Synthesis of fluorine-containing bicyclo[4.1.1]octenes via

photocatalyzed defluorinative (4+3) annulation of

bicyclo[1.1.0]butanes with *gem*-difluoroalkenes

Kuan Zhang,^[a] Zhengyang Gao,^[a] Yan Xia,^[a] Pengfei Li,^[a, b] Pin Gao,^[a] Xin-Hua Duan,^[a] Li-Na Guo^{*[a]}

^aDepartment of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China

^bFrontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China

Email: guoln81@xjtu.edu.cn

Table of Contents

1. General Information	S3
2. The Light Source and the Material of the Irradiation Vessel	S4
3. Starting Materials	S5
3.1 Preparation of BCBs (1n, 1r)	S5
3.2 Preparation of <i>gem</i> -Difluoroalkenes (2b-2r and 2t)	S8
4. Detailed Optimization of Reaction Conditions	S11
5. Representative Procedure for the Reaction of BCBs 1 and <i>gem</i> -Difluoroalkenes 2	S17
6. Scale-Up Synthesis	S17
7. Derivatizations of Products	S18
7.1 Synthesis of the Compound 4aa ⁷	S18
7.2 Synthesis of the Compound 5aa ⁸	S18
7.3 Synthesis of the Compound 6ka and 6ka ⁹	S19
7.4 Synthesis of the Compound 7la ¹⁰	S19
7.5 Synthesis of the Compound 8la ¹¹	S19
7.6 Synthesis of the Compound 91a ¹²	S20
7.7 Synthesis of the Compound 10la ¹²	S20
8 Mechanistic Investigation	S22
8.1 TEMPO-Trapping Experiment	S22
8.2 Stern-Volmer Fluorescence Quenching Experiments	S23
8.3 Light On-Off Experiments	S25
8.4 Cyclic voltammetry (CV) measurements	S26
9 Characterization Date of Products	S28
10 Single-crystal X-ray diffraction data for 3aa and 5aa	S45
11 References	S48
12 ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR Spectra of Products	S49

1. General Information

Unless otherwise noted, all reactions were carried out under nitrogen atmosphere, reagents and solvents were obtained from commercial suppliers and were used without further purification. Analytical TLC: aluminum backed plates pre-coated (0.25 mm) with Merck Silica Gel 60F-254. Column chromatography purifications were carried out using 200-300 mesh silica gel. Melting points were measured using open glass capillaries in a SGW® X-4A apparatus. ¹H NMR spectra were recorded on a JNM-ECZ400S/L1 400 MHz spectrometer at ambient temperature. ¹³C NMR spectra were recorded on a JNM-ECZ400S/L1 100 MHz spectrometer at ambient temperature. ¹⁹F NMR spectra were recorded on a JNM-ECZ400S/L1 376 MHz spectrometer at ambient temperature. Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), td (triplet of doublets), m (multiplet) and br (broad). Infrared spectra were recorded on a WATERS I-Class VION IMS Q-Tof with an ESI source. Some compounds were visualized by exposure to UV-light or by dipping the plates in KMnO₄ stain followed by heating. X-ray data were taken on a Bruker D8 VENTURE X-Ray diffractometer.

2. The Light Source and the Material of the Irradiation Vessel

Light Source purchased from XuSheng Electronic Technology.

Broadband source: $\lambda = 455-460 \text{ nm}$

Spectral distribution and intensity:

Material of the irradiation vessel: borosilicate reaction tube

Distance from the light source to the irradiation vessel: 3.0 cm

Not use any filters

The setting-up reactions.

3. Starting Materials

The bicyclobutanes **1** and *gem*-difluoroalkenes **2** were prepared according to the literature. The NMR spectra of the know compounds were in full accordance with the data in the literatures.

Except for 1n and 1r, the above bicyclo[1.1.0]butanes 1a-1m, $1o-1v^{1,2}$ are known and were prepared according to corresponding literature.

3.1 Preparation of BCBs (1n, 1r)

Step 1 (synthesis of S1)

An oven-dried 500 mL round bottom flask equipped with a stir bar was cooled under vacuum. After backfilled with N₂ (3 times) and capped with a septum, 3-oxocyclobutanecarboxylic acid (5.7 g, 50 mmol, 1.00 equiv) and THF (100 mL) were added. The reaction was cooled to 0 $^{\circ}$ C in an ice/water bath and PhMgBr (110 mL, 1.0 M in THF, 110 mmol, 2.2 equiv) was added to the solution by a syringe. The ice/water bath was then removed and the reaction was stirred at room temperature for 12 h before quenched with saturated NH₄Cl solution (50 mL). The aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic layers were washed with brine (100 mL), dried over anhydrous MgSO₄, filtered and concentrated by rotary evaporation. The crude acid was directly used in next reaction without further purification.

Step 2 (synthesis of S2)

A 500 mL round bottom flask equipped with a magnetic stir bar was charged with above crude acid **S1** (assuming 50 mmol, 1.0 equiv), concentrated HCl solution (50 mL) and PhMe (60 mL). The flask was capped with a septum. The reaction was vigorously stirred at room temperature for 12 h. The aqueous layer was extracted with Et_2O (3 x 50 mL). The combined organic layers were washed with brine (100 mL), dried over anhydrous MgSO₄, filtered and concentrated by rotary evaporation. The crude acid was directly used in next reaction without further purification.

Step 3 (synthesis of S3)

3-Chloro-3-phenylcyclobutane-1-carboxylic acid **S2** (2.98 g, 15.5 mmol) was added to a 100 mL round bottom flask and dissolved in 20 mL of DCM. A drop of DMF was added to the reaction mixture. Oxalyl chloride (3.5 mL, 38.8 mmol) dissolved in 5 mL DCM was added dropwise over a period of 20 min at room temperature. The reaction mixture was stirred for 24 h. The solvent was removed by vacuum filtration and a brown oil was obtained as a mixture of diastereomers (2.5 g, 70%). The product was used in the next step without further purification.

Step 4 (synthesis of S4)

A solution of alcohol (1.2 equiv) and DIPEA (1.0 equiv) in DCM was added to a vial, and then was cooled to 0 $\,^{\circ}$ C. 3-Chloro-3-phenylcyclobutane-1-carbonyl chloride **S3** (1.0 equiv) dissolved in DCM was added dropwise to the vial. The reaction mixture was then warmed to room temperature and stirred for 2 h. The reaction mixture was washed with water and then the solvent was removed under vacuum to give the crude product. The compound was purified by column chromatography.

Step 5 (synthesis of 1n or 1r)

A solution of 3-chloro-3-arylcyclobutane ester S4 (1.0 equiv) in THF was added to a vial under a nitrogen atmosphere. NaHMDS (1.0 equiv) was added to the vial and the reaction mixture was stirred at 0 $^{\circ}$ C for 0.5 h. The mixture was warmed to room temperature and stirred for 1.5 h before quenched with saturated NH₄Cl solution. The aqueous layer was extracted with EtOAc, The combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered and concentrated by rotary evaporation, the residue was purified by column chromatography to afford

desired products.

Characterization of Starting Materials

Adamantan-1-yl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (1n): White solid (562 mg, 25% over 5 steps); m.p.: 101-102 °C; $R_f = 0.4$ (petroleum ether/EtOAc = 30/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.31-7.28$ (m, 4H), 7.25-7.20 (m, 1H), 2.89 (t, J = 1.2 Hz, 2H), 2.0 (s, 3H), 1.75 (d, J = 2.8 Hz, 6H), 1.55 (s, 2H), 1.54-1.51 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.6$, 133.9, 128.2, 126.6, 125.8, 80.4, 41.1, 36.0, 35.7, 31.9, 30.7, 23.8 ppm; HRMS (ESI) calcd for $C_{21}H_{25}O_2$ [M+H]⁺ 309.1849, found 309.1843.

