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Supplementary Note 1: Calculation of activation energies EA from temperature-dependent 

EIS 

Activation energies of electrochemical processes observed as semicircles in Nyquist-plots can 

be calculated by plotting T/R [K-1] against 1/T [K-1], with the resistance R of the process 

ln(𝜎𝑇) = ln(𝜎0) −
𝐸𝐴

𝑘𝐵
⋅

1

𝑇
 (Eq. 1) 

with the ionic conductivity , the pre-exponential factor 0, the temperature T, Boltzmann 

constant kB and activation energy EA. EA can then be obtained as the slope of a linear fit in units 

of 1/kB. 

Supplementary Note 2: Considered equivalent circuits 

The equivalent circuits used to model the data consist of the electrolyte resistance Rel, followed 

by either a parallel RC-circuit to model the observed SEI semicircle (consisting of the SEI 

resistance RSEI and its capacitance CSEI, as shown in Fig. S1a) or a de Levie element, marked as 

“L” (Fig. S1b). De Levie element is described in detail in part 3 of this SI. The RC-element for 

the SEI is described in detail in our earlier work on porous SEIs on Li and Na electrodes2. As the 

observed EA,SEI was comparable to EA,liquid, RSEI describes the resistance of liquid electrolyte in 

pore channels, CSEI described the capacitance of the solid part of the SEI and Rel describes the 
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resistance of the bulk electrolyte (see figure 1d in reference 2 for a more detailed explanation). 

Charge-transfer and diffusion processes are described by a Randles circuit with the charge-

transfer resistance RCT, double-layer capacitance CDL and Warburg impedance W3. As Li+ cannot 

enter Si under near OCV conditions, blocking electrodes were assumed and a Warburg-open 

element was used during fitting. Prior to fitting, Kramers-Kronig relations were used to check 

the linearity and accordingly datapoints at the highest frequencies from 10 MHz to ~3 MHz 

were emitted. Similarly, data below 10 mHz were also emitted from the fits. The electrolyte 

resistance Rel was read from the x-axis intercept and used a fixed parameter in the fits.  

 

 

Figure S1. Equivalent circuits used for fitting of the measured EIS data: a) SEI described as an 
RC-element, b) SEI described by a de Levie model for a porous electrode. 

 

Supplementary Note 3: Impedance response of porous electrodes1 

The most fundamental equivalent circuit model of the interface of electrodes in EIS consists of 

an RC circuit, with the resistance of the SEI RSEI and its capacitance CSEI in parallel. This model 

was developed for ideally polarizable liquid electrodes and describes a perfect semicircle in 

the Nyquist plot. The impedance Z can be described as 

𝑍 =  
1

1

𝑅𝑆𝐸𝐼
+𝑗𝜔𝐶𝑆𝐸𝐼

 (Eq. 2) 

where j is the imaginary unit and 𝜔 = 2𝜋𝑓with the frequency f. 

As batteries use solid electrodes where the double-layer capacitance is not purely resistive (i.e. 

a “leaking” capacitor), the constant phase exponent  is introduced as the deviation from the 

straight 90° capacity line in the Bode plot 

𝑍 =  
1

1

𝑅𝑆𝐸𝐼
+(𝑗𝜔)𝑇

- (Eq. 3) 
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where the parameter T is related to the capacitance [F s-1 cm-2]. This parallel combination of 

a resistance and a constant phase element (CPE) yields a depleted or “sunken” semicircle with 

their center being located below the real axis. The further  decreases from an ideal capacitor 

( = 1), the more depleted the semicircle. This model is usually sufficient to describe the 

electrochemical impedance of planar electrodes, with the electrolyte resistance Rel in series to 

the R-CPE circuit of the electrode. 

For porous electronically conducting electrodes, an asymmetry of the semicircle can be seen 

in the Nyquist plot, which depends on the morphology of the pores, such as their pore depth 

to diameter ratio l/r. De Levie developed an equation for the impedance of a cylindrical pore, 

with the assumptions that the pore is filled by electrolyte, only the side walls are conducting 

and there exists an AC potential gradient in the axial direction. The impedance of a pore can 

then be described as  

𝑍𝑝𝑜𝑟𝑒 =
𝑅,𝑝

1/2 coth(1/2) (Eq. 4) and 

 =
2𝜌𝑠𝑙2𝑗𝜔𝐶𝑑𝑙

𝑟
  (Eq. 5), 

with the total resistance of the pore R,p, the dimensions admittance of the pore , the 

resistivity of the solution in the pore s, the pore length l and radius r. The abovementioned 

model describes the impedance of a porous electrode if the AC signal penetration length is 

comparable to the length of the pore. At high frequencies, a coupling of solution resistance 

and double-layer capacitance is observed as a 45° slope, followed by a semicircle at lower 

frequencies. For shallower pores, the AC signal can always penetrate to the bottom of the pore 

at all frequencies, resulting in a perfect semicircle. For deep and narrow semi-infinite length 

pores with a large l2/r ratio the AC signal penetration length  might be smaller than the pore 

length. The equation for the pore impedance can be simplified with  → , coth(1/2) → 1 

yielding 

𝑍𝑝𝑜𝑟𝑒 =
𝑅,𝑝

1/2 (Eq. 6). 

