Supporting Information for

Bismuth Nanoparticles Embedded in Carbon Fibers as Flexible and Free-standing Anodes for Efficient Sodium Ion Batteries

Yang Cao,^a Shiwei Wei, ^{*,b} Huifang Zhang,^b Yong Yan^b, Zhiling Peng^b, Heming Zhao, ^{*,b}

^a School of Materials Science and Engineering, North University of China, Taiyuan,
 030051, China.

 ^b Shanxi Key Laboratory of High-end Equipment Reliability Technology, School of Mechanical and Electrical Engineering, North University of China, Taiyuan, 030051, China.

^{*}Corresponding author. *Email addresses*: wei_swe@163.com; 20230230@nuc.edu.cn; (S. Wei)

^{*}Corresponding author. Email addresses: zhm@nuc.edu.cn; (H. Zhao)

The calculation process of the thermo-gravimetric analysis curves:

The oxidation reaction occurs during the TGA test and the reaction equation can be described as follows:

$$C+O_2 \rightarrow CO_2$$

4Bi+3O₂ $\rightarrow 2Bi_2O_3$

According to the above reaction equation, it is generally considered that all carbon will burn off at high temperature (nitrogen will also disappear together). Therefore, the final product is Bi_2O_3 . The weight percentage of Bi_2O_3 is determined to about 44.6% from the TGA curves.

In general, the molar masses of Bi and Bi₂O₃ are 209 g mol⁻¹ and 466 g mol⁻¹, respectively. In order to calculate the weight percentage of Bi in the composite, we can presume that the weight percentage of Bi is *x*. When we calculate the value back to the content of Bi, $4 \times 209 \times 55.4\% = 2 \times 466 \times x$, therefore, *x* =49.7%. That is to say, the weight percentage of Bi in the Bi/CF electrode is estimated to be 49.7%.

Table S1. Elemental analysis results of the samples from XPS measurements.

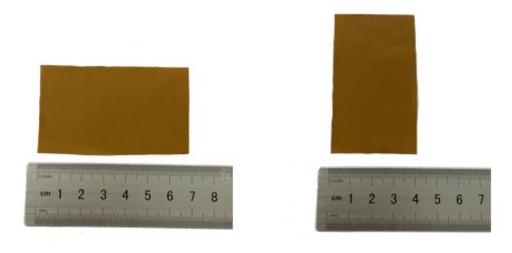


Figure S1. Digital photo of Bi/CF films after pre-oxidation.

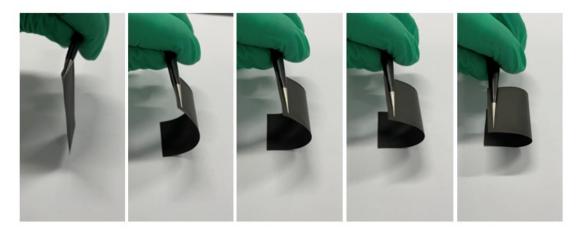


Figure S2. Flexibility test of Bi/CF films.



Figure S3. (a) Electronic universal testing machine. (b) Bending strain—stress curve of Bi/CF.

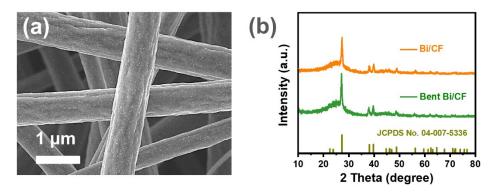


Figure S4. (a) SEM image and (b) XRD of bent Bi/CF electrode.

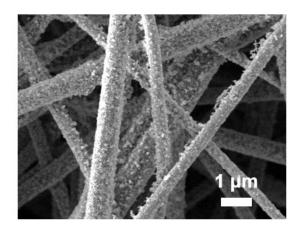


Figure S5. SEM image of Bi/CF electrode after 2000 cycles.

Figure S6. The flexible SIBs device and the corresponding two SIBs power a smart bracelet.