(*S*)-3,7-dimethyloct-6-en-1-yl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (1r): Colorless oil (660 mg, 28% over 5 steps); $R_f = 0.4$ (petroleum ether/EtOAc = 30/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.30-7.27$ (m, 4H), 7.25-7.20 (m, 1H), 5.06 (t, *J* = 7.2 Hz,1H), 3.91 (t, *J* = 6.8 Hz, 2H), 2.94 (s, 2H), 1.95-1.83 (m, 2H), 1.69 (s, 3H), 1.60 (s, 5H), 1.39-1.28 (m, 2H), 1.23-1.02 (m, 3H), 0.73 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.7$, 133.6, 131.2, 128.4, 126.9, 125.8, 124.6, 62.9, 36.8, 35.7, 35.5, 32.7, 29.1, 25.7, 25.2, 23.3, 19.1, 17.6 ppm; HRMS (ESI) calcd for C₂₁H₂₉O₂ [M+H]⁺ 313.2162, found 313.2158.

gem-Difluoroalkenes **2b-2r** and **2t** were prepared according to the reported methods.³ $2s^4$, $2u^5$ and $2v^6$ were prepared according to the reported methods.

3.2 Preparation of gem-Difluoroalkenes (2b-2r and 2t)

$$Ar + CF_3 + H + EWG + CS_2CO_3 (1.2 equiv) + CG_3CN, rt, overnight + CG_4CN, rt, overnight + CG_4CN,$$

A round bottom flask equipped with a stir bar was charged with Cs_2CO_3 (6.0 mmol, 1.2 equiv), then the flask was evacuated and backfilled with N_2 for 3 times. A solution of nucleophile (7.5 mmol, 1.5 equiv) in CH₃CN (0.2 M) was successively added via a syringe under N_2 atmosphere and stirred at room temperature for 1 hour. Then trifluoromethyl alkene (5.0 mmol, 1.0 equiv) in CH₃CN (0.5 M) was added to the reaction mixture and stirred at room temperature for overnight. After the reaction was completed, H₂O was added to quench the reaction and separated. The aqueous phase was extracted with EtOAc (x 3 times). The combined organic phases were washed with brine and dried over Na_2SO_4 . After filtration, the solvent was evaporated under the reduced pressure, the residue was purified by silica gel column chromatography (eluent: PE/EA = 20:1-5:1) to afford the *gem*-difluoroalkenes **2b-2r** and **2t**. **Characterization of Starting Materials**

Dimethyl 2-(3,3-difluoro-2-(*p***-tolyl)allyl)malonate (2b)**: colorless oil (81%, 1.20 g); $R_f = 0.3$ (petroleum ether/EtOAc = 10/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.18-7.14$ (m, 4H), 3.66 (s, 6H), 3.36 (t, J = 8.0 Hz, 1H), 3.01 (d, J = 7.6 Hz, 2H), 2.34 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -89.59$ (d, J = 38.7 Hz), -89.94 (d, J = 38.4 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.9$, 153.9 (t, J = 288.3 Hz), 137.6, 129.3, 128.9, 128.3, 89.1 (dd, J = 20.5, 17.1 Hz), 52.5, 49.8, 27.4, 21.1 ppm; HRMS (ESI) calcd for C₁₅H₁₇F₂O₄ [M+H]⁺ 299.1089, found 299.1085.

Dimethyl 2-(2-(4-(tert-butyl)phenyl)-3,3-difluoroallyl)malonate (2c): colorless oil (76%, 1.29 g); $R_f = 0.4$ (petroleum ether/EtOAc = 20/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.37$ (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 3.66 (s, 6H), 3.38 (t, J = 8.0 Hz, 1H), 3.02 (dt, J = 7.6, 2.0 Hz, 2H), 1.31 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -89.44$ (d, J = 39.1 Hz), -89.74 (d, J = 38.7 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.9$, 153.9 (t, J = 288.3 Hz), 150.7, 128.8, 128.1, 125.5, 89.0 (dd, J = 20.8, 17.2 Hz), 52.5, 49.9, 34.5, 31.2, 27.4. ppm; HRMS (ESI) calcd for C₁₈H₂₃F₂O₄ [M+H]⁺ 341.1559, found 341.1552.

Dimethyl 2-(3,3-difluoro-2-(4-(trimethylsilyl)phenyl)allyl)malonate (2f): colorless oil (68%, 1.21 g); $R_f = 0.4$ (petroleum ether/EtOAc = 20/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.51$ (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 3.66 (s, 6H), 3.40-3.35 (m, 1H), 3.07-3.02 (m, 2H), 0.27 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -88.91$ (d, J = 36.8 Hz), -89.17 (d, J = 36.5 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.9, 154.0$ (t, J = 289.2 Hz), 140.2, 133.6, 132.3, 127.6, 89.3 (dd, J = 20.1, 16.9 Hz), 52.6, 49.8, 27.3, -1.3 ppm; HRMS (ESI) calcd for C₁₇H₂₃F₂O₄Si [M+H]⁺ 357.1328, found 357.1328.

Dimethyl 2-(3,3-difluoro-2-(4-fluorophenyl)allyl)malonate (2g): colorless oil (51%, 0.77 g); $R_f = 0.3$ (petroleum ether/EtOAc = 10/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.26-7.22$ (m, 2H), 7.08-7.03 (m, 2H), 3.66 (s, 6H), 3.36-3.32 (m, 1H), 3.02-2.98 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): δ = -89.15 (d, *J* = 38.4 Hz), -89.36 (d, *J* = 38.0 Hz), -113.5--113.6 (m); ¹³C NMR (100 MHz, CDCl₃): δ = 168.7, 162.1 (d, *J* = 246.4 Hz), 153.9 (t, *J* = 289.3 Hz), 130.3 (d, *J* = 7.9 Hz), 127.9, 115.6 (d, *J* = 21.3 Hz), 88.5 (dd, *J* = 21.3, 17.3 Hz), 52.6, 49.8, 27.5 ppm; HRMS (ESI) calcd for C₁₄H₁₄F₃O₄ [M+H]⁺ 303.0839, found 303.0846.

Dimethyl 2-(3,3-difluoro-2-(3-methoxyphenyl)allyl)malonate (2k): colorless oil (53%, 0.83 g); $R_f = 0.3$ (petroleum ether/EtOAc = 10/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.27$ (t, J = 8.0 Hz, 1H), 6.86-6.80 (m, 3H), 3.80 (s, 3H), 3.66 (s, 6H), 3.37 (t, J = 8.4 Hz, 1H), 3.01 (d, J = 7.6 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -88.49$ (d, J = 36.8 Hz), -89.29 (d, J = 36.8 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.8$, 159.6, 153.9 (t, J = 288.9 Hz), 133.3, 129.6, 120.7, 114.3, 113.2, 89.2 (dd, J = 20.9, 16.5 Hz), 55.2, 52.6, 49.8, 27.4 ppm; HRMS (ESI) calcd for C₁₅H₁₇F₂O₅ [M+H]⁺ 315.1039, found 315.1043.

Dimethyl 2-(2-(3-acetylphenyl)-3,3-difluoroallyl)malonate (2l): colorless oil (39%, 0.63 g); $R_f = 0.2$ (petroleum ether/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.88-7.85$ (m, 2H), 7.46 (d, J = 4.8 Hz, 2H), 3.65 (s, 6H), 3.33 (t, J = 8.0 Hz, 1H), 3.05 (d, J = 7.6 Hz, 2H), 2.60 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -88.21$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 197.6$, 168.6, 154.1 (t, J = 289.3 Hz), 137.4, 133.1, 132.7, 129.0, 128.2, 127.8, 88.9 (t, J = 18.9 Hz), 52.6, 49.8, 27.3, 26.6 ppm; HRMS (ESI) calcd for C₁₆H₁₇F₂O₅ [M+H]⁺ 327.1039, found 327.1031.

