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Supplementary Section 1: Variational Lower Bound

To maximise the likelihood of our training data, we aim at optimising the variational lower bound
(VLB) [1, 2]

− log p(zdata) ≤ DKL

(
q(zT |zdata)||p(zT )

)︸ ︷︷ ︸
prior loss Lprior

−Eq(z0|zdata)

[
log p(zdata|z0)

]︸ ︷︷ ︸
reconstruction loss L0

+

T∑
t=1

Lt︸ ︷︷ ︸
diffusion loss

(1)

with

Lt = DKL

(
q(zt−1|zdata, zt)||pθ(zt−1|ẑdata, zt)

)
(2)

= Eϵ∼N (0,I)

[1
2

(SNR(t− 1)

SNR(t)
− 1

)
||ϵ− ϵ̂θ||2

]
(3)

during training. Here, zdata is a training data point, zt a noised version of that data at time step t and
ẑdata an estimate of the clean data based on the noisy data. The subscript θ denotes that a function
is parameterized with learnable parameters θ. ϵ̂θ is the neural network output which approximates
the noise sample used to perturb the original data point. Note the prior loss should always be close
to zero and can be computed exactly in closed form while the reconstruction loss must be estimated
as described in Hoogeboom et al. [2]. In practice, however, we simply minimise the mean squared
error Ltrain = 1

2 ||ϵ− ϵ̂||2 while randomly sampling time steps t ∼ U(0, . . . , T ), which is equivalent up
to a multiplicative factor.

Supplementary Section 2: Note on Equivariance of the Conditional Model

The 3D-conditional model (DiffSBDD-cond) can achieve equivariance without the usual “subspace-
trick”. The coordinates of pocket nodes provide a reference frame for all samples that can be used
to translate them to a unique location (for instance such that the pocket is centered at the origin:∑

i x
(P )
i = 0). By doing this for all training data, translation equivariance becomes irrelevant and

the CoM-free subspace approach obsolete. To evaluate the likelihood of translated samples at infer-
ence time, we can first subtract the pocket’s center of mass from the whole system and compute
the likelihood after this mapping. Similarly, for sampling molecules we can first generate a ligand
in a CoM-free version of the pocket and move the whole system back to the original location of the
pocket nodes to restore translation equivariance. As long as the mean of our Gaussian noise distri-
bution depends equivariantly on the pocket node coordinates x(P ), O(3)-equivariance is satisfied as
well (Supplementary Section 3). Since this change did not seem to affect the performance of the con-
ditional model in our experiments, we decided to keep sampling in the linear subspace to ensure that
the implementation is as similar as possible to the DiffSBDD-joint model, for which the subspace
approach is necessary.

Supplementary Section 3: Proofs

In the following proofs we do not consider categorical node features h as only the positions x are
subject to equivariance constraints. Furthermore, we do not distinguish between the zeroth latent
representation x0 and data domain representations xdata for ease of notation, and simply drop the
subscripts and use x ∈ R3.
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Supplementary Section 3.1: O(3)-equivariance of the prior probability

The isotropic Gaussian prior p(x
(L)
T |x(P )) = N (µ(x(P )), σ2I) is equivariant to rotations and

reflections represented by an orthogonal matrix R ∈ R3×3 as long as µ(Rx(P )) = Rµ(x(P )) because:

p(Rx
(L)
T |Rx(P )) =

1√
(2π)3σ3

exp
(
− 1

2σ2
||Rx

(L)
T − µ(Rx(P ))||2

)
=

1√
(2π)3σ3

exp
(
− 1

2σ2
||Rx

(L)
T −Rµ(x(P ))||2

)
=

1√
(2π)3σ3

exp
(
− 1

2σ2
||R

(
x
(L)
T − µ(x(P ))

)
||2

)
=

1√
(2π)3σ3

exp
(
− 1

2σ2
||x(L)

T − µ(x(P ))||2
)

= p(x
(L)
T |x(P )).

Here we used ||Rx||2 = ||x||2 for orthogonal R.

Supplementary Section 3.2: O(3)-equivariance of the transition probabilities

The denoising transition probabilities from time step t to s < t are defined as isotropic normal
distributions:

pθ(x
(L)
t−1|x

(L)
t , x̂(L),x(P )) = N (x

(L)
t−1|µt→s(x

(L)
t , x̂(L),x(P )), σ2

t→sI). (4)

Therefore, pθ(x
(L)
t−1|x

(L)
t , x̂(L),x(P )) is O(3)-equivariant by a similar argument to Supplementary

Section 3.1 if µt→s is computed equivariantly from the three-dimensional context.

