the power draw for a neuronal sub-

circuit for an incident net light intensity of 10 mW cm−2, corresponding to the typical illumination level in our

experimental conditions, to be 4.6mW, which closely matches the measured power draw at these illumination

levels (SUPP. TABLE 7). From this value, we obtain:

PTotal = 32× 4.6mW = 147mW (17)

However, there are additional components in the system whose power consumption has not been included.

These components include the spatial light modulator (Holoeye LC2012 [1]), which has a constant power draw

of 4W from the wall, regardless of the displayed mask. This energy consumption primarily arises from the dis-

play driver since the liquid crystal cell in the spatial light modulator is field-driven. We exclude this power draw

from our total calculations because we also demonstrate the use of passive dithered photolithography masks
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for implementing weights, as shown in SUPP. FIG. 1. The use of a spatial light modulator for implementing

the network is mainly for experimental convenience. Additionally, the input to the network and the output

readout involve a digital-to-analog converter (DAC) and an analog-to-digital converter (ADC), respectively.

We used dedicated National Instruments DAC and ADC modules for this purpose. The ADC PXIe 6355 has

a listed power draw of 1.6W, while the DAC PXIe 6739 draws 3W under operating conditions. We did not

include these power draws in our final calculations, as the choice of components was based on availability.

However, more energy-efficient DAC and ADC modules are available, and with ongoing developments, it is

possible to obtain modules that consume as little as 10µW of power per channel in a lab setting [2].

5.3 Power estimation for an idealized scaled-up model

The estimated power consumption of an intermediate layer in the scaled-up model is the sum of contributions

from the LED load as well as from the detection/amplification electronics. We can calculate an estimate of

these two power draws independently, keeping in mind that the design for the amplification electronics should

be sufficient to drive the output.

First, we determine the minimum optical power necessary for the operation of the system. The minimum

optical power is either bandwidth or shot noise limited. We can calculate the total bandwidth of the system

from the bandwidth of the two stages used in the cascaded amplifier circuit (SUPP. FIG. 30). The electronic

bandwidth of the circuit, ftotal, can be determined from the individual bandwidths of the transimpedance

stage, fTIA, and the transconductance stage, fTCA, using the equation:

ftotal =
√
f2
TIA + f2

TCA (18)

Given the circuit’s total bandwidth, ftotal, the minimum optical power detectable by the SFH2704 photo-

diode can be estimated using the noise-equivalent power (NEP) provided in the photodiode’s datasheet:

Pmin = NEP ·
√
ftotal (19)

As this minimum detectable power is on the order of tens of picowatts (SUPP. FIG. 24c) and is several

orders of magnitude lower than the shot noise limits (nW), the electronic bandwidth constraint does not limit

the minimum detected optical power in our system and is rather dictated by the shot noise of the detector.

The load power is determined by the minimum optical power needed to overcome shot noise. The photocurrent

Ip detected in the scaled-up model photodiode at each layer with 8-bit precision is given by:

Iph = 2552 · hf · F ·R = (65025)(3.82 e−19J)(10 MHz)(0.34 A W−1) = 84 nA (20)

where hf is the photon energy, F is the operation frequency, and R is the photodiode spectral sensitivity.

In comparison, the dark current is 0.1 nA, contributing additional noise of approximately 0.3 bits. This

corresponds to a light intensity on the photodiode of I = Iph ·A ·R−1 = 166 nW mm−2, where A = 1.5mm2 is
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the photodiode area. To achieve a light intensity of 166nW mm−2 at the photodiode plane, we integrate the

expected signal from all 32× 32 = 1024 LEDs to the photodiodes, with an average collection efficiency C for

a given LED-PD pair of 2.8 e−5. Using these values and a normalized neuronal weight value of w0 ≈ 0.1, we

estimate the per LED power consumption:

Pl =
I ·A

w0 · C · nLED · El
=

(166nWmm−2)(1.5 mm2)

(0.1)(2.8 e−5))(1024)(0.541)
= 160µW (21)

Where El is the best wall-plug efficiency for an LED [3, 4]. Multiplying by the number of LEDs gives a

total load power consumption of 163mW.

Second, the power consumption of the detection/amplifier circuits in the scaled-up model is the sum of

the contributions from the transimpedance amplification stage and the transconductance amplification stage.