Dimethyl 2-(2-(benzo[*d*][1,3]dioxol-5-yl)-3,3-difluoroallyl)malonate (2m): colorless oil (66%, 1.08 g); $R_f = 0.2$ (petroleum ether/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 6.79$ -6.70 (m, 3H), 5.95 (s, 2H), 3.67 (s, 6H), 3.36 (t, J = 8.0 Hz, 1H), 2.95 (dt, J = 8.0, 2.4 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -89.46$ (d, J = 38.7 Hz), -90.16 (d, J = 38.4 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.8$, 153.9 (t, J = 287.8 Hz), 147.8, 147.1, 125.4 (dd, J = 4.3, 2.6 Hz), 122.0 (t, J = 2.9 Hz), 108.9 (t, J = 3.2 Hz), 108.4, 101.2, 89.0 (dd, J = 21.4, 17.0 Hz), 52.5, 49.7 (t, J = 2.9 Hz), 27.7 (d, J = 2.1 Hz) ppm;

HRMS (ESI) calcd for $C_{15}H_{15}F_2O_6 [M+H]^+$ 329.0831, found 329.0835.

Diisopropyl 2-(3,3-difluoro-2-phenylallyl)malonate (20): colorless oil (88%, 1.50 g); $R_f = 0.5$ (petroleum ether/EtOAc = 10/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.32-7.22$ (m, 5H), 4.99-4.90 (m, 2H), 3.19 (t, J = 8.0 Hz, 1H), 2.95 (dt, J = 8.0, 2.4 Hz, 2H), 1.16 (d, J = 2.4 Hz, 6H), 1.14 (d, J = 2.4 Hz, 6H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -89.60$ (d, J = 38.4 Hz), -89.80 (d, J = 38.4 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.0$, 153.8 (t, J = 288.3 Hz), 132.1, 128.6, 128.0, 127.7, 89.4 (dd, J = 20.5, 16.6 Hz), 69.0, 50.4, 27.1, 21.5, 21.4 ppm; HRMS (ESI) calcd for C₁₈H₂₂F₂NaO₄ [M+Na]⁺ 363.1378, found 363.1363.

4. Detailed Optimization of Reaction Conditions

A 10 mL oven-dried Schlenk tube equipped with a magnetic stirrer was charged with BCB **1a** (0.2 mmol, 1.0 equiv), *gem*-difluoroalkene **2a** (0.3 mmol, 1.5 equiv), base (0.3 mmol, 1.5 equiv) and PC (2 mol%). Then the tube was evacuated and backfilled with nitrogen for three times., dry solvent (4 mL) was added by a syringe. The reaction mixture was then irradiated with 30 W blue LEDs (distance app. 3.0 cm from the bulb) at room temperature for 12 h. The solvent was removed in vacuo, 1,3,5-trimethoxybenzene (32.8 mg, 0.2 mmol, 1.0 equiv) was added as an internal standard, and yield was determined by ¹H NMR analysis of the crude mixture. The results are compiled in **Table S1**.

Table S1 Optimization of the Reaction of	of BCB 1a and <i>gem</i> -Difluoroalkene 2a ⁴
Catalyst	

Ph CO ₂ Me + 1a	F CO2Me PC (2 mol%) Ph CO2Me CH3CN (0.05 M), N2 2a blue LEDs (30 W)	$\rightarrow \qquad \begin{array}{c} Ph \\ \hline CO_2Me \\ CO_2Me \\ OO_2Me \end{array}$
entry	PC	yield ^{<i>a</i>} (%)
1	4CzIPN	60
2	TPT	trace
3	[Acr ⁺ -Mes]ClO ₄ ⁻	trace
4	$Ir[dF(CF_3)ppy_2(dtbbpy)]PF_6$	68
5	$Ru(bpy)_3Cl_2$ 6H2O	63
6	$Ru(bpy)_3Cl_2$	72
7	Ir(ppy) ₃	61

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2a** (0.24 mmol, 1.2 equiv), PC (2 mol%), Cs₂CO₃ (0.2 mmol, 1.0 equiv), in CH₃CN (0.05 M), blue LEDs (30 W), rt, for 12 h, under N₂. TPT=2,4,6-triphenylpyrylium tetrafluoroborate. Yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Solvent

Ph +	$F \xrightarrow{F} CO_2 Me \xrightarrow{Ru(bpy)_3Cl_2 (2 mol)}{Cs_2CO_3 (1.0 equiv)}$	Ph CO ₂ Me
CO ₂ Me	Ph ⁺⁺⁺ CO ₂ Me solvent (0.05 M), N ₂ blue LEDs (30 W) 2a	Ph CO ₂ Me CO ₂ Me 3aa
entry	solvent	yield ^a (%)
1	CH ₃ CN	72
2	acetone	58
3	1,4-dioxane	52
4	THF	36
5	toluene	65
6	DCE	37

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2a** (0.24 mmol, 1.2 equiv), Ru(bpy)₃Cl₂(2 mol%), Cs₂CO₃ (0.2 mmol, 1.0 equiv), in solvent (0.05 M), blue LEDs (30 W), rt, for 12 h, under N₂. Yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Ph CO ₂ Me + Ph 1a	F CO2Me Ru(bpy)3Cl2 (2 mol%) CO2Me base (1.0 equiv) CO2Me CH3CN (0.05 M), N2 blue LEDs (30 W) blue LEDs (30 W)	Ph CO₂Me Ph CO₂Me CO₂Me 3aa
entry	base	yield ^a (%)
1	Cs ₂ CO ₃	72
2	K ₂ CO ₃	36
3	K_3PO_4	34
4	NaHCO ₃	trace
5	DMAP	trace
6	Et ₃ N	trace

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2a** (0.24 mmol, 1.2 equiv), $Ru(bpy)_3Cl_2$ (2 mol%), base (0.2 mmol, 1.0 equiv), in CH₃CN (0.05 M), blue LEDs (30 W), rt, for 12 h, under N₂. Yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Ratio of 1a and 2a

	Ph CO ₂ Me + P	F → F CO ₂ Me h → CO ₂ Me 2a → Ru(bpy) ₃ Cl ₂ (2 mol%) Cs ₂ CO ₃ (1.0 equiv) CH ₃ CN (0.05 M), N ₂ blue LEDs (30 W)	Ph CO ₂ Me Ph CO ₂ Me CO ₂ Me 3aa
-	entry	1a : 2a	yield ^{a} (%)
_	1	1:1	63
	2	1:1.2	72 (75) ^b
	3 °	1:1.5	80
	4	1.2 : 1	72
	5	1.5 : 1	60
	6	2:1	55

^{*a*}Reaction conditions: **1a**, **2a**, Ru(bpy)₃Cl₂ (2 mol%), Cs₂CO₃ (0.2 mmol, 1.0 equiv), in CH₃CN (0.05 M), blue LEDs (30 W), rt, for 12 h, under N₂. Yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^{*b*}Cs₂CO₃ (0.24 mmol, 1.2 equiv), ^{*c*} Cs₂CO₃ (0.3 mmol, 1.5 equiv).

Ph CO ₂ Me	+ F CO ₂ Me Ph CO ₂ Me 2a Ru(bpy) ₃ Cl ₂ (2 mol ⁴ Cs ₂ CO ₃ (1.5 equi CH ₃ CN (0.05 M), N blue LEDs (30 W)	
entry	time (h)	yield ^a (%)
1	12	80
2	18	88
3	24	87

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2a** (0.3 mmol, 1.5 equiv), $Ru(bpy)_3Cl_2$ (2 mol%), Cs_2CO_3 (0.3 mmol, 1.5 equiv), in CH₃CN (0.05 M), blue LEDs (30 W), rt, for x h, under N₂. Yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Light Source

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2a** (0.3 mmol, 1.5 equiv), $Ru(bpy)_3Cl_2$ (2 mol%), Cs_2CO_3 (0.3 mmol, 1.5 equiv), in CH₃CN (0.05 M), light source (x W), rt, for 18 h, under N₂. Yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Wattage of Blue LEDs

Ph CO ₂ Me + 1a	F CO2Me Ru(bpy)_3Cl2 (2 mol%) Ph CO2Me CS2CO3 (1.5 equiv) CH3CN (0.05 M), N2 blue LEDs (x W)	$F + CO_2Me + CO_2Me$
entry	blue LEDs (x W)	yield ^{a} (%)
1	5	60
2	10	72
3	20	75
4	30	88
5	45	89

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2a** (0.3 mmol, 1.5 equiv), $Ru(bpy)_3Cl_2$ (2 mol%), Cs_2CO_3 (0.3 mmol, 1.5 equiv), in CH₃CN (0.05 M), blue LEDs (x W), rt, for 18 h, under N₂. Yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Ratio of Ru(bpy)₃Cl₂

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2a** (0.3 mmol, 1.5 equiv), $Ru(bpy)_3Cl_2$ (x mol%), Cs_2CO_3 (0.2 mmol, 1.5 equiv), in CH₃CN (0.05 M), blue LEDs (30 W), rt, for 18 h, under N₂. Yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^{*b*}Isolated yield.

