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1. Experimental progress curves were simulated for a reaction obeying Michaelis-Menten
kinetics. 2. Km and Vwere estimated (a) by fitting the integrated Michaelis-Menten equa-
tion to the progress curves, and (b) from the initial slopes of the curves (i.e. from initial
velocities). 3. The integrated equation could not be fitted successfully by a non-linear
method, so it was transformed and fitted by a linear method. 4. Provided that the initial
substrate concentration was greater than Km and the data were precise enough, the
integrated equation gave parameter estimates which were unbiased and as reliable as
those derived from initial velocities although based on fewer experiments. 5. The
integrated equation could be used for progress curves of unknown origin.

The Michaelis-Menten parameters of an enzyme-
catalysed reaction (Km and V) are usually found by
measuring initial rates of reaction at several different
substrate concentrations and then fitting the
Michaelis-Menten rate equation to the data. Alter-
natively, the progress curve of the reaction at a single
substrate concentration can be determined, and the
integrated form of the equation fitted to the data
(Laidler, 1958; Dixon & Webb, 1964).
The latter approach has the advantage that, at least

for the simplest type of reaction, Km and V can be
estimated in a single experiment in which the concen-
tration of product is continuously monitored. In
contrast, when initial velocities alone are measured,
at least three experiments are required, and up to ten
are often performed. (Of course, more complicated
types of reaction demand additional experiments
whichever method is used.) Since it is often quite
easy to monitor a reaction continuously and there-
fore to obtain a large number of points on the pro-
gress curve (e.g. by using a pH-stat device for an ester-
ase, or a recording spectrophotometer for a dehydro-
genase), it is at first sight surprising that the inte-
grated equation has only occasionally been adopted,
even though its theory has been well documented
(Laidler, 1958; Booman & Niemann, 1956; Elmore
et al., 1963). One possible explanation is that the re-
action does not conform to the integrated equation;
because, for example, the enzyme or substrate is un-
stable, there is an appreciable non-enzymic reaction,
or the product is also an inhibitor. A second possibi-
lity is that the origin ofthe progress curve is unknown;
and a third is that although the whole curve is
known, the values of the parameters derived from it
are imprecise.

In the present paper we examine the second and
third of these possibilities. We compare, by analysing
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simulated data for the simplest type of enzyme-
catalysed reaction, the reliabilities of the parameters
derived from initial velocities and from a progress
curve. We assume, first, that the origin ofthe progress
curve is known (for example, in a spectrophotometric
assay the absorbance at zero time can generally be
determined). We then make the alternative assump-
tion that the origin and early part of the curve are not
known but have to be estimated from the later part of
the curve. This occurs in a continuous titration when
the pH of the reagent added to start the assay is not
exactly equal to the pH of the assay, so that initially
the addition of titrant is either increased or delayed.
We found that the integrated equation could not

be fitted by a well-tried non-linear method, but that a
method which is strictly speaking invalid could be
used instead. At certain substrate concentrations the
latter method gave parameter estimates which were
as reliable as those derived from initial velocities. In
addition we found that it did not matter if the origin
of the progress curve had also to be estimated.

Finally, we show how our results can be extended
to certain more complex types ofreaction by consider-
ing the situation that arises when the product is a
competitive inhibitor with respect to the substrate.

Methods and Results

Data simulation

In the simplest type ofenzyme-catalysed reaction, a
single substrate is converted irreversibly into a pro-
duct that does not inhibit the enzyme; the rate equa-
tion is:

dp V (so-P)
dt Km+ (sO-p)

(1)
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where p is the concentration of product at time t
(p = 0 at t = 0); and so is the initial concentration of
substrate. Integration of eqn. (1) gives the equation
describing the progress curve:

Vt =p - [Km, ln(1 -plso)] (2)

A 'perfect' (i.e. error-free) progress curve was
derived by setting Km = V= 1 and s0 to 0.5, 0.7, 1.0,
1.4 or 2.0, and then using eqn. (2) to calculate 15
roughly equally spaced values of t from values ofp in
the range 0.08so-0.80so. 'Experimental' (i.e. error-
containing) progress curves were simulated by adding
to each perfect value ofp one of a series of normally
distributed pseudo-random numbers of mean zero
and standard deviation either 0.005 or 0.01 (the series
was generated by Edinburgh Regional Computing
Centre program Random). The standard deviation
ofp was therefore independent of the magnitude ofp,
as is likely in practice. The value of 0.01 is large, but
was chosen to provide a rigorous test of the methods
used to analyse the data. At each standard deviation
and substrate concentration 40 different progress
curves were simulated (one example is given in Fig. 2).

