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Supplementary Note 1—The microbend fiber optic sensing the-
ory

When a sensor mat detects movements caused by breathing or the heartbeat, it applies a change in force
(∆F ) or pressure (∆P ) to a bent multimode fiber, altering its deformation amplitude (X) by ∆X. This
action changes the transmission coefficient (T ) for light travelling along the fiber by ∆T , described as:

∆T =

(
∆T

∆X

)
∆F

(
k +

AY

l

)−1

, (1)

where k is the fiber’s force constant, A is the cross-sectional area, Y is the Young’s modulus, and l is
the microbender gap length. Monitoring of breathing rate (BR), breathing waveforms, heart rate (HR),
and BCG is done through modulation in optical transmission. For applications requiring highly sensitive
pressure sensors, Eq. (1) turns into:

∆T ≈ ∆T

∆X
Apk

−1∆P, (2)

where Ap represents the deformer’s area, and ∆P is the pressure change. To maximize the microbend
sensitivity, the optical fiber should be constructed to meet a specific spatial frequency (Λ) for the mesh
deformer. For step-index multimode fiber, the spatial frequency Λ satisfies the following approximate
equation:

Λ =
√
2π · a · n0

NA
. (3)

where a is the fiber core radius, n0 is the refractive index of the core, and NA is the numerical aperture
of the fiber.

The microbending loss occurs as the guided modes are coupled to radiation modes. Effective coupling
between the guided modes and radiation modes can be achieved with the spatial frequency Λ given by
Eqs. (3) for step-index multimode fibers.
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Figure 1: Modeling the aorta as two tubes in cascade. (a) Vascular tree of body. (b)The cross-
sectional areas of the tubes are denoted by AA for the ascending aorta and AD for the descending aorta.
The forces exerted on the blood within each tube stem from the blood pressure, P (t), at their respective
inlet and outlet points. The notations 0, 1, and 2 represent the inlet of the aorta, the apex of the aortic
arch, and the outlet of the aorta, respectively. The BCG waveform is generated by the combination of
counter-acting forces from both tubes.

Supplementary Note 2—BCG genesis model and rationale for
BP inference

BCG waveform reflects the recoil force of the body when the blood mass is ejected from the heart to the
aorta and the direction of the body micro-movement is opposite to the direction of the blood flow. To
mathematically analyze the BCG genesis, we can simplify the aorta as two tubes in cascade as shown
in Fig. 1. The ascending aorta has an average cross-sectional area of AA, while that of the descending
aorta is AD. We denote P0(t), P1(t), and P2(t) as the blood pressure at the inlet of the ascending aorta,
the outlet/inlet of the aortic arch, and the outlet of the descending aorta, respectively. By analyzing
the equilibrium of recoil forces exerted on the blood mass in the main artery, the BCG waveform in the
head-to-foot direction can be mathematically modeled as:

FBCG(t) = AD[P1(t)−P2(t)]−AA[P0(t)−P1(t)] = AD[δP12(t)]−AA[δP01(t)] (4)

Note that ∆P01(t) = P0(t) − P1(t) and ∆P12(t) = P1(t) − P2(t) constitute the BP gradients in the
ascending and descending aorta. Therefore, the genesis of the BCG wave is the blood pressure gradient
difference between ascending and descending arteries.

The mechanism of the BCG waves revealed by the validated model in equation (4) for the patient
example in Fig. 2 is as follows:

• Phase (1): The initial rise of the I wave is propelled by δP01(t), as P0(t) begins to ascend during
systole while P1(t) remains in diastole. The peak of the I wave occurs approximately when −δP01(t)
is minimal.

• Phase (2): As P1(t) starts to climb while P2(t) is still in its diastolic phase, δP12(t) increases,
eventually neutralizing and surpassing δP01(t), leading to the ascent from I to J. The peak of the
J wave occurs roughly when δP12(t) reaches its maximum.

• Phase (3): With the buildup of P2(t), δP12(t) begins to fall, leading to the descent from J to K.
The peak of the K wave is roughly when P2(t) hits its peak or when δP12(t) is at its lowest.

• Phase (4): Following the systolic peak, P2(t) falls more rapidly than P1(t), causing an uptick in
δP12(t). At the same time, −δP01(t) sees a temporary increase as P0(t) rapidly decreases near the
dicrotic notch. These events lead to the formation of the L wave.