Controlled Experiments

Ph +	$ \begin{array}{c} F & F \\ F & CO_2 Me \end{array} \\ \begin{array}{c} Ru(bpy)_3 Cl_2 \ (1 \ mol\%)_3 $	p_{1} p_{2} Ph $CO_{2}Me$ F $CO_{2}Me$
1a	Ph CO ₂ Me CH ₃ CN (0.05 M), N ₂ blue LEDs (30 W) 2a	Ph CO ₂ Me 3aa
	deviation from standard	$riald^{a}(0/)$
entry	conditions	yield (%)
1	Standard conditions	89 (86) ^b
2	Without Ru(bpy) ₃ Cl ₂	0
3	Without Cs ₂ CO ₃	0
4	Without light	0
5	Under air atmosphere	0

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2a** (0.3 mmol, 1.5 equiv), $Ru(bpy)_3Cl_2(1 mol\%)$, Cs_2CO_3 (0.3 mmol, 1.5 equiv), in CH₃CN (0.05 M), blue LEDs (30 W), rt, for 18 h, under N₂. Yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^{*b*}Isolated yield.

5. Representative Procedure for the Reaction of BCBs 1 and *gem*-Difluoroalkenes 2

A 10 mL oven-dried Schlenk tube equipped with a magnetic stirrer was charged with BCBs **1** (0.2 mmol, 1.0 equiv), *gem*-difluoroalkenes **2** (0.3 mmol, 1.5 equiv), Cs_2CO_3 (0.3 mmol, 1.5 equiv) and $Ru(bpy)_3Cl_2$ (1 mol%). Then the tube was evacuated and backfilled with nitrogen for three times, dry solvent (4 mL) was added by a syringe. The reaction mixture was then irradiated with 30 W blue LEDs at room temperature for 12 h. After that, the solvent was removed in vacuo. The final product **3** was obtained by silica gel column chromatography using petroleum ether/EtOAc as eluent (petroleum ether/EtOAc = 5/1 to 3/1).

6. Scale-Up Synthesis

A 100 mL oven-dried Schlenk tube equipped with a magnetic stirrer was charged with BCB **1a** (376.5 mg, 2 mmol, 1.0 equiv), *gem*-difluoroalkene **2a** (852.8 mg, 3 mmol, 1.5 equiv), Cs_2CO_3 (977.4 mg, 3 mmol, 1.5 equiv) and Ru(bpy)₃Cl₂ (12.8 mg, 1 mol%). Then the tube was evacuated and backfilled with nitrogen for three times., dry solvent (40 mL) was added by a syringe. The reaction mixture was then irradiated with 30 W blue LEDs at room temperature for 24 h. After that, the solvent was removed in vacuo. The final product was obtained by silica gel column chromatography using petroleum ether/EtOAc as eluent (petroleum ether/EtOAc = 5/1 to 3/1) to afford the desired product **3aa** (83%, 751.2 mg).

7. Derivatizations of Products

7.1 Synthesis of the Compound 4aa⁷

To a suspension of **3aa** (90.4 mg, 0.2 mmol, 1.0 equiv) in DMSO (1.0 mL) were added LiCl (17.0 mg, 0.4 mmol, 2.0 equiv) and H₂O (3.6 μ L, 0.2 mmol, 1.0 equiv). The reaction mixture was heated to 140 °C and stirred for 4 h. Water (5.0 mL) was added and the resultant mixture was extracted with EtOAc for three times. The combined organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc = 5/1) to afford product **4aa** (60.0 mg, 76%) as colorless oil.

7.2 Synthesis of the Compound 5aa⁸

To a suspension of **3aa** (116.5 mg, 0.3 mmol, 1.0 equiv) in THF (2.0 mL) at 0 $^{\circ}$ C was added LiAlH₄ (57.0 mg, 1.5 mmol, 5.0 equiv). The resulting mixture was stirred at room temperature for 1 h, cool to 0 $^{\circ}$ C, and quenched successively with H₂O (60.0 µL), 15% aqueous NaOH (60.0 µL) and H₂O (180.0 µL). The mixture was stirred for 30 min, then anhydrous Na₂SO₄ was added. After stirring for another 30 min, the mixture was filtered and concentrated under reduced pressure to give crude product, which was directly used in the next step without further purification.

To a suspension of crude product in toluene (2.0 mL) was added cyclohexanone (31.1 μ L, 0.3 mmol, 1.0 equiv), *p*-toluenesulfonic acid (5.2 mg, 0.03 mmol, 0.1 equiv). The reaction mixture was refluxed for 8 h, then the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford product **5aa** (45.1 mg, 45%) as colorless oil.

7.3 Synthesis of the Compound 6ka and 6ka^{,9}

To an oven-dried 10 mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added **3ka** (96.0 mg, 0.2 mmol, 1.0 equiv). The tube was evacuated and backfilled with nitrogen (3 times). Subsequently, THF (2 mL) was added. A solution of methylmagnesium bromide in THF (0.5 mmol, 2.5 equiv, 3.0 M) was added dropwise into the reaction vessel under nitrogen. After stirring at room temperature for 3 h, the reaction was quenched with saturated NH₄Cl aqueous solution. The aqueous layer was extracted with ethyl acetate, the combined organic layer was dried over Na₂SO₄, filtered and concentrated under the reduced pressure, the mixture was purified by silica gel column chromatography (petroleum ether/EtOAc = 5/1) to afford product **6ka** (46.2 mg, 55%) as colorless oil and **6ka'** (24.7 mg, 34%) as a white solid.

7.4 Synthesis of the Compound 7la¹⁰

Compound **3la** (98.9 mg, 0.2 mmol, 1.0 equiv) was dissolved in anhydrous DCM (2 mL) and was treated with TFA (77.0 μ L, 1.0 mmol, 5.0 equiv) at 0 °C. The reaction mixture was stirred at room temperature overnight. After that, the reaction mixture was cooled in ice-water bath and was quenched by saturated aqueous NaHCO₃ and was extracted with DCM. The combined organic layer was dried over anhydrous Na₂SO₄, followed by filtration and evaporation of the solvent to give product **7la** (87.7 mg, 88%) as a white solid.

7.5 Synthesis of the Compound 8la¹¹

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with Compound **7la** (43.8 mg, 0.1 mmol, 1.0 equiv), α -CF₃ alkenes (49.7 mg, 0.2 mmol, 2.0 equiv),

4CzIPN (1.58 mg, 2 mol%), Cs₂CO₃ (65.2 mg, 0.2 mmol, 2.0 equiv). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, dry DMSO (1.0 mL) was added by a syringe. The reaction mixture was stirred under the irradiation of a 30 W Blue LED (λ = 455-460 nm) for 18 h. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 × 10 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (petroleum ether/EtOAc = 10:1 to 5:1) to afford product **8la** (42.3 mg, 75%) as a white solid.

7.6 Synthesis of the Compound 9la¹²

An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with **7la** (43.8 mg, 0.1 mmol, 1.0 equiv.), ligand (10 mol%, 8.6 mg), NCS (*N*-chlorosuccinimide) (28.0 mg, 0.21 mmol, 2.1 equiv.). Then the Schlenk-tube was transferred to nitrogen-filled glovebox to add $Fe(OAc)_2$ (6.9 mg, 10 mol%,) and anhydride MeCN (1 mL). After that, the Schlenk-tube was sealed with rubber plug and taken out of the glovebox. The reaction mixture was added 2,4,6-collidine (24 µl, 0.18 mmol, 1.8 equiv.) via syringe. Finally, the reaction mixture was stirred and irradiated for 12 h under LEDs (30 W, 390 nm), cooling with a fan. Then the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford product **9la** (22.3 mg, 52%) as colorless oil.