Recalling the definition of µt→s =
αt|sσ

2
s

σ2
t

x
(L)
t +

αsσ
2
t|s

σ2
t

x̂(L), we can prove its equivariance as follows:

µt→s(Rx
(L)
t ,Rx(P )) =

αt|sσ
2
s

σ2
t

Rx
(L)
t +

αsσ
2
t|s

σ2
t

x̂(L)(Rx
(L)
t ,Rx(P ))

=
αt|sσ

2
s

σ2
t

Rx
(L)
t +

αsσ
2
t|s

σ2
t

Rx̂(L)(x
(L)
t ,x(P )) (equivariance of x̂(L))

= R
(αt|sσ

2
s

σ2
t

x
(L)
t +

αsσ
2
t|s

σ2
t

x̂(L)(x
(L)
t ,x(P ))

)
= Rµt→s(x

(L)
t ,x(P )),

where x̂(L), defined as x̂(L) = 1
αt
x
(L)
t − σt

αt
ϵ̂, is equivariant because:

x̂(L)(Rx
(L)
t ,Rx(P )) =

1

αt
Rx

(L)
t − σt

αt
ϵ̂(Rx

(L)
t ,Rx(P ), t)

=
1

αt
Rx

(L)
t − σt

αt
Rϵ̂(x

(L)
t ,x(P ), t) (ϵ̂ predicted by equivariant neural network)

= R
( 1

αt
x
(L)
t − σt

αt
ϵ̂(x

(L)
t ,x(P ), t)

)
= Rx̂(L)(x

(L)
t ,x(P )).
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Supplementary Section 3.3: O(3)-equivariance of the learned likelihood

Let R ∈ R3×3 be an orthogonal matrix representing an element g from the general orthogonal group
O(3). We obtain the marginal probability density of the Markovian denoising process as follows

pθ(x
(L)
0 |x(P )) =

∫
p(x

(L)
T |x(P ))pθ(x

(L)
0:T−1|x

(L)
T ,x(P ))dx1:T

=

∫
p(x

(L)
T |x(P ))

T∏
t=1

pθ(x
(L)
t−1|x

(L)
t ,x(P ))dx1:T

and the sample’s likelihood is O(3)-equivariant:

pθ(Rx
(L)
0 |Rx(P )) =

∫
p(Rx

(L)
T |Rx(P ))

T∏
t=1

pθ(Rx
(L)
t−1|Rx

(L)
t ,Rx(P ))dx1:T

=

∫
p(x

(L)
T |x(P ))

T∏
t=1

pθ(Rx
(L)
t−1|Rx

(L)
t ,Rx(P ))dx1:T (equivariant prior)

=

∫
p(x

(L)
T |x(P ))

T∏
t=1

pθ(x
(L)
t−1|x

(L)
t ,x(P ))dx1:T (equivariant transition probabilities)

= pθ(x
(L)
0 |x(P )).

Supplementary Section 4: SE(3)-equivariant Graph Neural Network

Chiral molecules cannot be superimposed by any combination of rotations and translations. Instead
they are mirrored along a stereocenter, axis, or plane. As chirality can fundamentally alter a
molecule’s chemical properties, we use a variant of the E(3)-equivariant graph neural networks [3] that
is sensitive to reflections and hence SE(3)-equivariant. We change the coordinate update equation
of standard EGNNs in the following way

xl+1
i = xl

i +
∑
j ̸=i

xl
i − xl

j

dij + 1
ϕd
x(h

l
i,h

l
j , d

2
ij , aij) +

(xl
i − x̄l)× (xl

j − x̄l)

||(xl
i − x̄l)× (xl

j − x̄l)||+ 1
ϕ×
x (h

l
i,h

l
j , d

2
ij , aij), (5)

where x̄l denotes the center of mass of all nodes at layer l. This modification makes the EGNN layer
sensitive to reflections while staying close to the original formalism. Since the resulting graph neural
networks are only equivariant to the SE(3) group, we will hereafter call them SE(3)GNNs for short.

Supplementary Section 4.1: Discussion of equivariance

Here we study how the suggested change in the coordinate update equation breaks reflection sym-
metry while preserving equivariance to rotations. Messages and scalar feature updates (Equations 3
and 4 in the Methods Section) remain E(3)-invariant as in the original model and are therefore not
considered in this section. We analyze transformations composed of a translation by t ∈ R3 and a
rotation/reflection by an orthogonal matrix R ∈ R3×3 with RTR = I. The output at layer l + 1
given the transformed input Rxl

i + t at layer l is calculated as:

Rxl
i + t+

∑
j ̸=i

Rxl
i + t− (Rxl

j + t)

dij + 1
ϕd
x(·) +

(Rxl
i + t− (Rx̄l + t))× (Rxl

j + t− (Rx̄l + t))

Z×
ij + 1

ϕ×
x (·) (6)

= Rxl
i + t+

∑
j ̸=i

R(xl
i − xl

j)

dij + 1
ϕd
x(·) +

(Rxl
i −Rx̄l)× (Rxl

j −Rx̄l)

Z×
ij + 1

ϕ×
x (·) (7)
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= Rxl
i + t+

∑
j ̸=i

R(xl
i − xl

j)

dij + 1
ϕd
x(·) +

det(R)R
(
(xl

i − x̄l)× (xl
j − x̄l)

)
Z×
ij + 1

ϕ×
x (·) (8)

= Rxl+1
i + t+

(
det(R)− 1

)∑
j ̸=i

R
(
(xl

i − x̄l)× (xl
j − x̄l)

)
Z×
ij + 1

. (9)

This result shows that the output coordinates are only equivariantly transformed if R is orientation
preserving, that is det(R) = 1. If R is a reflection (det(R) = −1), coordinates will be updated with
an additional summand that breaks the symmetry.