• Phase (5): Subsequently, −δP01(t) returns to zero, while δP12(t) slightly dips to a local minimum
as the moderate decline in P2(t). This sequence of events produces the M wave.
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Figure 2: An example of a BCG waveform predicted via the mathematical model of Eq. 4
[1]. (A) Blood pressure waveforms are recorded at three locations through catheterization in a human
subject: the inlet of the aorta (P0), the apex of the aortic arch (P1), and the outlet of the aorta (P2).
(B) The BP gradients across the ascending (AAδP01) and descending (ADδP12) portions of the aorta are
calculated using the recorded BP waveforms. The values for cross-sectional areas are common nominal
values. (C) The BCG wave was estimated by computing the difference between these BP gradients.

• Phase (6): The rise from M to N is due to the increasing δP12(t), driven by the quicker reduction
in P2(t). The peak of the N wave closely matches the time when δP12(t) reaches a local maximum,
which is triggered by the diastolic notch in P2(t).

Therefore, the genesis of BCG signals is interpreted as the blood pressure gradient difference
between the ascending and descending aorta. This is the basic rationale that explains why we can
use BCG signals as the insightful input for BP inference.
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Supplementary Note 3—The inclusion and exclusion criteria

The inclusion and exclusion criteria for the subject recruitment in this study:
Inclusion Criteria:

• Individuals aged between 18-69 years.

• Divide subjects into a healthy group and a hypertension group. The diagnostic criteria for hy-
pertension refer to the “Chinese Guidelines for the Prevention and Treatment of Hypertension
2018”.

• Patients who voluntarily signed the informed consent form and agreed to participate in this study.

Exclusion Criteria:

• Individuals with atrial fibrillation or any other arrhythmias that affect peripheral blood flow.

• Patients suffering from shock of any etiology.

• Individuals with Parkinson’s disease or other disorders of autonomic movement.

• Cases of Raynaud’s syndrome or other conditions affecting blood flow to the extremities.

• Subjects unable to wear blood pressure monitoring devices due to the absence of a middle finger
on both hands.

• Individuals who are debilitated, have fractures, deformities due to various causes, or any other
condition that prevents the subject from sitting or lying down for extended periods.

• Subjects with dementia, psychiatric illnesses, or other communicative impairments that prevent
normal interaction.

• Subjects who refuse to sign the informed consent form and decline participation in this project.
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Supplementary Table

Table 1: Subjects characteristic in different datasets.

Characteristics Kansas Dataset
Self-collected

Daytime DataSet
Self-collected

Nighttime Dataset
ANSI/AAMI/ISO

Requirement
Subjects (N) 40 85 33 ≥ 85
Age (years) 34 (15) 42.64 (14.33) 48.36 (10.64) ≥ 12
Male (%) 42.5 61.18 48.49 ≥ 30
Female (%) 57.5 38.82 51.51 ≥ 30
Height (cm) 171 (11) 165.93 (8.73) 163.55 (7.19) -
Weight (kg) 76 (18) 68.37 (12.83) 67.06 (11.27) -
BMI (kg/m2) 26 (5.7) 17.54 (4.78) 24.98 (3.34) -

Hypertension History (%) 2.5 32.94 45.45 -
SBP (mmHg) 120.63 (14.96) 122.01 (18.75) 126.64 (23.15) -
DBP (mmHg) 67.31 (9.35) 75.50 (11.36) 79.22 (13.61) -
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Table 2: The definition of 44 fiducial features is based on the delineation of 5 fiducial points.
Different types of fiducial features reflect the 3D structural deformation information of the heart and the
transmission states of the blood pressure wave in the aorta.

Feature Type Feature Name Description

Extremum A(H), A(I), A(J), A(K), A(L)
The amplitude value of
each fiducial point

Displacement
|A(H)−A(I)|, |A(H)−A(J)|, |A(H)−A(K)|,
|A(H)−A(L)|, |A(I)−A(J)|, |A(I)−A(K)|,
|A(I)−A(L)|, |A(J)−A(K)|, |A(J)−A(L)|, |A(K)−A(L)|

The amplitude difference
between two fiducial point

Time Interval
T (H, I), T (H,J), T (H,K), T (H,L), T (I, J),
T (I,K), T (I, L), T (J,K), T (J, L), T (K,L)

Time interval between
two fiducial point

Time Ratio
T (H, I)/T , T (H,J)/T , T (H,K)/T , T (I, J)/T , T (I,K)/T ,
T (I, L)/T , T (J,K)/T , T (J, L)/T , T (K,L)/T

Ratios of time inveral to T = T (H,L)

Area under the curve
AUC(H, I), AUC(H,J), AUC(H,K), AUC(H,L), AUC(I, J),
AUC(I,K), AUC(I, L), AUC(J,K), AUC(J, L), AUC(K,L)