7.7 Synthesis of the Compound 10la¹²

An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with **7la** (43.8 mg, 0.1 mmol, 1.0 equiv.), ligand (10 mol%, 8.6 mg), NBS (*N*-Bromosuccinimide) (37.4 mg, 0.21 mmol, 2.1 equiv.). Then the Schlenk-tube was transferred to nitrogen-filled glovebox to add $Fe(OAc)_2$ (6.9 mg, 10 mol%,) and anhydride MeCN (1 mL). After that, the Schlenk tube was

sealed with rubber plug and taken out of the glovebox. The reaction mixture was added 2,4,6-collidine (24 μ l, 0.18 mmol, 1.8 equiv.) via syringe. Finally, the reaction mixture was stirred and irradiated for 12 h under LEDs (30 W, 390 nm), cooling with a fan. Then the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford product **10la** (26.1 mg, 55%) as colorless oil.

8 Mechanistic Investigation

8.1 TEMPO-Trapping Experiment

a) Radical trapping experiment with TEMPO

A 10 mL oven-dried Schlenk tube equipped with a magnetic stirrer was charged with BCB **1a** (0.2 mmol, 1.0 equiv), *gem*-difluoroalkene **2a** (0.3 mmol, 1.5 equiv), Cs_2CO_3 (0.3 mmol, 1.5 equiv), $Ru(bpy)_3Cl_2$ (1 mol%) and TEMPO (0.4 mmol, 2.0 equiv). Then the tube was evacuated and backfilled with nitrogen for three times., dry solvent (4 mL) was added by a syringe. The reaction mixture was then irradiated with 30 W blue LEDs at room temperature for 12 h. After that, a 16% yield of **3aa** was obtained, along with the TEMPO adduct **11** and TEMPO adduct **12** detected by HRMS. This result indicated that a radical pathway might be involved in this transformation.

Figure S1. TEMPO adduct 11 detected by HRMS

Figure S2. TEMPO adduct 12 detected by HRMS

8.2 Stern-Volmer Fluorescence Quenching Experiments

To a solution of 4CzIPN in anhydrous, N₂-saturated DMSO (5.0×10^{-4} mol/L) in a quartz cuvette, different amounts of BCB **1a**, and *gem*-difluoroalkene **2a**, Cs₂CO₃, *gem*-difluoroalkene **2a** + Cs₂CO₃ were added, respectively, and the resulting changes in fluorescence intensity were collected. The emission intensity at 525 nm was collected with excited wavelength of 470 nm. The results are shown in Figure S3, S4, S5 and S6.

According to the results as well as the corresponding Stern-Volmer plots (Figure S3, S4, S5 and S6), the BCB **1a**, **2a** and Cs_2CO_3 did not show an obvious quenching effect to the fluorescence intensity of 4CzIPN. While the *gem*-difluoroalkene **2a** + Cs_2CO_3 showed an obvious quenching to the fluorescence intensity of 4CzIPN.

Figure S4 Fluorescence quenching with 2a

Figure S5 Fluorescence quenching with Cs₂CO₃

Figure S6 Fluorescence quenching with $2a + Cs_2CO_3$

Figure S7 Stern-Volmer Plots of 1a, 2a, Cs₂CO₃ and 2a + Cs₂CO₃

8.3 Light On-Off Experiments

To further examine the impact of light, we conducted experiments under alternating periods of irradiation and darkness. The yield of **3aa** was determined by crude ¹H NMR spectra using 1,3,5-trimethoxybenzene as an internal standard. The results are shown in **Figure S4**.

Figure S8. Light On-Off Experiments

The results of light on-off experiments showed that the reaction proceed only during the visible light irradiation, suggesting that the reaction maybe proceed by a catalytic process rather than by a radical chain process.

8.4 Cyclic voltammetry (CV) measurements

Cyclic voltammetry was conducted on an Electrochemical Workstation using a 3-electrode cell configuration. A glassy carbon working electrode was employed alongside a platinum wire counter electrode and a Ag/AgCl reference electrode. CH₃CN was degassed by bubbling N₂ prior to measurements. 0.01 M solutions of **1a** or **2a** in CH₃CN were freshly prepared along with 0.1 M of *n*-Bu₄NPF₆ as supporting electrolyte and were examined at a scan 100 mV/s. The results of cyclic voltammetry experiments indicated that the oxidation potential of BCB **1a** ($E_{1/2}^{ox} = +1.4$ V vs SCE) inaccessible for the Ru(bpy)₃Cl₂ excited state ($E_{1/2}^{ox} = +0.77$ V vs SCE). The oxidation potential of compound **2a** can be effectively reduced from $E_{1/2}^{ox} = 0.69$ V (vs SCE) to $E_{1/2}^{ox} = 0.56$ V (vs SCE) in the presence of base, which is considered the oxidation of **2a** by the Ru(bpy)₃Cl₂ is thermodynamically feasible.

Figure S10. Cyclic voltammogram of 2a and $2a + Cs_2CO_3$ in CH₃CN.

9 Characterization Date of Products

Trimethyl 5-fluoro-4,6-diphenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (**3aa**): White solid (86%, 77.8 mg); m.p.: 104-105 °C; $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.49-7.46$ (m, 2H), 7.41-7.37 (m, 2H), 7.34-7.29 (m, 3H), 7.25-7.20 (m, 3H), 3.81 (s, 6H), 3.71 (s, 3H), 3.58 (d, J = 4.8 Hz, 2H), 3.38-3.34 (m, 2H), 3.09-3.05 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -98.26$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.4$, 171.2, 160.1 (d, J = 258.8 Hz), 143.3 (d, J = 4.8 Hz), 138.2, 128.6 (d, J = 3.6 Hz), 128.2, 128.0, 126.9, 126.7, 126.1, 112.9 (d, J = 18.0 Hz), 62.7, 52.8, 52.7, 48.6, 45.0 (d, J = 27.7 Hz), 41.4, 36.5 (d, J = 4.4 Hz) ppm; HRMS (ESI) calcd for C₂₆H₂₆FO₆ [M+H]⁺ 453.1708, found 453.1704.

Trimethyl 5-fluoro-4-phenyl-6-(*p*-tolyl)bicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (3ba): White solid (95%, 88.5 mg); m.p.: 112-113 °C; $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.51-7.48$ (m, 2H), 7.35-7.31 (m, 2H), 7.27-7.20 (m, 3H), 7.14-7.10 (m, 2H), 3.82 (s, 6H), 3.72 (s, 3H), 3.58 (d, *J* = 4.4 Hz, 2H), 3.38-3.33 (m, 2H), 3.08-3.04 (m, 2H), 2.38 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -97.55$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.4$, 171.2, 160.2 (d, *J* = 258.9 Hz), 140.4 (d, *J* = 5.2 Hz), 138.2, 136.3, 128.8, 128.6 (d, *J* = 3.3 Hz), 127.9, 126.9, 126.0, 112.7 (d, *J* = 17.9 Hz), 62.7, 52.7, 52.6, 44.7 (d, *J* = 27.7 Hz), 44.5, 41.4, 36.5 (d, *J* = 4.5 Hz), 21.0 ppm; HRMS (ESI) calcd for C₂₇H₂₇NaFO₆ [M+Na]⁺ 489.1684, found 489.1673.

CO₂Me

Trimethyl 6-(4-chlorophenyl)-5-fluoro-4-phenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (3ca): White solid (86%, 79.5 mg); m.p.: 127-128 °C; $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): δ = 7.46-7.43 (m, 2H), 7.36-7.30 (m, 4H), 7.25-7.20 (m, 1H), 7.14-7.11 (m, 2H), 3.80 (s, 6H), 3.72 (s, 3H), 3.55 (d, *J* = 4.8 Hz, 2H), 3.31-3.27 (m, 2H), 3.06-3.02 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): δ = -98.70 (s); ¹³C NMR (100 MHz, CDCl₃): δ = 173.2, 171.1, 159.6 (d, *J* = 258.7 Hz), 141.8 (d, *J* = 4.8 Hz), 138.0, 132.6, 128.6 (d, *J* = 3.6 Hz), 128.4, 128.0, 127.6, 127.1, 113.2 (d, *J* = 17.3 Hz), 62.6, 52.9, 52.8, 48.5, 44.7 (d, *J* = 27.7 Hz), 41.4, 36.5 (d, *J* = 4.7 Hz) ppm; HRMS (ESI) calcd for C₂₆H₂₅ClFO₆ [M+H]⁺ 487.1318, found 487.1322.