ldn(1 -p/so)
t

to estimate Km and V.
The regression was first calculated with the points

being weighted equally. Then, for comparison, it was
calculated iteratively, with each point being given a
weighting factor of:

t

Ii + Km]12
until Km converged to a constant value. This weighting
factor was used because, as shown in Fig. 1, an error
of /p moves the point P to Q which is, by using
Taylor's Theorem (Courant, 1937), to a first approxi-
mation of distance:

AP[1 +-]m
t so:P]

above the line.
The results are in Table 1. For either regression all

the mean values of Km and Vwere less than the theo-
retical ones of unity, but improved markedly with
increasing so. The mean Km always differed more

Progress curve ofknown origin

Integrated equation. A theoretically valid way of
estimating K. and Vis to choose a pair of values for
these parameters, integrate eqn. (1) numerically
to calculate the values ofp corresponding to the ob-
served values of t, and then search for the pair of
values that minimizes the sum of the squares of the
differences between the observed and calculated
values of p. We did this, by using the Kutta-
Merson procedure for numerical integration (Mayers,
1962), and the rapid-descent method of Davidon and
Fletcher & Powell as exploited by Atkins (1971) for
finding the minimum sum of squares of differences.
However, the minimum finally reached was not
unique but depended on the starting values ofKm and
V, presumably because the minimum is ill-defined.
Other ways ofestimating Km and Vdepend on some

form of least-squares linear regression based on eqn.
(2): for example, the multiple regression of t onp and
ln(l-p/so), or the simple regression of

1
p/t on - ln(l-p/so).

t

Neither of these regressions is theoretically valid,
because t is really an independent variable and p a
dependent one; however, both regressions must give
unique answers. Fisher & Nimmo (1972) found that,
despite its invalidity, the simple regression gave in a
similar situation answers which were not biased and
were more precise than those given by the multiple
regression. Therefore we have used the regression of
p/t on

- *ln(1 -p/so)

Fig. 1. Effect ofan error in p ofAp on the plot ofp/t
1

against - . ln(1 -p/so)
t

The point P moves to Q, such that:
QB /plt

km rAPBC = K,,5-PB -;- (by Taylor's Theorem)t L5PJ

QC_Ap I + Km 9
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PARAMETER ESTIMATION USING THE INTEGRATED MICHAELIS EQUATION

Table 1. Mean estimates ofKm and Vforprogress curves ofknown origin

Values are means ±S.D. (n = 40).

Integrated unweighted

Km

0.53 ± 0.27
0.76±0.19
0.85 ±0.17
0.96± 0.14*
0.98 ± 0.07

0.05 ± 0.24t
0.37±0.27
0.54±0.27
0.84±0.15
0.92+0.15

V

0.65±0.20
0.84±0.13
0.91 ±0.10
0.98 ± 0.07*
0.99±0.03

0.30±0.18
0.58±0.18
0.74±0.16
0.92 ± 0.08
0.97 ± 0.07

Integrated weighted

Km V

0.60±0.13
0.83 ±0.14
0.91 ± 0.08
0.99± 0.06*
0.99 ± 0.04*

0.09 ± 0.21t
0.47±0.13
0.69±0.12
0.87±0.10
0.96 ± 0.09*

0.70±0.10
0.83 ± 0.10
0.95 ± 0.05
1.00± 0.03*
1.00 ± 0.02*

0.31 ±0.15
0.63 + 0.09
0.82±0.07
0.93 ± 0.05
0.98 ± 0.04*

Initial velocities

Km V

0.97 0.99

0.07 0.03*

0.96

0.13*

0.99

0.05*
* P> 0.04 that there is no difference from theoretical value of 1.00, calculated from interval estimate of median

(Campbell, 1967).
t Many of the values were negative.

from its theoretical value than did the corresponding
mean V, and also had the larger standard error. In
general, the weighted regression gave the better
answers.
Rate equation. Initial velocities were equated to the

first-order term ofa cubic fitted to the whole progress
curve and constrained to pass through the origin.
(The reason for choosing a cubic is explained in the
next section.) Themean values ofKm and V, computed
from initial velocities by the method of Wilkinson
(1961), are in Table 1. They are about as reliable as the
answers given by the weighted form of the integrated
equation when so = 1.4. But the latter method is to be
preferred because it requires one-fifth the number of
experiments to achieve a given reliability.

Progress curve ofunknown origin
The origin of the progress curve has to be found

when, for example, in the continuous titration of an
esterase the pH chosen for the assay is slightly greater
than that of the reagent added to start the reaction.
There is a rapid addition of extra alkali, after which
the total amount of alkali added is always greater
than the equivalent amount of product formed (see
Fig. 2). The progress curve can only be analysed by
subtracting this extra alkali (po) from the total amount
added (p).
We have assumed that the first part ofthe curve was

undetermined, but that it had its true shape by thetime
8% of the substrate had been consumed.