In this case, the Nyquist plot contains a straight 45° line at high frequencies, followed by a 

skewed semicircle. If the capacitive element is substituted for a constant phase element, it can 

be written as: 
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𝑍𝑝𝑜𝑟𝑒 =
1

√
1

𝐴
+(𝑗𝜔)𝑇

 (Eq. 7), where  

𝐴 =
𝑅𝐶𝑇𝜌

2𝜋2𝑟3
 (Eq. 8). 

 

Figure S2. Normalized Nyquist plots (Z/Zmax) for a porous electrode in presence of redox 

species. a) general case, AC penetration length  ~ l, b) shallow pore,  >> l, c) semi-infinite 

pore,  << l. Reprinted with permission from Ref. 1.  

Lasia simulated the effect of the overpotential on the Nyquist plot4, Figure S2 shows 

normalized Nyquist plots of a porous electrode for the following three scenarios: with small 

overpotentials the potential drop in the pore is minimal, leading to almost ideal semicircles 

(see Fig S2, case b). At higher overpotentials a 45° slope at high frequencies was observed (Fig 

S2, case a), followed by a sloped semicircle for even higher overpotentials (Fig S2, case c). This 

could serve as an additional test to confirm the existence of a porous electrode. As the aim of 

this paper was the observation of OCV SEI formation, this approach was only tested with 

overpotentials between 2 and 20 mVrms (root mean square voltage). At lower overpotentials, 

noise overwhelmed the measured data, while higher potentials push the cells further away 

from OCV conditions and may stray out of the pseudo-linear region of the cells. No significant 

differences could be observed between 2 and 20 mVrms overpotential. As  depends on the 

overpotential and the pore geometry is unknown, only the product of the experimentally 

accessible parameters, RctCdl can be extracted. For the equivalent circuit models, the equations 

related to the model which fit best visually (general case, shallow pore, semi-infinite pore) was 

used. If a perfect semicircle was observed, a parallel R-CPE model was used. This allows for 

qualitative assessment of the pore geometry. 
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Supplementary Note 4: Fits of the EIS data 

Table S1 lists the fit parameters of the fits shown in Figure S3. The fitting seems to be suitable 

in the medium frequency regime but deviates from observed data for low frequencies (i.e. 

Warburg response).  While the error values of RSEI were relatively low, fitting the Randels circuit 

proved challenging as fits of the Warburg impedance produced error ranges of over 100% for 

the terms related to resistance and capacitance (Wo-R and Wo-T, table S1) in some cases (see 

table S1). In some cases, values for the CPE in the Randels circuit had to be fitted with all other 

parameters fixed (and vice versa) as the fits would otherwise converge on non-sensical values. 

 

 

Figure S3. Zoomed-in Nyquist plots of the SEI semicircle for different electrolytes, with fits of 
the equivalent circuit models described in chapter 1: a) Nyquist plot of a LP30 cell after 
assembly and the corresponding fit with an RC model (see fig S1 a for the equivalent circuit 
model), b) Nyquist plot of a 1 M LiTf cell after assembly and the corresponding fit with an RC 
model, c) Nyquist plot of a 1 M LiTf cell with 1 % VC after assembly and the corresponding fit 
with an RC model, d) Nyquist plot of a 1 M LiTFSI cell six months after assembly and the 
corresponding fit of the SEI semicircle with the de Levie model (see fig S1 b for the equivalent 
circuit). 
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Table S1.  Parameters of the fits shown in Figure S3. SEI resistance RSEI, SEI capacitance CSEI-T 

of the constant phase element, constant phase exponent , charge-transfer resistance RCT, 

Warburg-impedance Wo1-R, capacitance Wo1-T and constant phase exponent , double-layer 
capacitance CPE-CDL and constant phase exponent CPE-CDL-P. For fits with the de Levie 
element, LS1-A describes the admittance term (see eq. 5), capacitance term LS1-B, resistance 
LS1-R and constant phase exponent LS1-Phi. Errors of all fitted parameters are given as (+/- %). 
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Chi-Sqr Rel(X) RSEI(+) RSEI(Error%) CSEI-T(+) CSEI-