Trimethyl 6-(4-bromophenyl)-5-fluoro-4-phenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (3da): White solid (77%, 81.7 mg); m.p.: 147-148 °C; $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): δ = 7.51-7.48 (m, 2H), 7.46-7.43 (m, 2H), 7.34-7.30 (m, 2H), 7.25-7.21 (m, 1H), 7.09-7.05 (m, 2H), 3.80 (s, 6H), 3.71 (s, 3H), 3.55 (d, *J* = 4.8 Hz, 2H), 3.30-3.26 (m, 2H), 3.05-3.01 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): δ = -98.68 (s); ¹³C NMR (100 MHz, CDCl₃): δ = 173.2, 171.1, 159.5 (d, *J* = 258.8 Hz), 142.3 (d, *J* = 5.5 Hz), 138.0, 131.3, 128.6 (d, *J* = 3.1 Hz), 128.0, 127.1, 120.7, 113.3 (d, *J* = 17.5 Hz), 62.6, 52.9, 52.8, 48.5, 44.7 (d, *J* = 27.7 Hz), 41.4, 36.6 (d, *J* = 4.6 Hz) ppm; HRMS (ESI) calcd for C₂₆H₂₅BrFO₆ [M+H]⁺ 531.0813, found 531.0832.

F₃CC ←CO₂Me CO₂Me

Trimethyl 5-fluoro-4-phenyl-6-(4-(trifluoromethoxy)phenyl)bicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (**3ea**): Colorless oil (97%, 104.1 mg); $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.46-7.43$ (m, 2H), 7.34-7.30 (m, 2H), 7.25-7.23 (m, 1H), 7.21 (s, 4H), 3.80 (s, 6H), 3.72 (s, 3H), 3.56 (d, J = 4.8 Hz, 2H), 3.33-3.29 (m, 2H), 3.08-3.03 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -57.71$ (s), -97.94 (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.3$, 171.1, 159.5 (d, J = 258.8Hz), 147.9, 141.9 (d, J = 5.2 Hz), 138.1, 128.6 (d, J = 3.1 Hz), 128.1, 127.7, 127.1, 120.8, 120.4 (q, J =255.7 Hz), 113.3 (d, J = 17.6 Hz), 62.7, 52.9, 52.8, 48.5, 44.7 (d, J = 27.7 Hz), 41.4, 36.6 (d, J = 4.5 Hz) ppm; HRMS (ESI) calcd for C₂₇H₂₅F₄O₇ [M+H]⁺ 537.1531, found 537.1539.

Trimethyl 5-fluoro-6-(3-methoxyphenyl)-4-phenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (**3fa**): Colorless oil (87%, 84.3 mg); $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.49-7.45$ (m, 2H), 7.34-7.29 (m, 3H), 7.25-7.20 (m, 1H), 6.84-6.73 (m, 3H), 3.82-3.80 (m, 9H), 3.71 (s, 3H), 3.57 (d, *J* = 4.8 Hz, 2H), 3.36-3.33 (m, 2H), 3.05-3.02 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -98.03$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.4$, 171.2, 160.0 (d, *J* = 259.1 Hz), 159.4, 144.9 (d, *J* = 4.9 Hz), 138.2, 129.2, 128.7 (d, *J* = 3.0 Hz), 127.9, 126.9, 118.5, 112.9 (d, *J* = 17.4 Hz), 112.2, 111.9, 62.7, 55.1, 52.8, 52.7, 48.4, 45.0 (d, *J* = 27.7 Hz), 41.4, 36.5 (d, *J* = 4.5 Hz) ppm; HRMS (ESI) calcd for C₂₇H₂₈FO₇ [M+H]⁺ 483.1814, found 483.1817.

Trimethyl 6-(3-chlorophenyl)-5-fluoro-4-phenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (3ga): White solid (87%, 89.5 mg); m.p.: 173-174 °C; $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): δ = 7.46-7.43 (m, 2H), 7.34-7.28 (m, 3H), 7.26-7.18 (m, 3H), 7.09-7.06 (m, 1H), 3.80 (s, 6H), 3.72 (s, 3H), 3.55 (d, *J* = 4.8 Hz, 2H), 3.33-3.29 (m, 2H), 3.06-3.02 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): δ = -98.03 (s); ¹³C NMR (100 MHz, CDCl₃): δ = 173.2, 171.1, 159.4 (d, *J* = 258.8 Hz), 145.2 (d, *J* = 4.9 Hz), 138.0, 134.1, 129.5, 128.6 (d, *J* = 3.4 Hz), 128.0, 127.1, 127.0, 126.6, 124.5, 113.3 (d, *J* = 17.7 Hz), 62.6, 52.9, 52.8, 48.5, 44.8 (d, *J* = 27.4 Hz), 41.4, 36.5 (d, *J* = 4.4 Hz) ppm; HRMS (ESI) calcd for C₂₆H₂₄ClKFO₆ [M+K]⁺ 525.0877, found 525.0887.

Trimethyl 6-(3,4-dichlorophenyl)-5-fluoro-4-phenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (**3ha**): Colorless oil (78%, 81.3 mg); $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.45-7.42$ (m, 3H), 7.34-7.30 (m, 2H), 7.28 (d, J = 2.0 Hz, 1H), 7.25-7.21 (m, 1H), 7.04-7.01 (m, 1H), 3.79 (s, 6H), 3.72 (s, 3H), 3.54 (d, J = 4.8 Hz, 2H), 3.29-3.26 (m, 2H), 3.05-3.01 (m,

2H); ¹⁹F NMR (376 MHz, CDCl₃): δ = -98.30 (s); ¹³C NMR (100 MHz, CDCl₃): δ = 173.1, 171.1, 159.0 (d, *J* = 258.8 Hz), 143.4 (d, *J* = 4.7 Hz), 137.9, 132.4, 130.9, 130.3, 128.6 (d, *J* = 3.4 Hz), 128.5, 128.1, 127.2, 125.8, 113.6 (d, *J* = 17.4 Hz), 62.9, 52.9, 52.8, 48.4, 44.5 (d, *J* = 27.4 Hz), 41.4, 36.6 (d, *J* = 4.6 Hz) ppm; HRMS (ESI) calcd for C₂₆H₂₄Cl₂FO₆ [M+H]⁺ 521.0929, found 521.0914.

Trimethyl 5-fluoro-4-phenyl-6-(*o*-tolyl)bicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (3ia): Colorless oil (53%, 49.5 mg); $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): δ = 7.40-7.37 (m, 2H), 7.26-7.22 (m, 2H), 7.18-7.05 (m, 5H), 3.76 (s, 3H), 3.71 (s, 3H), 3.63-3.57 (m, 5H), 3.43-3.37 (m, 2H), 3.01 (dd, J = 12.4, 3.6 Hz, 1H), 2.62 (dd, J = 12.2, 6.4 Hz, 1H), 2.25 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ = -98.40 (s); ¹³C NMR (100 MHz, CDCl₃): δ = 173.5, 172.0, 170.5, 159.8 (d, J = 258.2 Hz), 141.0 (d, J = 4.7 Hz), 138.4, 136.1, 130.6, 128.6 (d, J = 3.3 Hz), 128.0, 127.1, 127.0, 126.4, 125.7, 113.0 (d, J = 18.1 Hz), 62.8, 52.82, 52.76, 52.66, 48.4, 45.6 (d, J = 28.4 Hz), 42.2, 40.9, 36.5 (d, J = 4.7 Hz), 20.3 ppm; HRMS (ESI) calcd for C₂₇H₂₈FO₆ [M+H]⁺ 467.1864, found 467.1869.