Integrated equation. Two methods for finding po
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were tested. In the first method, a polynomial was
fitted to the values of t and p, po was equated to its
zero-order term and Km and V were estimated from
the linear regression of (p-po)/t on

*ln(1 - (p -po)/so).
t

The optimum order for the polynomial was estab-
lished by fitting in turn a quadratic, a cubic and a
quartic to the progress curves for so = 1.0 and estimat-
ing Km and V by using the unweighted form of the
linear regression. Table 2 shows that the cubic gave the
best answers, so only it was used at the other values of
s0, and for deriving initial velocities (see above). The
mean values of Km and V calculated from the low-
error curves by using the cubic and the weighted form
of the linear regression are in Table 3; those calcu-
lated from the high-error curves and those given by
the unweighted form of the regression were less reli-
able and have not been included. As for the curves of
known origin (Table 1), the means were significantly
less than their true values when so was under 1.4, and
their standard errors decreased as s. increased. There
was also little quantitative difference between the
means for thecurves ofknown and ofunknown origin,
which indicates that the cubic polynomial gave an
unbiased estimate of the origin.
The second method for finding po was a modified

Fibonacci search (Atkins, 1973) used in conjunction
with both the unweighted and the weighted forms of
the linear regression. The mean estimates were slightly

SO
S.D. = 0.005

0.5
0.7
1.0
1.4
2.0

S.D. = 0.01

0.5
0.7
1.0
1.4
2.0
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Table 2. Effect of the order of the polynomial on the
estimates ofKm and V

Values are means ±S.D. (n = 40), and are for so = 1.0
and unweighted linear regression only.

S.D.

Quadratic
0.005
0.01

Cubic
0.005
0.01

Quartic
0.005
0.01

K,, V

0.93 ± 0.09 0.96 ± 0.06
0.61±0.19 0.77±0.12

0.96± 0.22* 0.99± 0.15*
0.71 ± 0.31 0.83 ± 0.21

0.94± 0.38* 0.98 + 0.26*
0.57±0.45 0.76+0.30

P0

t

Fig. 2. Progress curve of unknown origin

The amount of extra alkali added is po, so the origin
is really (0, po). For this curve Km = V= 1, so = 2.0 and
the S.D. ofp = 0.005.

lower than those in Table 3, and have not been tabu-
lated.

Rate equation. Initial velocities were calculated from
the first-order term of the cubic, and Km and V were
again computed from them by Wilkinson's (1961)
method. The means are in Table 3; they are less
precise than those given by the integrated equation
when so was 1.4 or 2.0.

Effect of data spacing

At the lower initial substrate concentrations all the
integrated methods underestimated K,., and V. This is
explained qualitatively by Fig. 3, which shows the
effect ofa fixed error inp on the plot ofp/t against

- ln( -p/so).
t

It can be seen that ifp is underestimated a point which
should have fallen on the line in fact lies below its true
position and to the left of it, whereas if p is over-
estimated, the point lies above and to the right of its
true position. As a result, low values of the abscissa
are correlated with values of the ordinate that are
erroneously low, and high values of the abscissa with
erroneously high values of the ordinate. It follows
that the least-squares regression through points con-

taining error tends to be rotated counter-clockwise
and therefore to have a decreased slope (i.e. K.) and

* P>0.04 that there is no difference from theoretical
value of 1.00, calculated from interval estimate of median
(Campbell, 1967).

intercept (i.e. V). This tendency is more marked at
the low substrate concentration than at the high one.
An attempt was made to improve the estimates of

Km and Vat s0 = 0.5 by using all the data to findpo but
only the larger values of p (p>0.157) in the subse-
quent linear regression. However, the estimates were
substantially the same. On the other hand, using only
smaller values of p for the regression gave negative
values of K..

Application to other types of reaction

Although these results are for the simplest type of
reaction, they can be applied to more complex ones.
For example, if the reaction product is a competitive
inhibitor of constant K, eqn. (2) becomes:

P' I . V+Km + (Km/KI) * so ln(1 -p/so) (3)
t 1-(Km/K,) 1-(KmIKi) t

[Note that this equation is correct, whereas in Laidler
(1958) eqn. (29) and Fig. 28 are wrong.]
The apparent value of Km [K', the coefficient of

ln(1 -p/so)/t] is linearly related to so, and both Km and
K, can be calculated from the slope and intercept of
the plot of K' against so. The variances of this slope
and intercept can be found from the residual variance
about the plot, that is, from the variance of K', which
can in turn be found in, for example, Table 3. Thus
the errors to be expected in Ki, K, and V can all be
estimated.

