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1 Comparison of different data augmentation strategies

Data augmentation plays a critical role in contrastive clustering by significantly
enhancing the model’s ability to learn invariant representations from limited
data. By adding different types of changes to the training data, this approach
helps the model to focus on the key features that define each cluster, avoiding the
trap of fitting too closely to random noise or unimportant details. This method
is key for finding new patterns or types within genomic data. To understand
the impact of data augmentation on the performance of the FCGR contrastive
clustering model, we evaluated several strategies. This evaluation aimed to keep
the balance between preserving the original sequence and adding enough variety
to boost unsupervised learning. As mentioned in section 2.4 (DNA data aug-
mentation), for each DNA sequence si, we applied two sets of transformations,
t and t

′
, from two different augmentation families, T and T

′
. In this study, we

looked into mutations (mutate(µ)) and fragmentation (frag(len)) as our main
augmentation methods. We compared these augmentations, looking at different
strengths for both t and t

′
, to see how they affected the clustering accuracy of

Test 1 (order Cypriniformes), as shown in Table S2.1. The results highlighted
the superiority of mutation as the augmentation technique, with mutation rates
set to µ = 1e−4 for weak augmentation and µ = 1e−2 for strong augmenta-
tion, in comparison to alternative methods. As a result, mutate(µ = 1e−4) and
mutate(µ = 1e−2) were selected as the default methods for weak and strong
augmentations, respectively.

2 Effectiveness of two contrastive heads and weight
parameter in training loss

In exploring the optimal setting for the weight parameter α in the training loss
function Ltrain = αLins + (1− α)Lclu, we tested eleven different values ranging
from 0 to 1. Figure S2.1 shows the experimental results, spanning four distinct
datasets in Tests 1-4 (Group 1 dataset), indicating that the value of 0.7 for α
consistently delivered either highest or close to highest accuracy. Furthermore,
it was observed that values within the range of 0.5 to 0.8 generally yielded supe-
rior outcomes, suggesting a robust zone of performance for α across varying data
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Table S2.1: Impact of various augmentation techniques on clustering
accuracy of Test 1 (clustering of order Cypriniformes). This assessment
focuses on the effectiveness of the data augmentation technique used for weak
and strong augmentation in CGRclust pipeline.

Weak augmentation (t) Strong augmentation (t
′
) Accuracy

mutate(µ = 1e−4) mutate(µ = 1e−3) 74.50%

mutate(µ = 1e−4) mutate(µ = 1e−2) 94.78%

mutate(µ = 1e−3) mutate(µ = 1e−2) 72.69%

frag(l = 0.99× sequence length) frag(l = 0.8× sequence length) 83.53%

frag(l = 0.95× sequence length) frag(l = 0.8× sequence length) 75.50%

frag(l = 0.95× sequence length) frag(l = 0.7× sequence length) 75.50%

frag(l = 0.95× sequence length) frag(l = 0.6× sequence length) 86.75%

frag(l = 0.95× sequence length) frag(l = 0.5× sequence length) 72.49%

frag(l = 0.9× sequence length) frag(l = 0.8× sequence length) 70.28%

conditions. This finding emphasizes the critical role of α in balancing the con-
tributions of instance-level and cluster-level loss components to achieve optimal
training results.

3 Optimization of temperature parameters

A thorough hyperparameter optimization for the twin deep clustering model,
emphasizing the instance- and cluster-level temperature parameters (τI and τC)
in ICH and CCH, was crucial for enhancing clustering accuracy. Figure S2.2
depicts a 3D visualization of this optimization, examining ten distinct values for
each temperature parameter in the range [0.1, 1], revealing a detailed accuracy
landscape within the parameter spectrum for four datasets in Tests 1-4 (Group
1 dataset). This analysis, illustrated using four 3D surface plots, reveals that
while the optimal values of these two hyperparameters vary slightly across four
datasets, choosing τI = 0.1 and τC = 1.0 consistently yields relatively high
accuracy across all datasets, comparable to the highest accuracy observed in each
dataset. This detailed adjustment of parameters notably improved the clustering
of mtDNA sequences over standard unsupervised methods at different taxonomic
levels. This advancement aligns with the hypothesis that a lower τI encourages
individual instance differentiation, aligning with the ICH’s aim, while a higher
τC enhances group discrimination, mirroring the CCH’s objective [1].

4 Majority voting scheme

The integration of ensemble learning, through majority voting, into clustering
methodologies has significantly enhanced the clustering accuracy of genomic se-
quences, as highlighted in [3, 2]. While majority (or hard) voting operates on the
most common prediction among multiple models, soft voting takes into account
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Fig. S2.1: Experimental results illustrating the effect of the weight pa-
rameter α in the training loss function across the Group 1 dataset.
Testing of eleven values from 0 to 1 revealed that values between 0.5 and 0.8
generally delivered superior results. The default α = 0.7 consistently yielded the
highest or near-highest accuracy in Tests 1-4.

the probability distributions of outcomes, offering a consensus that often leads
to higher precision. This method applied to the outcomes of the proposed twin
contrastive clustering models, mitigates variance from random initialization, and
leverages collective model intelligence, thereby improving the robustness and reli-
ability of clustering outcomes. Both soft and hard majority voting, by combining
each model’s prediction, has proven more effective in clustering the four datasets
used in this study, as depicted in Figure S2.3.
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Fig. S2.2: 3D visualization of hyperparameter optimization for the twin
deep clustering model in Tests 1-4, focusing on τI and τC parameters.
This figure illustrates the exhaustive search across a parameter range of [0.1, 1],
presenting the accuracy landscape and emphasizing the optimal configurations
for small values of τI (e.g. 0.1) and larger values of τC (e.g. 1.0), which consid-
erably improve mitochondrial DNA sequence clustering at different taxonomic
levels.

4



Fig. S2.3: Comparative analysis of clustering accuracy across four
datasets using hard and soft majority voting. The bar plot illustrates
the significant improvement in clustering accuracy when employing a voting
scheme within the framework of twin contrastive clustering models, highlighting
the enhanced accuracy in genomic sequence classification.
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