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Supplementary Protocol 

 

RNA-seq data analysis and identification of tissue-specific genes and transcription 

factors 

Publicly available RNA-seq data from the Jia et al. study (Jia et al., 2023) was used to identify 

tissue-specific genes and transcription factors (TFs) in five distinct tissues: stem, root, capsule, 

leaf and petal (Supplementary Table 1). The quality of the raw RNA-seq data was assessed 

using FastQC v0.11.9. (Andrews, 2010) and adapters were trimmed (where applicable) using 

Trim Galore v0.6.7 (https://github.com/FelixKrueger/TrimGalore). The clean data was aligned 

against the Papaver somniferum reference genome (cv. HN1; accession number 

GWHAZPJ00000000.1) (Yang et al., 2021) using HISAT2 v2.2.1 (Kim et al., 2019). The 

mapped reads were sorted using Samtools v1.14 (Danecek et al., 2021) and transcript per 

million (TPM) counts were generated using StringTie v2.1.3 (Pertea et al., 2015). Principal 

component analysis (PCA) plots were generated in R v4.3.2 (R Core Team, 2013) using the 

log2-normalised TPM counts to identify any outliers and ensure that the biological replicates 

clustered according to tissue type. Tissue-specific genes and TFs were identified using the 

mean TPM counts of biological replicates for each tissue type and the tau (Ƭ) metric 

(Kryuchkova-Mostacci and Robinson-Rechavi, 2017); a gene was deemed to be tissue-specific 

if it had the highest mean TPM count in one tissue type relative to the others and had a 

corresponding Ƭ > 0.8. Heatmaps showing gene expression of tissue-specific genes were 

generated using the Z-score of log2-normalised mean TPM counts and the pheatmap package 

in R (Thimm et al., 2004). TFs were annotated using iTAK v1.7a33 (Zheng et al., 2016). 

 

Weighted gene co-expression network analysis (WGCNA) 

Since co-expression may involve co-regulation, co-expression modules were generated to 

identify potential regulators (TFs) of known BIA biosynthesis pathway genes, especially the 

ones that are involved in the (S)-reticuline, noscapine and morphine pathways (Supplementary 

Table S3). First, gene-level quantification was performed on the mapped reads from the Jia et 

al. (2023) dataset using featureCounts from the Subread v2.0.6 package (Liao et al., 2013, 

2014). Genes with low expression variability (p-value 0.05) across samples were then filtered 

out using varianceBasedfilter from the R package DCGL (Liu et al., 2010). A total of 13,037 

(out of 55,316) genes remained; these genes were assigned to co-expression modules using the 

R package WGCNA (soft threshold =18; minClusterSize=50) (Langfelder and Horvath, 2008, 

https://github.com/FelixKrueger/TrimGalore
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2012). Modules with similar gene expression profiles were merged (cutHeight=0.2) resulting 

in a total of 13 modules. 

 

Gene regulatory network analysis 

WGCNA identified a large number of TFs that are co-expressed with known BIA biosynthesis 

pathway genes. However, it is unlikely that every TF identified is a potential regulator of BIA 

biosynthesis. In order to determine which of these TFs share a regulatory link with the genes 

of interest, gene regulatory networks (GRNs) were constructed using SCION v4.0 (default 

parameters; clustering=none) (Clark et al., 2021). Since SCION requires a minimum of five 

samples/replicates to build a network and the Jia et al. (2023) dataset only had three stem 

samples, we also included the stem samples from the Guo et al. (2018) dataset (Guo et al., 

2018).  

Given the highly tissue-specific nature of the BIA biosynthesis genes from the three 

selected pathways ((S)-reticuline, noscapine and morphine), two GRNs were generated: a stem-

specific GRN and a root-specific GRN. The data used to build the stem-specific network was 

as follows: 1) row-normalised TPM values of genes expressed in stem tissue (SRA accessions: 

SRR15146387, SRR15146388, SRR15146389, SRR6782291, SRR6782298); 2) a list of target 

genes, including BIA biosynthesis genes, that are stem-specific (Ƭ > 0.8) and found in co-

expression modules (Supplementary Table 2); 3) a list of TFs that are stem-specific (Ƭ > 0.8) 

and found in co-expression modules (Supplementary Table S4). BIA biosynthesis genes that 

did not meet the criteria for tissue-specificity or found in co-expression modules were also 

included in the list of targets (Supplementary Table 4). The above steps were repeated to build 

the root-specific GRN except that root-specific data (SRA accessions: SRR15146362, 

SRR15146363, SRR15146367, SRR15146384, SRR15146385, SRR15146386), including 

root-specific genes and TFs (Supplementary Table 2) was used as input instead. Four 

subnetworks were extracted from the two GRNs: a stem-specific morphine subnetwork, a root-

specific morphine subnetwork, a root-specific noscapine subnetwork and a root-specific (S)-

reticuline subnetwork. The subnetworks were visualised in Cytoscape v3.10.2 (Shannon et al., 

2003). For ease of visualisation, the subnetworks were filtered based on the following edge 

weight cut-offs (0.5 for the stem-specific subnetwork and 0.75 for the root-specific 

subnetworks). 
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Supplementary Figures 

 

Supplementary Figure 1. Mean eigengene expression value for each tissue across the 13 co-

expression modules identified by WGCNA. Numbers in parentheses represent the number of 

genes and transcription factors in each module. Values are mean ± standard error.  