Discussion

The simplest form of the integrated Michaelis-
Menten equation can be used only if its rate equation
holds throughout the whole reaction. Among the

1973
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PARAMETER ESTIMATION USING THE INTEGRATED MICHAELIS EQUATION

Table 3. Mean estimates ofKm and Vforprogress curves ofunknown origin

Values are means ±S.D. (n as indicated).

Integrated weighted (n = 40)
.A. I

Km
0.5 0.60±0.13
0.7 0.84±0.17
1.0 0.94±0.14
1.4 1.02 ± 0.09*
2.0 1.00 ± 0.06*

V
0.70±0.11
0.89±0.13
0.97± 0.10*
1.01 ± 0.06*
1.00 ± 0.03*

Initial velocities (n = 39)

Km V

0.99

0.18*

1.01

0.08*
* P>0.04 that there is

(Campbell, 1967).
no difference from theoretical value of 1.00, calculated from interval estimate of median

a94

0 0.2 0.4 0.6 0.8 1.0

1ln (I-plso)t

Fig. 3. Effect oferror on the plot ofp/t against ln(1 -p/so)t

Km = V= 1, so = 0.5 and 2.0 and the error in p = ±0.01. Points containing this error lie on the curves above (p
overestimated) and below (p underestimated) thestraight line and not on it. The percentage conversion ofsubstrate
into product is shown at five points on each curve.

factors preventing its use are the irreversible inactiva-
tion during the reaction of the enzyme [see Selwyn
(1965) for a test of this], a departure from steady state
in the concentration of enzyme-substrate complex,
the reversibility of the reaction, or the presence or
formation of an inhibitor (Laidler, 1958). However,
the rate equation can be modified to take some ofthese
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factors into account: for instance, it is possible in
practice to allow for the reversibility of the reaction
(Alberty & Koerber, 1957), or for the presence of a
non-competitive inhibitor which is a reaction product
(Schwert, 1969). Progress curves can also be used to
quantify irreversible two-substrate reactions (Schwert,
1969).
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Thus some form of integrated equation is in prin-
ciple applicable to several different types of reaction.
Our results show that the simplest form of the equa-
tion had to be fitted to the data by a theoretically
invalid method. However, this method gave unbiased
estimates of the parameters, provided that the data
were sufficiently precise and the initial concentration
of substrate was greater than Km. In these conditions,
the estimates were as good as those derived from
initial velocities, and were based on fewer experi-
ments. On the other hand, when s0 was not greater
than K., the estimates were too low. Theseconclusions
can be extended to more complex types of reaction.
For example, when the reaction product is a competi-
tive inhibitor, the proviso that the coefficient of the

1
- Iln(1 -p/so)
t

term (that is, the apparent value of Km) be roughly
twice the initial concentration ofsubstrate is met ifthe
true value of K. is also twice this concentration.
Our results also show that weighting the regression

(albeit with factors which are approximate) improved
the precision of the estimates of the parameters, and
that the origin of the progress curve could be calcu-
lated with but little loss in precision. It is not possible
by using the linear regression to estimate the standard
deviations of the parameters derived in an individual
experiment. However, in any regression which should
be solved by non-linear methods (like the one con-
sidered here, or one fitting a rectangular hyperbola)
the calculated standard deviations are only approxi-
mate (Bliss & James, 1966) and must be interpreted
with caution. Nevertheless, our results do indicate
what values might be expected for these standard
deviations. Thus when so = 1.4 and the standard
deviation ofp = 0.005, the standard deviation of the
residuals about the curve relatingp to t must average
0.005, or roughly 0.5% of the maximum observed
value ofp. Table 3 shows that in these conditions the
coefficients of variation of Km and V are respectively
9% and 6%.

These calculations only apply when the experi-
mental error is random and not systematic. It is con-
ceivable that factors like slow changes in pH or
temperature, or instrumental drift, could intro-
duce systematic errors. We have not attempted to

assess quantitatively the effect on the parameter
estimates of such errors. However, their presence
would probably result in a curvilinear plot of p/t
against

- -ln(I -p/so),
t

and could thus be detected.
Therefore we have concluded that, in the absence

of systematic error, there is no reason why Km and V
should not be determined from progress curves.
Conformity of a reaction to Michaelis-Menten kin-
etics is better tested by using initial velocities, but
when its parameters are being estimated as a routine,
the progress curve could be the method of choice.
Full details of the computer program, written in
IMP, are available from the authors on request.

We thank Mr. P. F. J. Newman for suggesting the
investigation to us, Professor R. B. Fisher for his advice
and interest, and Miss Caroline Thompson for her cheerful
assistance.
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