Trimethyl 5-fluoro-6-(naphthalen-2-yl)-4-phenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (3ja): Colorless oil (68%, 68.3 mg); $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): δ = 7.87-7.83 (m, 3H), 7.66 (s, 1H), 7.51-7.47 (m, 4H), 7.34-7.30 (m, 3H), 7.25-7.21 (m, 1H), 3.83 (s, 6H), 3.70 (s, 3H), 3.61 (d, *J* = 4.8 Hz, 2H), 3.47-3.44 (m, 2H), 3.17-3.12 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): δ = -97.51 (s); ¹³C NMR (100 MHz, CDCl₃): δ = 173.4, 171.2, 160.1 (d, *J* = 258.9 Hz), 140.7 (d, *J* = 3.8 Hz), 138.2, 133.0, 132.2, 128.7 (d, *J* = 3.3 Hz), 128.0, 127.7, 127.6, 127.0, 126.2, 125.8, 124.7, 124.6, 113.2 (d, *J* = 17.4 Hz), 62.8, 52.8, 52.7, 48.6, 45.2 (d, *J* = 27.1 Hz), 41.5, 36.6 (d, *J* = 3.2 Hz) ppm; HRMS (ESI) calcd for C₃₀H₂₈FO₆ [M+H]⁺ 503.1864, found 503.1861.

1-Isopropyl 2,2-dimethyl 5-fluoro-4,6-diphenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (3ka): White solid (82%, 78.8 mg); m.p.: 131-132 °C; $R_f = 0.3$ (petroleum ether/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.49-7.47$ (m, 2H), 7.39-7.27 (m, 5H), 7.24-7.19 (m, 3H), 5.08-4.99 (m, 1H), 3.80 (s, 6H), 3.56 (d, J = 4.8 Hz, 2H), 3.33-3.29 (m, 2H), 3.05-3.01 (m, 2H), 1.22 (d, J = 6.4 Hz, 6H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -97.53$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.6$, 171.2, 160.2 (d, J = 259.0 Hz), 143.3 (d, J = 4.9 Hz), 138.3, 128.7 (d, J = 3.6 Hz), 128.1, 127.9, 126.9, 126.6, 126.1, 112.9 (d, J = 17.9 Hz), 69.1, 62.8, 52.6, 48.5, 44.9 (d, J = 27.5 Hz), 41.4, 36.7 (d, J = 4.6 Hz), 21.5 ppm; HRMS (ESI) calcd for C₂₈H₃₀FO₆ [M+H]⁺ 481.2021, found 481.2030.

1-(*Tert*-butyl) 2,2-dimethyl 5-fluoro-4,6-diphenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (3la): White solid (91%, 90.1 mg); m.p.: 129-130 °C; $R_f = 0.5$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.48-7.46$ (m, 2H), 7.38-7.26 (m, 5H), 7.23-7.18 (m, 3H), 3.79 (s, 6H), 3.55 (d, J = 4.8 Hz, 2H), 3.29-3.25 (m, 2H), 3.03-2.98 (m, 2H), 1.43 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -97.64$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.3$, 171.2, 160.4 (d, J = 259.0 Hz), 143.4 (d, J = 4.9 Hz), 138.4, 128.7 (d, J = 3.5 Hz), 128.1, 127.9, 126.9, 126.6, 126.1, 112.9 (d, J = 17.9 Hz), 81.7, 62.7, 52.5, 49.0, 44.8 (d, J = 27.0 Hz), 41.5, 36.9 (d, J = 4.5 Hz), 27.7 ppm; HRMS (ESI) calcd for $C_{29}H_{31}KFO_6$ [M+K]⁺ 533.1736, found 533.1746.

1-Cyclopentyl 2,2-dimethyl 5-fluoro-4,6-diphenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (**3ma**): White solid (87%, 88.2 mg); m.p.: 121-122 °C; $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.53-7.50$ (m, 2H), 7.43-7.28 (m, 6H), 7.25-7.23 (m, 2H), 5.24-5.21 (m, 1H), 3.84 (s, 6H), 3.60 (d, J = 4.8 Hz, 2H), 3.35-3.31 (m, 2H), 3.09-3.04 (m, 2H), 1.91-1.85 (m, 2H), 1.73-1.60 (m, 6H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -98.21$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.9$, 171.1, 160.3 (d, J = 258.9 Hz), 143.3, (d, J = 4.5 Hz), 138.3, 128.7 (d, J = 3.1 Hz), 128.2, 128.0, 126.9, 126.6, 126.0, 113.0 (d, J = 17.9 Hz), 78.5, 62.7, 52.6, 48.4, 44.9 (d, J = 27.5 Hz), 41.4, 36.8 (d, J = 4.1 Hz), 32.3, 23.6 ppm; HRMS (ESI) calcd for C₃₀H₃₂FO₆ [M+H]⁺ 507.2177, found 507.2182.

1-(Adamantan-1-yl) 2,2-dimethyl 5-fluoro-4,6-diphenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (3na): White solid (84%, 96.2 mg); m.p.: 170-171 °C; $R_f = 0.5$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.48-7.45$ (m, 2H), 7.37-7.26 (m, 5H), 7.23-7.17 (m, 3H), 3.80 (s, 6H), 3.52 (d, J = 5.2 Hz, 2H), 3.29-3.25 (m, 2H), 3.02-2.97 (m, 2H), 2.15 (s, 3H), 2.08 (s, 6H), 1.64 (s, 6H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -97.66$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.0$, 171.2, 160.4 (d, J = 259.5 Hz), 143.4 (d, J = 5.0 Hz), 138.4, 128.7 (d, J = 3.6 Hz), 128.1, 127.9, 126.9, 126.5, 126.1, 112.9 (d, J = 18.0 Hz), 81.8, 62.7, 52.6, 49.1, 44.8 (d, J = 27.0 Hz), 41.6, 40.9, 36.8 (d, J = 4.7 Hz), 36.0, 30.7 ppm; HRMS (ESI) calcd for C₃₅H₃₈FO₆ [M+H]⁺ 573.2647, found 573.2651.

1-Benzyl 2,2-dimethyl 5-fluoro-4,6-diphenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (**3oa**): Colorless oil (94%, 95.5 mg); $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.51-7.49$ (m, 2H), 7.41-7.29 (m, 10H), 7.26-7.21 (m, 3H), 5.19 (s, 2H), 3.70 (s, 6H), 3.59 (d, J = 4.8 Hz, 2H), 3.43-3.39 (m, 2H), 3.11-3.07 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -98.29$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.9$, 171.0, 160.1 (d, J = 259.6 Hz), 143.2 (d, J = 4.8 Hz), 138.2, 135.6, 128.7 (d, J = 3.5 Hz), 128.4, 128.2, 128.1, 127.9, 126.9, 126.7, 126.1, 113.0 (d, J = 18.1 Hz), 67.1, 62.7, 52.6, 48.5, 44.9 (d, J = 27.7 Hz), 41.4, 36.6 (d, J = 4.8 Hz) ppm; HRMS (ESI) calcd for C₃₂H₃₀FO₆ [M+H]⁺ 529.2021, found 529.2014.

1-(Furan-3-ylmethyl) 2,2-dimethyl 5-fluoro-4,6-diphenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (3pa): Colorless oil (65%, 69.5 mg); $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.49-7.46$ (m, 2H), 7.41-7.28 (m, 6H), 7.24-7.17 (m, 3H), 6.40-6.34 (m, 2H), 5.10 (s, 2H), 3.72 (s, 6H), 3.55 (d, J = 4.8 Hz, 2H), 3.36-3.31 (m, 2H), 3.06-3.02 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -97.55$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.8$, 171.0, 160.1 (d, J = 258.8 Hz), 149.0, 143.2 (d, J = 4.8 Hz), 143.1, 138.2, 128.7 (d, J = 3.4 Hz), 128.1, 128.0, 126.9, 126.7, 126.1, 112.9 (d, J = 18.0 Hz), 110.8, 110.5, 62.8, 59.0, 52.7, 48.4, 44.9 (d, J = 27.7 Hz), 41.3, 36.6 (d, J = 4.6 Hz) ppm; HRMS (ESI) calcd for C₃₀H₂₇KFO₇ [M+K]⁺ 557.1372, found 557.1375.