The learnable coefficients ϕd
x(h

l
i,h

l
j , d

2
ij , aij) and ϕ×

x (h
l
i,h

l
j , d

2
ij , aij) only depend on relative distances

and are therefore E(3)-invariant. Their arguments are represented with the “·” symbol for brevity.
Likewise, the normalization factor ||(xl

i − x̄l) × (xl
j − x̄l)|| is abbreviated as Z×

ij . Already in the
first line we used the fact that the mean transforms equivariantly. Furthermore, we use Ra×Rb =
det(R)R(a× b) in the second step, which can be derived as follows:

xT (Ra×Rb) = det([x,Ra,Rb]︸ ︷︷ ︸
∈R3×3

) (10)

= det(R[RTx,a, b]) (11)

= det(R) det([RTx,a, b]) (12)

= det(R)
(
xTR(a× b)

)
(13)

= xT
(
det(R)R(a× b)

)
. (14)

The stated property of the cross product follows because this derivation is true for all x ∈ R3.

Supplementary Section 4.2: Empirical results

To show the effectiveness of this architecture on a simple toy example, we repeat the classification
experiment by Adams et al. [4] who train neural networks to classify tetrahedral chiral centers
as right-handed (rectus, ‘R’) or left-handed (sinister, ‘S’). We closely follow their data split and
experimental set-up and only replace the classifier with EGNN and SE(3)GNNs, respectively. The
results in Supplementary Table 1 clearly demonstrate that the SE(3)-equivariant EGNN is capable
of solving this task (without any hyperparameter optimization) whereas the E(3)-equivariant version
does not do better than random guessing.

Supplementary Table 1:
Accuracy on the R/S classifi-
cation task. Results in the first
section are taken from [4] and
included for reference.

Model R/S Accuracy (%)

ChIRo 98.5
SchNet 54.4
DimeNet++ 65.7
SphereNet 98.2

EGNN 50.4
SE(3)GNN 83.4
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Supplementary Section 5: Extended Results

Supplementary Section 5.1: Distribution learning performance

Since distribution learning capabilities in the high-dimensional space of chemical compounds are dif-
ficult to quantify directly, we instead measure a range of molecular properties that are relevant for
potential drug candidates. We then compare the distributions of these scores to the distributions we
get from the real ligands in our test set using the Wasserstein distance. These results are summarized
in Supplementary Table 2 for computational scores of drug-likeness (QED), synthetic accessibility
(SA), hydrophobicity (LogP) and two measures of target affinity, the empirical Vina scoring func-
tion and a neural network estimation of binding affinity (CNN affinity). Both were computed by
GNINA [5] after local energy minimization to resolve minor clashes. The underlying distributions
of scores are shown in Supplementary Figures 6 and 7. We perform this analysis both for the test
set targets from CrossDocked [6], a standard dataset extensively used in prior works [7–10], and
our newly curated dataset based on Binding MOAD [11]. Note that not all baseline models have
been trained on identical training sets (see Methods Section 2.6). Since we were only able to sample
molecules for a fraction of our Binding MOAD test pockets with DeepICL, we decided to exclude it
from this comparison. Readers are referred to Supplementary Table 3 for a summary of the results
on the reduced test set. Generally, our diffusion models capture molecular properties of natural lig-
ands more accurately than the autoregressive baselines despite substantially shorter sampling times
in most cases. A notable exception is the Vina score, which Pocket2Mol matches particularly well on
the CrossDocked dataset. Interestingly, this observation is not confirmed by GNINA’s CNN affinity
which estimates the same quantity. Its distribution is better approximated by DiffSBDD.

Supplementary Table 2: Evaluation of generated molecules for targets from the CrossDocked
and Binding MOAD test sets. To assess how well the models capture properties of real ligands, we
compute the Wasserstein distance between the distributions of a scores from generated molecules and
the ground truth molecules from the test sets. The best performance (lowest Wasserstein distance)
is highlighted in bold. ∗ denotes that we re-evaluate the generated ligands provided by the authors.
† means inference times are taken from the original paper. ‡ means inference time estimated based
on five targets.
QED : Quantitative Estimation of Drug-likeness [12]; SA: Synthetic Accessibility [13]; LogP : octanol-
water partition coefficient [14]; CNN affinity : estimated binding affinity score using a Convolutional
Neural Network [5].

Wasserstein distance to reference distribution (↓)
QED SA LogP Lipinski Vina score CNN affinity Time (s, ↓)

C
ro
ss
D
o
ck
ed

Pocket2Mol [9]∗ 0.104 0.243 0.908 0.656 0.589 0.608 2504± 2207†

ResGen [10] 0.114 0.554 0.794 0.682 2.13 1.2 ≈ 936‡

PocketFlow [15] 0.0617 0.78 2.79 0.648 1.18 0.897 193.5± 18.1
DeepICL [16] 0.147 3.54 1.21 0.666 1.16 0.306 300.5± 65.5

DiffSBDD-cond 0.0191 1.29 0.601 0.272 0.83 0.146 135.9± 51.7
DiffSBDD-joint 0.0193 1.51 1.7 0.416 0.683 0.273 160.3± 73.3

B
in
d
in
g
M
O
A
D Pocket2Mol [9] 0.124 0.873 0.823 0.276 3.3 1.57 ≈ 613‡

ResGen [10] 0.0761 0.878 0.831 0.248 6.75 1.73 ≈ 697‡

PocketFlow [15] 0.0612 1.09 1.92 0.272 3.41 1.53 185.79± 17.8

DiffSBDD-cond 0.0904 1.2 0.801 0.142 4.19 0.902 336.1± 85.0
DiffSBDD-joint 0.0734 0.795 1.28 0.19 9.63 0.627 369.9± 124.5
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Supplementary Section 5.2: Binding MOAD analysis on a reduced test set

We were only able to sample molecules with the DeepICL [16] baseline method for less than 50%
of pockets in our Binding MOAD test set. We therefore include distribution learning results on this
reduced set of pockets in Supplementary Table 3 for completeness.