As described earlier, we have proposed, designed, and demonstrated the operation of such a faster circuit

using off-the-shelf components by means of a SPICE simulation (SUPP. FIG. 23). However, application-

specific integrated circuits (ASICs) that implement these operations will be essential for minimizing power

consumption in an experimental realization of the scaled-up model, as discrete operational amplifiers have

a significant quiescent power draw that increases linearly with frequency in a log-log plot [5]. A proposed

schematic for such an ASIC implementation is shown in SUPP. FIG. 30. These circuits need to meet the

requirements for the circuit that have been tabulated (SUPP. TABLE 8). We found suitable integrated circuit

transimpedance and transconductance amplifier implementations that match the requirements of this design.

The transimpedance amplifier implementation [6] was designed for a low-power wearable optoelectronic

biomedical sensor application with input from a silicon photodiode. This implementation was designed to

operate at 1.15 MHz with a gain of 124 dBΩ. We can interpolate the available gain from the design when

operating at a higher frequency from the frequency versus magnitude of gain data (Figure 4 in [6]). We obtain

a gain of 90 dBΩ for the circuit operating at 10 MHz. The output from two such identical transimpedance

amplifiers is connected to a transconductance stage for voltage to current conversion.

The transconductance amplifier implementation [7] was designed as a differential input buffered and exter-

nal transconductance amplifier (DBeTA) for low power biomedical applications. This design makes it suitable

for the transconductance stage as this inherently implements subtraction and voltage-to-current conversion

with unity gain. This design is capable of driving the required output, which in this case is the current through

the output LED. The power required for driving the LEDs in the circuit was calculated above to be 160 µW.

For a supply voltage of 3.5 V, the current needed to drive the LED ranges from 0 − 46 µA, which is within

the transconductance maximum current range of 60 µA.

The power draw under the required conditions for the two transimpedance amplifier and the transconduc-

tance amplifier is calculated:

Pa = 2Pti + Ptc = 2(36µW)+ 62µW = 134µW (22)
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where 2Pti is the power consumption of a pair of custom-designed transimpedance amplifiers at 90dB gain

and Ptc is the power consumption for a transconductance amplifier with unity gain. Over all 1024 neurons, the

amplifier power consumption is estimated as 137mW. Together the total estimated power for an optoelectronic

layer in the scaled-up model is:

Ptot = 163mW+ 137mW = 300mW (23)

5.4 Efficiency Calculation

The efficiency of the system is derived from the throughput and power draw calculations as follows:

Efficiency (OPS/W) =
Throughput (OPS)

Power Draw (W)
(24)

From the experimental setup demonstrating the optoelectronic neural network operateing at 800kHz with

an 8× 8 LED array projecting onto a 8× 8 photodiode grid we obtain a throughput of 1.7GOPS and a total

power consumption of 147mW, we obtain:

Efficiency (expt) =
1.7GOPS

0.147W
= 11.45GOPS/W (25)

Similarly, for the scaled-up model with an LED grid size of 32× 32 projecting to a photodetector grid size

of 48× 48 operating at 10MHz and a total power consumption of 300mW, we obtain:

Efficiency (scaled-up) =
10.5TOPS

0.300W
= 35TOPS/W (26)

13



Supplementary Tables and Figures

Label Correlation Exp. Acc. Sim. Acc. Acc. Ratio
0 0.987 0.959 0.959 1.000
1 0.987 0.966 0.974 0.991
2 0.984 0.869 0.859 1.012
3 0.993 0.892 0.882 1.012
4 0.981 0.943 0.933 1.010
5 0.977 0.880 0.880 1.000
6 0.987 0.926 0.926 1.000
7 0.977 0.915 0.932 0.982
8 0.985 0.897 0.897 1.000
9 0.978 0.850 0.860 0.988

Supplementary Table 1: MNIST output correlations for each of the 10 output classes in the full multilayer
experiment. The experimental accuracy is compared to the simulated accuracy for the test dataset. The
overall accuracy of the simulation test set is 91.2% and the overall accuracy of the experimental test set is
91.1%.
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Factor Symbol Parameters Value

Input Current iinp

Absolute Luminous
Intensity

Iabs 1400 mcd

Emission Angle Ωem 4π rad

LED directional
emission

Irelγ Extracted from datasheet

Luminous Intensity Iγ Input Current (iinp) Extracted from datasheet

LED directional emission (Irelγ )

Angles (α, β)

Luminous flux generated Φγ Emission Solid Angle (Ωem)

Luminous Intensity (Iγ) Φγ = Ωem · Iγ(iinp,Ω)

