The microbial metabolite imidazole propionate dysregulates bone homeostasis by inhibiting AMP-activated protein kinase (AMPK) signaling

Suk-Gyun Park^{1,2}, Jung-Woo Kim^{1,2}, Ju Han Song^{1,2}, Seung-Hee Kwon^{1,2}, Sin-Hye Oh^{1,2},

Xianyu Piao^{1,2}, Zhao Wang^{1,2}, Je-Hwang Ryu^{1,2}, Nacksung Kim^{2,3}, Ok-Su Kim^{2,4}, & Jeong-

Tae Koh^{1,2,*}

¹Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea

²Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea

³Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea

⁴Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea

*Corresponding author.

Jeong-Tae Koh, DDS, PhD

E-mail: jtkoh@chonnam.ac.kr

Supplementary Figures

Supplementary Figure 1. Histological staining confirmed that ImP inhibited bone formation in animals. a Mice were treated with ImP (1 mg/kg, 3 mg/kg), harvested 4 weeks later, and H&E staining was performed (n=3). Black triangle, bone; ImP, imidazole propionate; H&E, hematoxylin and eosin.

Supplementary Figure 2. The microbial metabolite ImP inhibits bone formation in an ectopic bone formation model. a, b ImP (12 and 24 µg) and BMP2 (3 µg) were administered into subcutaneous space of the back with collagen sponge, and ectopic bones were harvested 4 weeks later (n=4). H&E (a) and bone parameter (b) analyses were performed. Black triangle, bone; Red triangle, adipocyte; ImP, imidazole propionate; BV/TV, percentage bone volume; Tb.N, trabecular number; Tb.Th, trabecular thickness; H&E, hematoxylin and eosin. Values are presented as the mean \pm SD; *, *P* < 0.05; **, *P* < 0.01; compared to the control group.

Supplementary Figure 3. ImP stimulates adipocyte differentiation in 3T3-L1 cells. a, b 3T3-L1 adipocytes were cultured for 6 days and stained with oil red O (upper panel) and BODIPY (lower panel). Quantification of oil red O staining is shown in panel b (n=3). ImP, imidazole propionate; GM, growth media; AM, adipogenic media (1 µg/ml insulin, 2 µM rosiglitazone, and 100 nM dexamethasone). Values are presented as the mean \pm SD; *, *P* < 0.05; **, *P* < 0.01; compared to the control group.

Supplementary Figure 4. Metformin and BMP2 promote phosphorylation of AMPK. a, b BMSCs were treated with metformin (100 μ M) or BMP2 (100 ng/ml) for 0, 1, 3, 6, and 24 h. Western blot analysis was performed with antibodies against phosphorylated form of AMPK (T172) and non-phosphorylated AMPK (n=3).

Supplementary Figure 5. ImP inhibits metformin-induced matrix calcification in BMSCs. **a**–**c** BMSCs were cultured with metformin in osteogenic medium for 14 days. **a** Alizarin red S staining was performed to assess calcification (n=3). **b** The staining was quantified using 10% cetylpyridinium chloride (n=3). **c** BMSCs were cultured with metformin and ImP in osteogenic medium for 4 days, and western blot analysis was performed with antibodies against OSX, and p-AMPK (n=3). ImP, imidazole propionate; BMSC, bone marrow stromal cell; OM, osteogenic media (50 µg/ml ascorbic acid and 5 mM β -glycerophosphate). Values are presented as the mean \pm SD; ***, *P* < 0.001; compared to the control group.

Supplementary Figure 6. Changes in calcium deposition in BMSCs cultured under high glucose conditions with metformin and ImP treatments. a BMSCs were cultured under high glucose conditions (25 mM) with each drug, and calcium deposition was assessed using Alizarin Red staining (n=3). b Calcium deposition decreased under high glucose and ImP-treated conditions (n=3). c Metformin increased calcium deposition (n=3). d Under high glucose conditions, metformin also increased calcium deposition (n=3). e ImP treatment further reduced calcium deposition in the presence of both high glucose and metformin (n=3). ImP, imidazole propionate; BMSC, bone marrow stromal cell; HG, High glucose; Met, Metformin; GM, Growth medium; OM, Osteogenic medium. Values are presented as the mean \pm SD; NS, non-significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001; compared to the control group.

Adiponectin (27 kDa)

(57 kDa) PPARγ 2 PPARγ 1 (53 kDa)

> FABP4 (15 kDa)

β-actin (45 kDa)

Figure 5

12

Supplementary Figure 4

Supplementary Figure 5

Supplementary Table 1. List of Primers

A/p (229 bp)	(F) 5'-TACATTCCCCATGTGATGGC-3'
	(R) 5'-ACCTCTCCCTTGAGTGTGGG-3'
Bsp (425 bp)	(F) 5'-ACACTTACCGAGCTTATGAG-3'
	(R) 5'-AGGTTCCCCGTTCTCACTTT-3'
Ос (147 bp)	(F) 5'-GTTTGTAGGCGGTCTTCAAGC-3'
	(R) 5'-GCAATAAGGTAGTGAACAGAC-3'
Osx (288 bp)	(F) 5'-TGAGGAAGAAGCCCATTCAC- 3'
	(R) 5'-ACTTCTTCTCCCGGGTGTG-3'
Runx2 (288 bp)	(F) 5'-TCTCCAACCCACGAATGCACTA-3'
	(R) 5'-ATAGCGTGCTGCCATTCGAGGT-3'
AdipoQ (163 bp)	(F) 5'-CCTGGAGAAGCCGCTTATGT-3'
	(R) 5'-AGAGTCCCGGAATGTTGCAG-3'
Ρραrγ2 (103 bp)	(F) 5'-TCGCTGATGCACTGCCTATG-3'
	(R) 5'-GAGAGGTCCACAGAGCTGATT-3'
Glut4 (173 bp)	(F) 5'-AATGTCCTTGCTCCAGCTCC-3'
	(R) 5'-CAGCTCCTATGGTGGCGTAG-3'
Fabp4 (168 bp)	(F) 5'-TACATGAAAGAAGTGGGAGTG-3'
	(R) 5'-GGTGATTTCATCGAATTCCAC-3'
CtsK (249 bp)	(F) 5'-TACCCATATGTGGGCCAGGA-3'
	(R) 5'-ATAGCCCACCACCAACACTG-3'
Trap (419 bp)	(F) 5'-TCCGTGCTCGGCGATGGACCAGA-3'
	(R) 5'-CTGGAGTGCACGATGCCAGCGACA-3'
β-actin (458 bp)	(F) 5'-TTCTTTGCAGCTCCTTCGTTGCCG-3'
	(R) 5'-TGGATGGCTACGTACATGGCTGGG-3'
ρ38 γ (100 bp)	(F) 5'-CAGAGTGCAGAGGCCAAGAA-3'
	(R) 5'-GATTCACAGCCTGAGGGCTT-3'
18S rRNA	(F) 5'-GGCCGTTCTTAGTTGGTGGA-3'
	(R) 5'-CCCGACATCTAAGGGCATC-3'