Supplementary Table 3: Evaluation of generated molecules for 54 targets from the Binding MOAD
test set. To assess how well the models capture properties of real ligands, we compute the Wasser-
stein distance between the distributions of a scores from generated molecules and the ground truth
molecules from the test sets. The best performance (lowest Wasserstein distance) is highlighted in
bold.
QED : Quantitative Estimation of Drug-likeness [12]; SA: Synthetic Accessibility [13]; LogP : octanol-
water partition coefficient [14]; CNN affinity : estimated binding affinity score using a Convolutional
Neural Network [5].

Wasserstein distance to reference distribution (↓)
QED SA LogP Lipinski Vina score CNN affinity

Pocket2Mol [9] 0.1 0.569 1.06 0.249 3.57 1.77
ResGen [10] 0.0583 0.525 1.01 0.178 8.71 1.88
PocketFlow [15] 0.0751 0.748 0.678 0.212 3.84 1.95
DeepICL [16] 0.0641 3.72 2.34 0.19 3.58 1.27

DiffSBDD-cond 0.166 1.59 1.66 0.168 4.44 1.03
DiffSBDD-joint 0.0812 1.15 0.619 0.13 7.99 0.871
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Supplementary Section 5.3: Additional molecular metrics

In addition to the molecular properties discussed in the main text we assess the models’ ability to
produce novel and valid molecules using four simple metrics: validity, connectivity, uniqueness, and
novelty. Validity measures the proportion of generated molecules that pass basic tests by RDKit–
mostly ensuring correct valencies. Connectivity is the proportion of valid molecules that do not
contain any disconnected fragments. We convert every valid and connected molecule from a graph
into a canonical SMILES string representation, count the number unique occurrences in the set of
generated molecules and compare those to the training set SMILES to compute uniqueness and
novelty respectively.

Supplementary Table 4 shows that only a small fraction of all generated molecules is invalid and must
be discarded for downstream processing. A much larger percentage of molecules is fragmented but,
since we can simply select and process the largest fragments in these cases, low connectivity does
not necessarily affect the efficiency of the generative process. Moreover, all models produce diverse
sets of molecules unseen in the training set.

Supplementary Table 4: Basic molecular metrics for generated small molecules given a Cα and
full atom representation of the protein pocket.

Model Validity Connectivity Uniqueness Novelty

CrossDocked test set 100% 100% 96% 96.88%
DiffSBDD-cond (Cα) 95.52% 79.52% 99.99% 99.97%
DiffSBDD-joint (Cα) 99.18% 98.25% 99.52% 99.97%
DiffSBDD-cond 97.10% 78.27% 99.98% 99.99%
DiffSBDD-joint 92.99% 67.52% 100% 100%

Binding MOAD test set 97.69% 100% 38.58% 77.55%
DiffSBDD-cond (Cα) 94.41% 77.38% 100% 100%
DiffSBDD-joint (Cα) 98.36% 91.60% 99.99% 99.98%
DiffSBDD-cond 96.32% 63.37% 100% 100%
DiffSBDD-joint 93.88% 75.60% 100% 100%
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Supplementary Section 5.4: Selecting the number of resampling steps for DiffSBDD-
joint

Here, we briefly recapitulate the resampling algorithm introduced in Ref. [17]. The key intuition is
that inpainting with the replacement method combines a generated part with an independently sam-
pled latent representation of the known part. Even though the neural network tries to reconcile these
two components in every step of the denoising trajectory, it cannot succeed because the same issue
reoccurs in the following step. Lugmayr et al. [17] thus propose to apply the neural network several
times before proceeding to the next noise level, allowing the DDPM to preserve more conditional
information and move the sample closer to the data distribution again.

Number of resampling steps

To empirically study the effect of the number of resampling iterations applied, we generated ligands
for all test pockets with r = 1, r = 5, and r = 10 resampling steps, respectively. Because the resam-
pling strategy slows down sampling approximately by a factor of r, we used the striding technique
proposed by Nichol and Dhariwal [18] and reduced the number of denoising steps proportionally to
r. Nichol and Dhariwal [18] showed that this approach reduces the number of sampling steps sub-
stantially without sacrificing sample quality. In our case, it allows us to retain sampling speed while
increasing the number of resampling steps.

To gauge the effect of resampling for molecule generation we show the distribution of RMSD values
between the center of mass of reference molecules and generated molecules in Supplementary Figure 1.
The unmodified replacement method (r = 1) produces molecules that are clearly farther away from
the presumed pocket center than the conditional model. Increasing r moves the mean distance closer
to the average displacement of molecules from the conditional method. This effect seems to saturate
at r = 10 which is in line with the results obtained for images [17].

Supplementary Table 5 shows that neither the additional resampling steps nor the shortened denois-
ing trajectory degrade the performance on the reported molecular metrics. The average docking
scores even improve slightly which might reflect better positioning of generated ligands in the pockets
prior to docking. The same model trained with T = 500 diffusion steps was used in all three cases.