Diameter of the lens dlens 40 mm

Focal Length of the lens flens 100 mm

Angle selected by the
lens

αlens Diameter of the lens (dlens)

Focal Length of the lens (flens)
αlens = 2 · tan−1 0.5dlens

flens
=

11.42◦

Solid Angle selected by
the lens

Ωlens Angle selected by the lens (αlens)
Ωlens = 2π(1−
cos (0.5 · αlens)) = 0.03 Sr

Percent flux selected psel Emission Angle (Ωem)

Angle selected by the lens (Ωlens) Φγ · Ωlens
Ωem

= 0.0287

Spot area formed on
photodiode

aspot 9 mm2

Radiant sensitive area
on the photodiode

apd 1.51 mm2

Percent overlap on
photodiode

ppd
Spot area formed on photodiode
(aspot)

Radiant sensitive area on the
photodiode (apd)

ppd =
apd

aspot

Photodiode directional
sensitivity

Sα,β Angle of the incoming rays (α, β) Extracted from datasheet

Light collected by
photodiode

Lpd
Photodiode directional sensitivity
(Sα,β)

Percent overlap on photodiode
(ppd)

Lpd(Φγ · psel · ppd · Sα,β)

Percent flux selected (psel)

Luminous Flux (Φγ)

Optical power on
photodiode

Ppd
Maximum Sensitivity
(Km = 683 lm W−1 at 555nm)

Photopic spectral luminous
efficiency curve V (λ) which is 1 at
555nm

Ppd =
Lpd

Km·V (λ)
=

1.46 · 10−3Lpd

Spectral sensitivity Sλ 0.34 A
W

Photocurrent generated ipd Optical power on photodiode (Ppd)

Spectral sensitivity (Sλ) ipd = Ppd · Sλ

Supplementary Table 2: Factors that play a role in calculating the amount of light incident on the photodiode
in the circuit used to calculate the computational efficiency.
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Parameter Symbol Value

LED die width wLED 150µm

LED spacing sLED 2.5mm

Width of optical weight wamp 160µm

Weight separation samp 200µm

Photodiode separation sPD 2.5mm

Distance between LED and weight mask d1 3mm

Distance between weight mask and PD plane d2 34.5mm

PD width wPD 0.5mm

System magnification M (d1 + d2)/d1

Supplementary Table 3: Optical parameters used in experimental implementation

Component Part Number Quantity

Operational Amplifier MCP6V66T-E/OT 1

LM358 1

MOSFET BSS138PW 1

Photodiode SFH2704 2

Light Emitting Diode 150040GS73220 1

Resistors 12.5 Ω 1

10 kΩ 3

330 kΩ 1

Supplementary Table 4: Component list for implementing one of the 32 independent and identical circuits
that make up our printed circuit board that implements the optical neural network.
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Parameter Symbol Value

LED die width w0 10µm

Width (1/e) of optical weight σ1 25µm

Weight separation δ1 75µm

PD separation δ2 2.5mm

Distance from LED plane to weight plane d1 2.5mm

Distance between weight plane and PD plane d2 84.2mm

Planes at LED, weight mask, PDs (x′′, y′′), (x′, y′), (x, y)

LED position x′′
0 = 0, y′′

0 = 0

Weight position (relative to LED position) x′
1, y

′
1

PD position (relative to LED position) x2, y2 = Mx′
1,My′

1

PD width σ2 1.2mm

Wavelength λ 500− 540nm

Wavenumber k = 2π/λ

Distance scaling of off-axis location η 1 +
x′2
1 +y′2

1

d21

Distance between LED and weight pair ∆z1 d1
√
η

Distance between weight and PD pair ∆z2 d2
√
η

Supplementary Table 5: Optical parameters used for scaled-up model.

Stage Power Draw (mW)

PPD 400 · 10−9

POA1 0.2653

POA2 7.0853

POUT 1.6

Supplementary Table 6: Compilation of power drawn by the different stages in the circuit that make up the
opto-electronic neural network for an illumination intensity of 200 mW cm−2.