Area enclosed by curve BCG[a, b]
and line Y = min(BCG).
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Table 3: International standards and protocols for evaluating BP measurements. Firstly, the
mean error (ME) and the standard deviation (SD) were determined to evaluate the performance of the
AI system, which is in line with the ANSI/AAMI/ISO standard [2]. This standard mandates that BP
devices should have ME and SDE values lower than 5 and 8 mmHg, respectively. Secondly, the mean
absolute error (MAE) was calculated to assess the AI system in accordance with the IEEE 1708 standard
[3, 4], which categorizes BP devices into four grades regarding different MAE thresholds. Lastly, the
cumulative percentage of errors (CPE) within thresholds of 5 (CPE5), 10 (CPE10), and 15 (CPE15)
mmHg was computed, which evaluates the system against the criteria set by the British Hypertension
Society (BHS) protocol [5]. The BP devices are assigned to four grades according to their CPE at these
various levels.

ANSI/AAMI/ISO
IEEE 1708 BHS

MAE CPE5 CPE10 CPE15
Grade A - <5 mmHg 60% 85% 95%
Grade B - 5-6 mmHg 50% 75% 90%
Grade C - 6-7 mmHg 40% 65% 85%
Grade D - ≥ 7 mmHg Worse than Grade C

Recommendation for
clinical use

ME ≤ 5 mmHg
SD ≤ 8 mmHg

Grades A,
B and C

Grades A
and B

8



Table 4: Performance of the best-performing personalized model for various bub-populations
in the self-collected daytime dataset. Overall, the results indicate that our system passes the
ANSI/AAMI/ISO standard and obtains Grade A under the criteria of IEEE 1708 and BHS.

SBP DBP
MAE ME SD CPE5 CPE10 CPE15 MAE ME SD CPE5 CPE10 CPE15
(mmHg) (mmHg) (mmHg) (%) (%) (%) (mmHg) (mmHg) (mmHg) (%) (%) (%)

All-subject 4.78 0.13 7.02 66.07 88.00 95.25 2.41 0.08 3.50 87.83 97.86 99.62
Different BP levels

Normotensive 4.33 0.23 6.38 69.67 90.51 96.39 2.24 0.12 3.31 89.83 98.11 99.64
Stage-1 HBP 5.96 -0.71 7.97 52.47 80.25 94.09 2.99 -0.36 3.99 80.32 97.81 99.69
Stage-2 HBP 9.36 2.50 11.39 30.97 61.93 78.70 4.77 0.99 5.97 61.51 89.56 98.45

Different age levels
(18, 35] 2.89 -0.17 4.32 84.41 96.68 98.87 1.48 -0.08 2.18 96.61 99.43 99.90
(35, 55] 5.89 0.61 8.40 56.57 82.78 92.70 2.97 0.29 4.13 82.10 96.57 99.47
(55, 65] 5.47 -0.23 7.55 57.28 85.86 95.06 2.76 -0.10 3.80 85.45 97.97 99.46

Stage-1 HBP and Stage-2 HBP indicate stage-1 hypertension and stage-2 hypertension, respectively.
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Table 5: Performance of the best-performing personalized model for various sub-populations
in the self-collected nocturnal dataset. Overall, the results indicate that our system passes the
ANSI/AAMI/ISO standard for DBP inference, but fails for SBP inference. The system performance
reaches Grade C under the criteria of IEEE 1708 and Grade B under the criteria of BHS. Error bars
represent the range of data within 1.5 times the interquartile range (IQR) from the first quartile (Q1)
to the third quartile (Q3).

SBP DBP
MAE ME SD CPE5 CPE10 CPE15 MAE ME SD CPE5 CPE10 CPE15
(mmHg) (mmHg) (mmHg) (%) (%) (%) (mmHg) (mmHg) (mmHg) (%) (%) (%)

All-subject 6.91 -0.26 9.43 48.84 76.64 89.58 3.46 -0.15 4.75 76.58 95.31 99.02
Different BP levels

Normotensive 7.11 -0.31 7.58 46.63 75.12 89.38 3.56 -0.19 4.80 75.09 95.11 99.09
Stage-1 HBP 7.37 -0.43 10.56 51.09 76.15 86.55 3.72 -0.19 5.37 76.06 91.89 97.77
Stage-2 HBP 11.27 1.70 13.05 21.36 44.60 70.45 5.66 0.82 6.59 44.05 90.67 99.18