Cl.	Method –	Rate capability S/C (mAh·g ⁻¹ /A·g ⁻¹)		Ref.	
Sample					
		550/0.1	423/0.2		
Bi-C/CF	Calcination	338/0.4	283/0.8	[1]	
		227/1.6	110/2.4		
Bi@C composite		365.2/0.4	302.8/0.8		
	Annealing	290.5/2.0	290.0/4.0	[2]	
		281.5/8.0			
Nano Bi@carbon nanofiber		302.27/0.1	271.11/0.4		
	Electrospinning	194.33/0.8	112.15/1.6	[3]	
		69.04/3.2			
3D porous Bi@3DGFs		225/0.2	220/0.5		
	Hydrothermal	216/1.0	213/2.0	[4]	
		208/5.0			
Porous Bi/N-C	Solution combustion synthesis at	379/0.05	376/0.1	[6]	
	180 °C with several minutes	301.8/2.0 157.6/10.0		[5]	
Bi@C microsphere		409/0.2	388/0.4		
	Aerosol spray pyrolysis	365/0.5	331/1.0	[6]	
		83.4/2.0			
Bi@CF		384.8/0.1	376.1/0.2		
		362.4/0.5	354.8/1.0	This	
	Electrospinning / Calcination	351.9/2.0	349.3/5.0	work	
		341.5/10.0			

Table S1. The comparison of rate capability of Bi-based anode for sodium-ion batteries. (S: specific capacity, C: current density)

Samples	Pressure (MPa)	Height (mm)	Seismic density	Resistivity (Ω-cm)	Conductivity (S/cm)
Bi	5	1.68	59.523	0.35759	2.7964
	10	1.51	66.225	0.24009	4.1651
	15	1.4	71.428	0.18562	5.3872
	20	1.34	74.626	0.1557	6.4223
	25	1.29	77.519	0.13501	7.4065
	30	1.25	80	0.12074	8.2816
	5	2.54	39.37	0.24465	4.0873
Bi/CF	10	2.22	45.045	0.16293	6.1375
	15	2.05	48.78	0.128	7.812
	20	1.95	51.282	0.10773	9.2823
	25	1.88	53.191	0.093704	10.671
	30	1.81	55.248	0.083439	11.984

Table S2. The four probe conductivities of the pure Bi and Bi/CF electrodes.

- [1] Y. Zhang, Q. Su, W. Xu, G. Cao, Y. Wang, A. Pan, S. Liang, A Confined Replacement Synthesis of Bismuth Nanodots in MOF Derived Carbon Arrays as Binder-Free Anodes for Sodium-Ion Batteries, Adv Sci (Weinh) 6(16) (2019) 1900162.
- [2] P. Xiong, P. Bai, A. Li, B. Li, M. Cheng, Y. Chen, S. Huang, Q. Jiang, X.H. Bu, Y. Xu, Bismuth Nanoparticle@Carbon Composite Anodes for Ultralong Cycle Life and High-Rate Sodium-Ion Batteries, Adv Mater 31(48) (2019) 1904771.
- [3] H. Yin, Q. Li, M. Cao, W. Zhang, H. Zhao, C. Li, K. Huo, M. Zhu, Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries, Nano Res 10(6) (2017) 2156-2167.
- [4] X. Cheng, D. Li, Y. Wu, R. Xu, Y. Yu, Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries, J Mater Chem A 7(9) (2019) 4913-4921.
- [5] L. Wang, A.A. Voskanyan, K.Y. Chan, B. Qin, F. Li, Combustion Synthesized Porous Bismuth/N-Doped Carbon Nanocomposite for Reversible Sodiation in a Sodium-Ion Battery, Acs Appl Energ Mater 3(1) (2019) 565-572.
- [6] F. Yang, F. Yu, Z. Zhang, K. Zhang, Y. Lai, J. Li, Bismuth Nanoparticles Embedded in Carbon Spheres as Anode Materials for Sodium/Lithium-Ion Batteries, Chemistry 22(7) (2016) 2333-8.