Net optical
input (mW)

Input Intensity(mW/cm2) Circuit Power(mW)

0.59 39 5.3

0.26 17 4.9

0.14 9 4.6

0.03 2 4.4

0.00 0 4.1

Supplementary Table 7: Compilation of power drawn in a neuronal circuit equivalent to experimental setup
at typical experimental illumination levels.
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Property Requirement TIA [6] TCA [7] Combined

Operating
Frequency

10 MHz 10 MHz 10.88 MHz 10 MHz

Supply
Voltage

No limitation 1.8 V ±400 mV

Amplification 73 dB 90dBΩ 1 Ω−1 90 dB

Power
Consumption

36 µW 62 µW 134 µW

Supplementary Table 8: Comparison of the required properties for an idealized scaled-up model using in-
tegrated circuits with available literature implementations. The two components that make up the circuit
are two trans-impedance amplifiers (TIA) and a trans-conductance amplifier (TCA) whose specifications are
summarized here.
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Image of photomask

Image at photodiode plane

a b

c

Desired weight matrix

1mm

10mm

1mm

Supplementary Figure 1: Implementation of a passive amplitude mask using binary dithered weights. (a)
Desired weight matrix on amplitude mask. (b) High-resolution image of photomask implementing weight
matrix with binary dithered weights. (c) Propagated image at output plane showing smoothing of dithered
weights.
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d1

wamp

dy2

wPD

d2

dy1

wLED

dy2= M⋅dy1

sPD= M⋅samp wMM= M⋅wPDA

a
b

∗ =

wPD

b-a

b+a

a = (M-1)⋅wLED

sMM = sLED⋅(M-1)/M

b = M⋅wampM = (d1+d2)/d1

d1 d2

sLED sMM

wPDA

d1 d2

wMM

sPD

d1 d2

samp

a

d

e

b

c

Supplementary Figure 2: Ray-tracing illustrates how a fully-connected optical MVM operation is implemented
in our system. (a) Each LED is associated with a subarray on the amplitude mask. The magnification factor
M is equal to the relative total propagation distance to the distance between the LED and amplitude mask.
(b) The spot size at the detector plane depends on the LED die size, weight size, and magnification factor
(not including diffraction). (c) The spacing between photodiodes is equal to M times the spacing between
optical weights. (d) The total output region is equal to M times the subarray size. (e) The spacing between
subarrays depends on the LED spacing and M .
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Supplementary Figure 3: Raytracing simulation predictions for two sets of optical parameters. (a) Image of
48 × 48 optical amplitude weights to be propagated. (b) Raytracing output for weights in (a) with 2.5mm
PD spacing and 10µm LED die size. (c) Image of 8 × 8 optical amplitude weights to be propagated. (d)
Raytracing output for weights in (c) with 2.5mm PD spacing and 200µm LED die size.
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Supplementary Figure 4: Difference ReLU response in circuit to varying photodiode input signals. (a) Exper-
imental (b) Fit of response from (a) to LEDoutput = ReLU(c1I1 − c2I2 + c3). (c) Measured responses of all
50 neurons present on one intermediate board.
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(c)