T(Error%) 
CSEI-P(+) CSEI-

P(Error%) 
RCT(+) RCT(Error%) 

LP30 2,5E-03 137 57733 2,7 1,62E-09 10,5 0,81 1,0 33015 227,3 
1 M 
LiTf 

1,8E-03 248 152,2 2,8 7,84E-10 85,0 1,02 5,4 30810 29,4 

1 M 
LiTf 1 
% VC 

1,2E-03 248 145,8 2,8 1,92E-08 80,3 0,81 6,4 42359 48,9 

           
            

Wo1-
R(+) 

Wo1-
R(Error%) 

Wo1-T(+) Wo1-
T(Error%) 

Wo1-
P(X) 

CPE-
CDL-T(+) 

CPE-
CDL-
T(Error%) 

CPE-CDL-
P(+) 

CPE-
CDL-
P(Error%) 

 

LP30 2,64E+06 8,9 0,22759 9,9 0,5 1,52E-07 5,4 0,65 2,3 
 

1 M 
LiTf 

5,70E+06 65,9 479,3 131,4 0,5 1,99E-06 8,4 0,82 1,3 
 

1 M 
LiTf 1 
% VC 

6,00E+06 72,7 242,4 145,9 0,5 2,92E-06 7,7 0,77 1,2 
 

           

           

 
Chi-Sqr Rel(X) Ls1-A(±) Ls1-

A(Error%) 
Ls1-B(±) Ls1-

B(Error%) 
Ls1-
Phi(±) 

Ls1-
Phi(Error%) 

Ls1-R(±) Ls1-
R(Error%) 

1 M 
LiTFSI 

5,5E-03 80 8,289 20,3 2,85E-07 24,9 0,95482 2,5239 761,4 18,8 
           

 
RCT(X) Wo1-R(±) Wo1-

R(Error%) 
Wo1-T(±) Wo1-

T(Error%) 
Wo1-P(±) Wo1-

P(Error%) 
CPE-CDL-
T(X) 

CPE-
CDL-P(X) 

 

1 M 
LiTFSI 

6,83E+06 1,13E+07 25,9 22,15 36,7 0,42636 4,7 2,98E-07 0,64 
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Figure S4. Zoomed in Nyquist plots of the fits for LP30 cells after assembly and after 9 months, 

using the equivalent circuit model from Figure S1a. 

For the calculation of EA, the model that produced visually better fits was used (either a R-CPE 

model or a model containinf semi-infinite pore length de Levie element). With de Levie 

elements, the parameter A containing the resistance was used in place of RSEI. Figure S5 shows 

a comparison between an impedance spectrum of a 1 M LiTf cell at 65 °C where the SEI 

semicircle was either fitted with a R-CPE or a de Levie element. 

 

Figure S5. Zoomed in Nyquist-plots of the SEI semicircle in a 1 M LiTf cell at 65 °C. a) SEI 

semicircle fitted with a R-CPE element (red dots for reasonable fit, blue dots for fitting the 

entire semicircle), b) SEI semicircle fitted with a de Levie element (red dots for reasonable fit, 

blue dots for fitting the entire semicircle). 

A de Levie model was chosen as it described the asymmetry of the semicircle better, in figure 

S5a (red dots) the left side of the fitted semicircle did not match the curvature of the measured 

spectrum. Inclusion of the heavily sloped high frequency part of the SEI semicircle yielded fits 

where both the frequencies and capacitances deviated strongly from the measured data. The 

blue dots in Figure S5 denote fits where a fit of the entire semicircle was attempted. 
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Figure S6. Arhenius-plots of RSEI of 1 M LiTf cells, fitted with two different equivalent circuit 
models. a) data fitted with a R-CPE element, b) RSEI from fits with a de Levie model. 

Figure S6 shows Arhenius plots for the determination of EA,SEI of 1 M LiTf cells, with RSEI 

extracted from different equivalent circuit models. For both models, EA,SEI extracted from 

heating and colling the cells  (EA,heating and EA,cooling) aligned well with each other and gave good 

R2 values. However, the EA calculated from fitting a R-CPE model was half of that calculated 

from fitting a de Levie element containing model. As previously discussed, this was due to the 

asymmetry of the SEI semicircle. 

For cells with LP30, the charge-transfer resistance was extracted from the fits. Figure S7 shows 

RCT over time, calculated from fitting impedance data with the model shown in Figure S1a. 

Apart from a single measurement two hours after cell assembly, it remained roughly constant 

over the course of nine months.  

 

Figure S7. Charge-transfer resistance of LP30 cells over time, calculated by fitting with the 

model shown in Figure S1a. 
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