Supplementary Table 5: Evaluation of generated molecules for target pockets from the Cross-
Docked (C.D.) and Binding MOAD (B.M.) test sets with the inpainting approach and Cα pocket
representation for varying numbers of resampling steps r and denoising steps T . Mean and standard
deviation are computed across all generated molecules for Vina Score, QED, SAnorm and Lipinski.
The same statistics are derived for the per-target values of Diversity and Time, respectively. Here,
the SA scores were mapped to the unit interval using SAnorm = (10− SA)/9.

r T Vina Score (↓) QED (↑) SAnorm (↑) Lipinski (↑) Diversity (↑) Time (s, ↓)

C
.D

. 1 500 −5.830± 2.47 0.403± 0.18 0.552± 0.13 4.620± 0.81 0.808± 0.06 97.434± 39.79
5 100 −6.872± 2.43 0.444± 0.19 0.551± 0.12 4.654± 0.72 0.766± 0.06 96.205± 39.22
10 50 −7.177± 3.28 0.556± 0.20 0.729± 0.12 4.742± 0.59 0.718± 0.07 94.481± 38.86

B
.M

. 1 500 −5.810± 2.00 0.468± 0.16 0.627± 0.14 4.839± 0.49 0.851± 0.04 40.298± 13.52
5 100 −6.082± 2.01 0.537± 0.16 0.701± 0.13 4.924± 0.31 0.855± 0.05 45.074± 21.14
10 50 −6.192± 2.24 0.560± 0.16 0.737± 0.13 4.941± 0.27 0.859± 0.05 41.490± 14.32
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Supplementary Figure 1: Effect of resampling steps for DiffSBDD-joint. (A) Example of a gen-
erated molecule (green) without additional resampling steps and the reference molecule (magenta)
from the target PDB 5ncf. The generated molecule is not placed in the target pocket but in the pro-
tein core. (B) RMSD between reference molecules’ center of mass and generated molecules’ center
of mass for the conditional model and inpaining model with varying numbers of resampling steps
r. The pocket representation is Cα in all cases. Minimum, maximum and mean are indicated with
horizontal lines. (n=130 in each violin)
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Supplementary Section 5.5: Quantitative performance of substructure-constrained
models

Supplementary Table 6 reports quantitative results obtained with our molecular inpainting strategy.
As baselines, we provide the metrics for the molecules in the test set, molecules only conditioned on
the pocket with no fixed substructure (DiffSBDD-baseline) and the performance of DiffLinker [19]
(the latter for fragment linking). Due to the fact that we can only calculate fragment and scaffold
masks for larger molecules, we have reduced the size of the test set used in Supplementary Table 6
to n = 55 to ensure fair comparison between methods.

Constraining fixed regions to highly complementary substructures within the protein pocket sub-
stantially enhances Vina scores using DiffSBDD-de novo compared to the DiffSBDD-baseline. For
molecules generated without substructure conditioning under DiffSBDD-baseline, the average Vina
score is -5.69. In contrast, DiffSBDD-de novo sees improved scores, achieving -7.74 when used for
linker design from starting fragments and achieves results comparable to the specialist model Dif-
fLinker. In the case of scaffold elaboration, DiffSBDD-de novo substantially boosts docking scores
from -5.69 to -8.10 over the baseline, by focusing on the optimal placement of functional groups to
facilitate key residue binding on a pre-existing scaffold. Moreover, there is a notable improvement
in average docking scores for scaffold hopping, with scores rising from -5.69 to -7.60 when using
DiffSBDD-de novo. This enhancement is achieved despite a relatively small proportion of atoms being
fixed, about 27.32%, compared to other tasks. The substantial increase in docking scores is attributed
to the nature of the fixed atoms, primarily functional groups that form the pharmacophore, which
are crucial for binding affinity.

Supplementary Table 6: Evaluation of molecular inpainting for fragment linking, scaffold hopping
and scaffold elaboration across the Binding MOAD test set. Percentage value next to task name
denotes the proportion of atoms fixed during the design process. DiffSBDD-baseline generates a
whole new molecule from scratch, DiffSBDD-diversify is elaborating around a fixed substructure of
an existing molecule and DiffSBDD-de novo is designing new motifs around a fixed substructure
from stratch. t and r are the number of partial noising steps or resamplings for diversify and de novo
respectively.

Vina (↓) Validity (↑) Connectivity (↑) QED (↑) SA (↓) Diversity (↑)
Test set −9.86± 1.6 1 1 0.543± 0.16 3.86± 1.2 —
DiffSBDD-baseline −5.69± 6 0.964 0.589 0.419± 0.2 4.99± 1.1 0.701± 0.094

Fragment linking (73.43% atoms fixed)

DiffSBDD-de novo (r = 20) −7.74± 1.8 0.796 0.558 0.322± 0.17 5.38± 0.76 0.486± 0.09
DiffSBDD-diversify (t = 100) −8.72± 1.7 0.991 0.968 0.476± 0.14 4.26± 1.1 0.35± 0.089
DiffLinker [19] −6.92± 2.7 0.947 0.84 0.349± 0.19 4.72± 0.97 0.453± 0.13

Scaffold hopping (27.32% atoms fixed)