Supplementary Figure 5: Op-amp circuit diagrams used on electronic boards. (a) Driving circuit for data
read-in. (b) Read-out circuit for output board. (c) Detection, differencing, and amplification circuit used to
drive LEDs in intermediate boards.
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Supplementary Figure 6: Example amplitude mask encoding weights for a network trained on the MNIST
digit classification dataset. Individual weights have been shifted to account for exact LED and PD positions.
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Supplementary Figure 7: Additional propagation examples as described in FIG. 3a.
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Supplementary Figure 8: Example scatterplots of miniaturized MNIST network neuron activations. Normal-
ized experimental activation versus digital calculated activations are provided after the (a) first optical MVM
(b) first differential ReLU (c) second optical MVM (d) second differential ReLU and (e) third optical MVM.
The corresponding relative standard deviation of errors to standard deviation of calculated neuron activations
are: (a) 0.048, (b) 0.152, (c) 0.145, (d) 0.191, and (e) 0.154.
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Supplementary Figure 9: Full multilayer optoelectronic neural network output on MNIST classification prob-
lem. A fully-connected three layer neural network was trained in silico with allowed maximum weights set to
experimentally measured values. (a) Comparison between simulation and experiment of the trained network
output layer values. (b) Confusion matrix of estimated classes for simulated results in percent. (c) Same as
(b), but for experimental results. The overall accuracy of the simulation test set is 91.2% and the overall
accuracy of the experimental test set is 91.1%.
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Supplementary Figure 10: Image of experimental setup. Network propagation starts from the input board
and propagates upwards through two intermediate boards onto the output board. A transmissive spatial light
modulator and a pair of polarizers are used to dynamically encode the amplitude weights.
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Supplementary Figure 11: (a) A nonlinear four-class spiral data classification problem with two input variables.
Each of the classes corresponds to one arm of the spiral. (b) Trained nonlinear network using experimental
network parameters as described in FIG. 3a performs with a 96.1% accuracy. (c) The best linear classifier
classifies this problem with an accuracy of 30.1%. (d) Simulated network performance using discretized copies
of weights from (b) yields a classification accuracy of 87.8%. (e) Experimental classification using the multilayer
network obtains a classification accuracy of 86.0%. (f) Comparison between simulation and experiment of the
trained network output values.
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Supplementary Figure 12: Variation and errors in LED response through the first intermediate layer. (a)
Scatterplot of the standard deviation in LED output brightness plotted against average LED response for
individual neurons. Red line indicates a linear fit of the error response (y = 0.0007x + 0.025, r = 0.49) (b)
Data from (a) normalized by average LED response. Red line indicates median relative deviation (0.0011). (c)
Histogram of correlations of predicted values versus LED responses to a set of randomized inputs and weights
from the source layer. The predicted responses are calculated from the best fit using a linear weighting
and difference ReLU model. (d) Histogram of differences between model estimate and LED responses in (c)
normalized by max neuronal response. The distribution is separated into blue (positive model responses) and
purple (zero model responses). (e) Blue distribution in (d) fit by a Gaussian (black, σ = 0.0038) (f) Histogram
of standard deviation of percent error between model estimate and LED responses to randomized inputs and
weights, as calculated in (e), but for individual neuronal responses.
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Supplementary Figure 13: Variation and errors in LED response through the second intermediate layer. (a)
Scatterplot of the standard deviation in LED output brightness plotted against average LED response for
individual neurons. Red line indicates a linear fit of the error response (y = 0.0008x + 0.022, r = 0.55) (b)
Data from (a) normalized by average LED response. Red line indicates median relative deviation (0.0013).
(c) Histogram of correlations of predicted values versus LED responses to a set of randomized inputs and
weights from the first intermediate layer. The predicted responses are calculated from the best fit using a
linear weighting and difference ReLU model. (d) Histogram of differences between model estimate and LED
responses in (c) normalized by max neuronal response. The distribution is separated into blue (positive model
responses) and purple (zero model responses). (e) Blue distribution in (d) fit by a Gaussian (black, σ = 0.0063)
(f) Histogram of standard deviation of percent error between model estimate and LED responses to randomized
inputs and weights, as calculated in (e), but for individual neuronal responses.
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Supplementary Figure 14: Measured responses of sample LEDs from the input board to an input voltage.
A example of a malfunctioning unit is seen in row 1, column 3. As individual units are independent, the
operation of one malfunctioning unit has no affect on other units.

30



-5 0 5
Position (mm)

-5

0

5

-2

0

2

-5 0 5
Position (mm)

-5

0

5

0.2

0.4

0.6

0.8

1

-1 0 1 2 3
Position (mm)

-1

0

1 0

0.5

1 -1 0 1 2 3
Position (mm)

-1

0

1
-2

0

2

-1 0 1 2 3
Position (mm)