Different age levels
(18, 35] 4.59 -0.04 6.55 65.70 86.60 96.19 2.29 -0.05 3.28 86.59 99.04 99.91
(35, 55] 7.13 0.04 9.79 48.20 76.87 88.83 3.59 0.01 4.99 76.88 94.13 98.63
(55, 65] 7.69 -1.38 9.59 39.82 69.51 87.65 3.86 -0.74 4.79 69.11 96.56 99.76

Stage-1 HBP and Stage-2 HBP indicate stage-1 hypertension and stage-2 hypertension, respectively.
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Supplementary Figure
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Figure 3: SBP dynamics of daytime dataset. Blood pressure range as measured by the trained
observer (Caretaker measurement) for each subject (in a column). Subjects are organized by increasing
systolic baseline pressure. Overall, the systolic pressure ranges from 67 to 200+ mmHg. Individually,
the average systolic pressure dynamics (max-min) is 36.1 ± 19.5 mmHg. Error bars represent the range
of data within 1.5 times the interquartile range (IQR) from the first quartile (Q1) to the third quartile
(Q3).
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Figure 4: DBP dynamics of daytime dataset.Blood pressure range as measured by the trained
observer (Caretaker measurement) for each subject (in a column). Subjects are organized by increasing
diastolic baseline pressure. Overall, the diastolic pressure ranges from 42 to 115 mmHg. Individually,
the average diastolic pressure dynamics (max-min) is 18.4 ± 9.7 mmHg. Error bars represent the range
of data within 1.5 times the interquartile range (IQR) from the first quartile (Q1) to the third quartile
(Q3).
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Figure 5: SBP dynamics of nocturnal dataset. Blood pressure range as measured by the trained
observer (Caretaker measurement) for each subject (in a column). Subjects are organized by increasing
systolic baseline pressure. Overall, the systolic pressure ranges from 55 to 200+ mmHg. Individually,
the average systolic pressure dynamics (max-min) is 55.3 ± 39.4 mmHg. Error bars represent the range
of data within 1.5 times the interquartile range (IQR) from the first quartile (Q1) to the third quartile
(Q3).

13



Sorted Users
40

50

60

70

80

90

100

110

120

D
B

P
 [

m
m

H
g

]
Sorted Range of clinician cuff measurements for DBP

Figure 6: DBP dynamics of nocturnal dataset.Blood pressure range as measured by the trained
observer (Caretaker measurement) for each subject (in a column). Subjects are organized by increasing
diastolic baseline pressure. Overall, the diastolic pressure ranges from 46 to 118 mmHg. Individually,
the average diastolic pressure dynamics (max-min) is 27.7 ± 19.7 mmHg. Error bars represent the range
of data within 1.5 times the interquartile range (IQR) from the first quartile (Q1) to the third quartile
(Q3).
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Figure 7: Time series plots for all subjects in the open-source dataset.
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Figure 8: Time series plots for all subjects in the self-collected daytime dataset.
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Figure 9: Time series plots for all subjects in the self-collected nocturnal dataset.
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Figure 11: The U2-net structure. The U2-net is composed of multiple nested U-units.
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Figure 13: A typical session of BCG signals during sleep from subject N001. The subject is
stationary during sleep and the raw signals collected from the optical fiber sensor are slightly affected by
the respiration motion. However, the respiration motion artifact is easily removed after signal processing.
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Figure 14: A zoom-in figure from Fig. 13. The last row shows accurate automatic delineation of
fiducial points (H, I, J, K, L).
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Figure 15: A noisy session of BCG signals during sleep from subject N002. When the user
sleeps at night, there may be some body movements that cause a large impact on the sensor mat. This
figure shows a relatively noisy session where discontinuous jumps can be observed in the middle part of
the raw signals row due to body movements. The zoom-in details can be seen in Fig. 16 and Fig. 17
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Figure 16: A zoom-in figure from Fig. 15. The motion artifacts caused by body movement have
a much higher order of magnitude than that of heartbeat signals (BCG). It is easy to detect the noisy
segment after normalization using the threshold-based outlier detection method. In addition, our U-net
automatic delineation is trained with standard BCG cycles and it has the ability to identify the noisy
segment as well.
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Figure 17: A further zoom-in figure from Fig. 16. After Z-score normalization, the detection outlier
sample points will be replaced using the results from linear interpolation. Consequently, in the third
row, the noisy signals exhibit several cut-off parts, further enhancing their discriminability compared
to normal BCG signals. The U-net automatic delineation will not label fiducial points on these noisy
segments, thus excluding them from model input.
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