DiffSBDD-de novo (r = 20) −7.6± 2.5 0.782 0.663 0.39± 0.18 5.29± 0.72 0.612± 0.074
DiffSBDD-diversify (t = 100) −8.95± 1.8 0.977 0.948 0.492± 0.18 4.39± 1 0.479± 0.1

Scaffold elaboration (72.68% atoms fixed)

DiffSBDD-de novo (r = 20) −8.1± 1.8 0.852 0.445 0.388± 0.2 5.2± 0.7 0.397± 0.11
DiffSBDD-diversify (t = 100) −9.32± 1.7 0.995 0.971 0.516± 0.18 4.12± 1.1 0.282± 0.14
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Supplementary Section 5.6: Importance of resampling for molecular substructure
inpainting

Similar to earlier findings, the replacement method often produces poor and inconsistent outcomes.
Following the approach by Lugmayr et al. [17], we enhanced the sample quality by refining inter-
mediate states iteratively before progressing in the denoising process, a technique called resampling,
as detailed in Methods Section 2.4. This technique is crucial for seamlessly integrating modified and
original areas and proves essential in the molecular context. Minimal resampling resulted in chem-
ically valid but disjointed structures, while increased iterations led to coherent molecules, even in
complex scenarios with extensive modifications needed. Our results indicate that the effect of resam-
pling on molecular connectivity is particularly pronounced but it also substantially impacts another
metrics (Supplementary Figure 2).

A) B) C)

Supplementary Figure 2: Importance of high resamplings. Effect of the number of resamplings on
molecular validity (A), connectivity (B) and uniqueness (C). Means and 95% confidence intervals are
plotted for 3 design tasks. For this experiment we used 20 randomly selected targets from the test set.
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Supplementary Section 5.7: Diversification of candidate molecules

We demonstrate the effect the number of noising/denoising steps (t) has on various molecular prop-
erties in Supplementary Figure 3. We test all values of t at intervals of 10 steps and 200 molecules
are sampled at every timestep. Note this does not allow for explicit optimization of any particular
property unless combined with the evolutionary algorithm, as shown in main text Figure 1D. All
plots are for PDB entry 5ndu [20].

tttt

Supplementary Figure 3: Effect of number of noising/denoising steps on molecule properties.
Boxes represent the upper and lower quartile as well as the median of the data. Whiskers denote 1.5
times the interquartile range. Outliers outside this range are shown as flier points. Each box represents
100 molecules. QED : Quantitative Estimation of Drug-likeness; SA: Synthetic Accessibility; LogP :
is a measure of a molecule’s lipophilicity or hydrophobicity; Sim.: Tanimoto molecular fingerprint
similarity to the reference.
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Supplementary Section 5.8: Dependence of Vina scores on molecule size

Supplementary Figure 4 shows how strongly the empirical Vina score is correlated with the number of
heavy atoms in the ligands. For this analysis, we used Vina scores computed by the QuickVina2 [21]
software after re-docking. Since we want to match the distribution of scores of reference molecules as
closely as possible with our generated molecules, we expect that their sizes should roughly match as
well. However, our diffusion model operates on point clouds with fixed sizes, which we determine at
the beginning of sampling as explained in Methods Section 2.5. By biasing the procedure, we match
the sizes of reference ligands more closely as shown in Supplementary Table 7.
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Supplementary Figure 4: Correlation between ligand size and QuickVina score for reference
molecules from the Binding MOAD (A) and CrossDocked (B) test sets.

Supplementary Table 7: Average number of
heavy atoms of generated molecules.

Method CrossDocked Binding MOAD

Test set 23.8 28.0

Pocket2Mol [9] 19.0 16.8
ResGen [10] 16.2 18.0
PocketFlow [15] 19.8 19.3
DeepICL [16] 20.9 –

DiffSBDD-cond 24.8 24.4
DiffSBDD-joint 24.5 25.2
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Supplementary Section 5.9: Results with a coarse-grained pocket representation

Here we discuss the advantages and disadvantages of coarse-grained Cα protein representations as
context for the generative model. Supplementary Table 8 shows that full-atom models outperform
their coarse-grained counterparts on the Vina metric, which is the only reported metric that captures
interactions with the protein. Ligand-centric metrics do not seem to depend on the protein repre-
sentation as could be expected. The main advantage of the Cα models is their substantially faster
training and inference time, a fact we made use of during model development for fine-tuning and
preliminary analyses.

To further demonstrate the limitations of the coarse-grained models, we compare the generated raw
conformations to the best scoring QuickVina docking pose after re-docking and plot the distribution
of resulting RMSD values in Supplementary Figure 5. As a baseline, the procedure is repeated for
RDKit conformers of the same molecules with identical center of mass. For a large percentage of
molecules generated by the all-atom models, QuickVina agrees with the predicted bound conforma-
tions, leaving them almost unchanged (RMSD below 2 Å). This demonstrates successful conditioning
on the geometry of the given protein pockets. For the Cα-only models results are less convincing. They
produce poses that barely improve upon conformers lacking pocket-context. Likely, this is caused by
atomic clashes with the proteins’ side chains that QuickVina needs to resolve.

Supplementary Table 8: Evaluation of generated molecules for targets from the CrossDocked
(C.D.) and Binding MOAD (B.M.) test sets. We compare all-atom and coarse-grained (Cα) pocket
representations. Here, the SA scores were mapped to the unit interval using SAnorm = (10− SA)/9.