-1

0

1
-2

0

2

e

a

c

b

d

Supplementary Figure 15: Diffraction from a point source through Gaussian apertures. Calculated (a) ampli-
tude and (b) phase at the PD plane for parameters used in scaled-up model of our approach. Amplitude (c)
and phase (d,e) resulting from pairs of adjacent Gaussian apertures illuminated by a point source.
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Supplementary Figure 16: Modified angular spectrum propagation predictions for LED light propagation
through amplitude weights with 2.5mm PD spacing and 200µm LED die size. (a) Target weights in amplitude
mask. (b) Light intensity at output plane. (c) Binned output values of center regions from (b).
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Supplementary Figure 17: Modified angular spectrum propagation calculation for scaled-up optical model. (a)
In the scaled-up model, LEDs from a 32×32 rectangular array with 3.75mm spacing propagate 2.5mm to an
amplitude mask. Each LED is associated with a 3.6mm submask that encodes 48×48 weights. The weights
have a spacing of 0.074mm and have a Gaussian amplitude profile with spread 0.025mm to minimize diffraction
effects upon propagation to the photodiode plane. (b) Sideview slice shows an example propagation from an
LED through the amplitude mask. The optical parameters were chosen to minimize crosstalk between adjacent
weights, even for weights at large angles relative to the LED. The white region to the left of the amplitude mask
is due to saturation of the colormap and indicates the angular spread of an unobstructed LED as a function
of position. (c) The total propagation distance is 84mm, resulting in an overall M = 34 magnification factor.
The photodiode spacing of 2.5mm results in an overall detection board size that matches the LED array. (d)
In the output plane, the intensity distribution is convolved with a square of size MwLED, of the magnification
times the LED die size.
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Supplementary Figure 18: Modified angular spectrum propagation field of scaled-up model showing the phase
(a) and intensity (b) of the optical field from a point source immediately after propagating through the
amplitude mask.
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Supplementary Figure 19: Modified angular spectrum propagation predictions for LED light propagation
through amplitude weights with 2.5mm PD spacing and 10µm LED die size. (a) Light intensity at PD plane
for a 48x48 array of photodiodes. (b) Binned output values of center regions from (a). (c) Designed weights
for each of the photodiode positions.
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Supplementary Figure 21: Crosstalk between off-axis pairs of Gaussian weights at photodiode plane from a
point source in scaled-up model. (a,b) Distribution of difference between design weight and calculated weight
for random pairs of adjacent weights across the PD plane. (c,d) Data from (a,b) color-coded as a function
of total lateral displacement distance from the point source position. (e) Scatterplot of simulated weight to
designed weight for a photodiode weight positioned at corner of PD plane, corresponding to conditions with
maximum optical crosstalk. Simulations were calculated using Rayleigh-Sommerfeld diffraction and included
a 3x3 array of randomized adjacent Gaussian weights.
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Supplementary Figure 22: Change in spread (a,b) and total integrated signal (c,d) at PD plane as a function
of propagation distance and off-axis position. (a) Spread in the direction parallel to the lateral axis from point
source position to Gaussian aperture. (b) Spread along the lateral axis orthogonal to (a). (c) Total solid angle
per mm2 of emitted light propagating through Gaussian aperture. (d) Total solid angle mm2 collected on the
target PD.
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Supplementary Figure 23: Circuit model used to demonstrate electronic layer operation at 10MHz.

Supplementary Figure 24: (a) Scaling of system performance as a function of the photodiode array size in
tera-operations per second (TOPS) per watt. (b) Scaling of accelerator as the frequency of operation is varied
(c) Minimum usable optical power in the system with varying bandwidth.
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Supplementary Figure 25: (Caption next page.)
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Supplementary Figure 25: Simulated error accumulation through multiple optoelectronic layers with random-
ized inputs and weights. Distributions after number of cumulative optoelectronic layers increase from left
to right. From top to bottom, distribution are: (a) neuron activations in each layer in the absence of noise
(b) difference in neuron activations with linear weighting and difference ReLU model fit errors (c) difference
in neuron activations with 8-bit output error (d) difference in neuron activation with minimum error from
experimental noise. For all figure parts, linear histograms (black, zero counts truncated) and log-linear density
plots (white lines, zero counts not truncated) are provided.
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Supplementary Figure 26: Relative standard deviation of difference in neuron activation to standard deviation
of neuron activation with (a) linear weighting and difference ReLU model fit errors (b) 8-bit output error (c)
minimum error from experimental noise. The ratio of standard deviations compares the spread of error to the
realized range of values in neuron activations.
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Supplementary Figure 27: Different components to the power draw in an intermediate circuit. The power
draw can be represented as a combination of power drawn for biasing the photodiode, power drawn from the
two operational amplifier stages and the power drawn by the LED.
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Supplementary Figure 28: Process of calculating layer efficiency. (a) Schematic of setup used for tests. (b)
Angular spread of the signal from the LED (red) and the percentage of the light emitted by the LED that
is collected by lens (black). (c) Directional properties of the photodiode which are applied onto the detected
signal. (d) Photocurrent generated by PD. (e) Power consumption calculated for the test cases using the
current drawn by the different parts of the circuit. (f) Power drawn by the circuit as a function of incident
light intensity.
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Supplementary Figure 29: Stages of measuring the power draw for the individual stages of the operational
amplifier circuit. In the first step, the supply to the operational amplifier (LM358) is disconnected and the
power draw from the supply is measured, followed by measuring the power drawn by the entire circuit. As a
result, we can calculate the power drawn by individual stages.
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Supplementary Figure 30: Schematic of possible ASIC implementation of scaled-up model using a pair of
transimpedance amplifiers (blue) and a differential transconductance amplifier (red) to drive an LED.
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