Vina (All) (↓) Vina (Top-10%) (↓) QED (↑) SAnorm (↑) Lipinski (↑) Diversity (↑) Time (s, ↓)

C
.D

.

Test set −6.871± 2.32 — 0.476± 0.20 0.728± 0.14 4.340± 1.14 — —

DiffSBDD-cond (Cα) −6.770± 2.73 −8.796± 1.75 0.475± 0.22 0.612± 0.12 4.536± 0.91 0.725± 0.06 49.651± 17.34
DiffSBDD-joint (Cα) −7.177± 3.28 −9.233± 1.82 0.556± 0.20 0.729± 0.12 4.742± 0.59 0.718± 0.07 94.481± 38.86
DiffSBDD-cond −6.950± 2.06 −9.120± 2.16 0.469± 0.21 0.578± 0.13 4.562± 0.89 0.728± 0.07 135.866± 51.66
DiffSBDD-joint −7.333± 2.56 −9.927± 2.59 0.467± 0.18 0.554± 0.12 4.702± 0.64 0.758± 0.05 160.314± 73.30

B
.M

.

Test set −8.412± 2.03 — 0.522± 0.17 0.692± 0.12 4.669± 0.49 — —

DiffSBDD-cond (Cα) −6.863± 1.59 −8.587± 1.34 0.480± 0.20 0.554± 0.11 4.662± 0.68 0.714± 0.05 36.285± 8.13
DiffSBDD-joint (Cα) −6.926± 3.39 −9.124± 1.35 0.548± 0.19 0.580± 0.13 4.757± 0.51 0.709± 0.05 58.305± 17.35
DiffSBDD-cond −7.171± 1.89 −9.184± 2.23 0.436± 0.20 0.568± 0.12 4.542± 0.79 0.714± 0.08 336.061± 85.02
DiffSBDD-joint −7.309± 4.03 −9.840± 2.18 0.542± 0.21 0.615± 0.12 4.777± 0.53 0.739± 0.05 369.873± 124.54
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Supplementary Figure 5: RMSD between generated and docked conformations for the Cross-
Docked (A, B) and Binding MOAD (C, D) datasets. Full-atom models are compared to Cα models
as well as a baseline of random RDKit conformers of the molecules generated by the Cα-model. (A,
C) DiffSBDD-cond. (B, D) DiffSBDD-joint.
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Supplementary Section 6: Supplementary Tables

Supplementary Section 6.1: Sampling statistics for the distribution learning benchmark

Supplementary Table 9: Average number of
molecules per test set pocket in the de novo
design experiment.

Method CrossDocked Binding MOAD

Test set 1.0 1.0

Pocket2Mol [9] 98.0 132.1
ResGen [10] 114.5 109.9
PocketFlow [15] 100.0 100.0
DeepICL [16] 100.0 –

DiffSBDD-cond 100.0 100.0
DiffSBDD-joint 100.0 100.0
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Supplementary Section 6.2: Sampling statistics for the substructure design experiment

Supplementary Table 10: Sampling statistics for the substructure
design experiment. ‘Num. pockets’ is the number of pockets for which
we could sample and evaluate at least one molecule.

Molecules per pocket

Num. pockets Mean Std. Dev. Min Max

Test set 55 1.0 0.0 1 1
DiffSBDD-baseline 55 125.3 2.2 120 130

Fragment linking

DiffSBDD-de novo 55 915.1 527.6 32 2150
DiffSBDD-diversify 55 1138.4 641.6 100 2497
DiffLinker [19] 55 428.9 393.1 87 899

Scaffold hopping

DiffSBDD-de novo 55 78.2 23.3 21 100
DiffSBDD-diversify 55 97.7 2.9 89 100

Scaffold elaboration

DiffSBDD-de novo 55 85.2 17.3 20 100
DiffSBDD-diversify 55 99.5 1.0 95 100
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Supplementary Section 6.3: Training hyperparameters

Hyperparameters for all presented models are summarized in Supplementary Table 11. Training takes
about 2.5 h/3.8 h (conditional/joint) per 100 epochs on a single NVIDIA V100 for Binding MOAD
in the Cα scenario and 11.5 h/14.7 h per 100 epochs with full atom pocket representation on two
V100 GPUs. For CrossDocked, 100 training epochs take approximately 6 h/8 h in the Cα case and
48 h/60 h per 100 epochs on a single NVIDIA A100 GPU with all atom pocket representation.

Supplementary Table 11: DiffSBDD hyperparameters.

CrossDocked Binding MOAD

Cond Joint Cond (Cα) Joint (Cα) Cond Joint Cond (Cα) Joint (Cα)

No. layers 5 5 6 6 6 6 5 5
Joint embedding dim. 32 32 128 128 128 128 32 32
Hidden dim. 128 128 256 256 192 192 128 128
Learning rate 10−3 10−3 10−3 10−3 5 · 10−4 5 · 10−4 5 · 10−4 5 · 10−4

Weight decay 10−12 10−12 10−12 10−12 10−12 10−12 10−12 10−12

Diffusion steps 500 500 500 500 500 500 500 500
Edges (ligand-ligand) fully connected fully connected fully connected fully connected fully connected fully connected fully connected fully connected
Edges (ligand-pocket) < 5 Å < 5 Å < 5 Å < 5 Å < 7 Å < 7 Å < 8 Å < 8 Å
Edges (pocket-pocket) < 5 Å < 5 Å < 5 Å < 5 Å < 4 Å < 4 Å < 8 Å < 8 Å
Epochs 1000 1000 1000 1000 1000 1000 1000 1000
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Supplementary Section 6.4: Replacement method algorithm

Algorithm 1 Sampling with the replacement method and resampling iterations. r denotes the
number of resampling steps and M is a set of indices of all atoms we want to fix. Note that samples
from the generative process pθ(zt−1|zt) are assumed to be CoM-free.

Require: r, M
zT ∼ N (0, I)
for t = T, ..., 1 do

for k = 1, ..., r do
zinput
t−1 ∼ q(zt−1|zdata) ▷ Sample known context

zgen
t−1 ∼ pθ(zt−1|zt) ▷ Sample generated part

x̃input
t−1 = xinput

t−1 + 1
n

∑
i∈M xgen

t−1,i − 1
n

∑
i∈M xinput

t−1,i ▷ Adjust center of mass

zt−1 = [z̃input
t−1 , zgen

t−1,i/∈M] ▷ Combine
if k < r then

zt ∼ q(zt|zt−1) ▷ Apply noise and repeat
end if

end for
end for
return z0
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Supplementary Section 7: Supplementary Figures

Supplementary Section 7.1: Distributions of molecular properties
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Supplementary Figure 6: Distributions of computational scores for generated molecules and ref-
erence ligands from the CrossDocked test set. All box plots within violins include the median line, a
box denoting the interquartile range (IQR) and whiskers showing data within ±1.5 × IQR. (n=78,
7800, 7800, 7643, 8932, 7800, 7800 for Reference, DiffSBDD-cond, DiffSBDD-joint, Pocket2Mol, Res-
Gen, PocketFlow, DeepICL, respectively)
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Supplementary Figure 7: Distributions of computational scores for generated molecules and ref-
erence ligands from the Binding MOAD test set. All box plots within violins include the median line,
a box denoting the interquartile range (IQR) and whiskers showing data within ±1.5× IQR. (n=119,
11 900, 11 900, 15 718, 13 074, 11 900 for Reference, DiffSBDD-cond, DiffSBDD-joint, Pocket2Mol,
ResGen, PocketFlow, respectively)
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Supplementary Section 7.2: Generated molecules

Binding MOAD

CrossDocked

Supplementary Figure 8: Randomly selected samples of molecules generated by DiffSBDD-cond.
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Binding MOAD

CrossDocked

Supplementary Figure 9: Randomly selected samples of molecules generated by DiffSBDD-joint.
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Supplementary Section 8: Related Work

Diffusion Models for Molecules

Inspired by non-equilibrium thermodynamics, diffusion models have been proposed to learn data
distributions by modeling a denoising (reverse diffusion) process and have achieved remarkable success
in a variety of tasks such as image, audio synthesis and point cloud generation [1, 22, 23]. Recently,
efforts have been made to utilize diffusion models for molecule design [24]. Specifically, Hoogeboom
et al. [2] propose a diffusion model with an equivariant network that operates both on continuous
atomic coordinates and categorical atom types to generate new molecules in 3D space. Torsional
Diffusion [25] focuses on a conditional setting where molecular conformations (atomic coordinates)
are generated from molecular graphs (atom types and bonds). Similarly, 3D diffusion models have
been applied to generative design of larger biomolecular structures, such as antibodies [26] and other
proteins [27, 28].

Structure-based Drug Design

Structure-based Drug Design (SBDD) [29, 30] relies on the knowledge of the 3D structure of the
biological target obtained either through experimental methods or high-confidence predictions using
homology modelling [31]. Candidate molecules are then designed to bind with high affinity and
specificity to the target using interactive software [32] and often human-based intuition [29]. Recent
advances in deep generative models have brought a new wave of research that model the conditional
distribution of ligands given biological targets and thus enable de novo structure-based drug design.
Most of previous work consider this task as a sequential generation problem and design a variety of
generative methods including autoregressive models, reinforcement learning, etc., to generate ligands
inside protein pockets atom by atom [9, 33–35]. Most recent work explore the use of diffusion models
in structure-based drug design [36–38].

Geometric Deep Learning for Drug Discovery

Geometric deep learning refers to incorporating geometric priors in neural architecture design that
respects symmetry and invariance, thus reduces sample complexity and eliminates the need for data
augmentation [39]. It has been prevailing in a variety of drug discovery tasks from virtual screening to
de novo drug design as symmetry widely exists in the representation of drugs. One line of work intro-
duces graph and geometry priors and designs message passing neural networks and equivariant neural
networks that are permutation-, translation-, rotation-, and reflection-equivariant, respectively [3, 40–
43]. These architectures have been widely used in representing biomolecules from small molecules to
proteins [44] and solving downstream tasks such as molecular property prediction [45, 46], binding
pose prediction [47], transition state sampling [48], and molecular dynamics [49, 50]. Another line
of work focuses on generative design of new molecules [24]. More specifically, molecule design is for-
mulated as a graph or geometry generation problem, following either a one-shot generation strategy
that generates graphs (atom and bond features) in one step or attempting to generate atoms and
bonds sequentially.
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