1-(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl) 2,2-dimethyl 5-fluoro-4,6-diphenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (**3qa**): Colorless oil (92%, 105.6 mg); R_f = 0.3 (petroleum ether/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): δ = 7.50-7.47 (m, 2H), 7.39-7.27 (m, 5H), 7.23-7.18 (m, 3H), 4.71 (td, *J* = 10.8, 4.0 Hz, 1H), 3.80 (s, 3H), 3.77 (s, 3H), 3.55 (d, *J* = 4.8 Hz, 2H), 3.36-3.33 (m, 1H), 3.28-3.24 (m, 1H), 3.05-3.97 (m, 2H), 1.98-1.93 (m, 1H), 1.84-1.77 (m, 1H), 1.69-1.64 (m, 2H), 1.50-1.43 (m, 1H), 1.40-1.33 (m, 1H), 1.06-0.98 (m, 1H), 0.92-0.83 (m, 8H), 0.74 (d, *J* = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ = -97.66 (s); ¹³C NMR (100 MHz, CDCl₃): δ = 172.4, 171.24, 171.19, 160.2 (d, *J* = 258.9 Hz), 143.3 (d, *J* = 5.1 Hz), 138.3, 128.7 (d, *J* = 3.6 Hz), 128.2, 128.0, 126.9, 126.6, 126.1, 113.0 (d, *J* = 17.9 Hz), 75.6, 62.8, 52.7, 52.6, 48.6, 46.8, 44.9 (d, *J* = 27.6 Hz), 41.6, 41.1, 40.3, 36.8 (d, *J* = 4.1 Hz), 34.1, 31.3, 26.0, 23.2, 21.9, 20.7, 16.1 ppm; HRMS (ESI) calcd for C₃₅H₄₂FO₆ [M+H]⁺ 577.2960, found 577.2961.

(*R*)-1-(3,7-dimethyloct-6-en-1-yl) 2,2-dimethyl 5-fluoro-4,6-diphenylbicyclo[4.1.1]oct-4-ene-1,2,2tricarboxylate (3ra): Colorless oil (88%, 101.8 mg); $R_f = 0.3$ (petroleum ether/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.48-7.45$ (m, 2H), 7.39-7.27 (m, 5H), 7.24-7.18 (m, 3H), 5.08-5.04 (m, 1H), 4.16-4.13 (m, 2H), 3.80 (s, 6H), 3.56 (d, J = 4.8 Hz, 2H), 3.34-3.30 (m, 2H), 3.05-3.01 (m, 2H), 1.97-1.84 (m, 2H), 1.69-1.59 (m, 7H), 1.50-1.39 (m, 2H), 1.32-1.27 (m, 1H), 1.19-1.10 (m, 1H), 0.88-0.86 (m, 3H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -97.61$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 173.0, 171.2, 160.2 (d, J = 259.5 Hz), 143.3 (d, J = 5.4 Hz), 138.3, 131.3, 128.7 (d, J = 2.8 Hz), 128.2, 128.0, 127.0, 126.7, 126.1, 124.4, 113.0 (d, J = 18.0 Hz), 64.3, 62.7, 52.8, 48.6, 45.0 (d, J = 27.5 Hz), 41.5, 36.9, 36.7 (d, J = 4.8 Hz), 35.2, 29.5, 25.7, 25.4, 19.3, 17.6 ppm; HRMS (ESI) calcd for C₃₅H₄₂FO₆ [M+H]⁺ 577.2960, found 577.2961.

Dimethyl

1-(3,5-dimethyl-1H-pyrazole-1-carbonyl)-5-fluoro-4,6-diphenylbicyclo[4.1.1]oc-

t-4-ene-2,2-dicarboxylate (**3sa**): Colorless oil (58%, 59.9 mg); $R_f = 0.2$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): δ = 7.45-7.42 (m, 2H), 7.34-7.30 (m, 4H), 7.24-7.20 (m, 4H), 5.85 (s, 1H), 3.69 (d, *J* = 4.8 Hz, 2H), 3.60 (s, 6H), 3.50-3.46 (m, 2H), 3.39-3.34 (m, 2H), 2.52 (s, 3H), 2.04 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ = -98.10 (s); ¹³C NMR (100 MHz, CDCl₃): δ = 173.4, 169.9, 160.4 (d, *J* = 259.9 Hz), 150.9, 144.6, 143.5 (d, *J* = 4.7 Hz), 138.9, 128.7 (d, *J* = 2.6 Hz), 128.01, 127.96, 126.8, 126.5, 126.4, 112.6 (d, *J* = 17.2 Hz), 110.1, 64.1, 52.8, 51.2, 44.8 (d, *J* = 27.5 Hz), 42.7, 35.7 (d, *J* = 4.3 Hz), 14.4, 13.5 ppm; HRMS (ESI) calcd for C₃₀H₂₉LiN₂FO₅ [M+Li]⁺ 523.2215, found 523.2224.

Trimethyl 5-fluoro-6-phenyl-4-(*p*-tolyl)bicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (3ab): White solid (92%, 86.0 mg); m.p.: 140-141 °C; $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.40-7.35$ (m, 4H), 7.31-7.27 (m, 1H), 7.22-7.20 (m, 2H), 7.15-7.12 (m, 2H), 3.81 (s, 6H), 3.71 (s, 3H), 3.56 (d, *J* = 4.8 Hz, 2H), 3.37-3.33 (m, 2H), 3.08-3.03 (m, 2H), 2.33 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -97.97$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.4$, 171.2, 159.9 (d, *J* = 258.1 Hz), 143.4 (d, *J* = 4.9 Hz), 136.6, 135.3, 128.7, 128.5 (d, *J* = 3.5 Hz), 128.2, 126.7, 126.2, 112.7 (d, *J* = 17.9 Hz), 62.7, 52.8, 52.7, 48.6, 45.0 (d, *J* = 27.5 Hz), 41.4, 36.6 (d, *J* = 4.7 Hz), 21.1 ppm; HRMS (ESI) calcd for C₂₇H₂₈FO₆ [M+H]⁺ 467.1864, found 467.1867.

Trimethyl 4-(4-(*tert***-butyl)phenyl)-5-fluoro-6-phenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate** (**3ac**): Colorless oil (92%, 93.6 mg); $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.45-7.35$ (m, 6H), 7.31-7.28 (m, 1H), 7.24-7.21 (m, 2H), 3.82 (s, 6H), 3.72 (s, 3H), 3.59 (d, *J* = 4.8 Hz, 2H), 3.38-3.34 (m, 2H), 3.09-3.05 (m, 2H), 1.32 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -97.88$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.4$, 171.2, 159.9 (d, *J* = 258.8 Hz), 149.8, 143.4 (d, *J* = 5.0 Hz), 135.1, 128.2 (d, *J* = 3.5 Hz), 128.1, 126.6, 126.1, 124.8, 112.6 (d, *J* = 17.3 Hz), 62.7, 52.8, 52.6, 48.5, 45.0 (d, *J* = 27.8 Hz), 41.4, 36.4 (d, *J* = 4.7 Hz), 34.4, 31.2 ppm; HRMS (ESI) calcd for $C_{30}H_{34}FO_6$ [M+H]⁺ 509.2334, found 509.2347.

Trimethyl 4-([1,1'-biphenyl]-4-yl)-5-fluoro-6-phenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (**3ad**): Colorless oil (89%, 94.1 mg); $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.64-7.59$ (m, 6H), 7.48-7.27 (m, 7H), 7.24 (s, 1H), 3.85 (s, 6H), 3.74 (s, 3H), 3.64 (d, J = 4.8 Hz, 2H), 3.42-3.38 (m, 2H), 3.13-3.08 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -97.05$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.4$, 171.2, 160.3 (d, J = 259.3 Hz), 143.3 (d, J = 4.7 Hz), 140.7, 139.7, 137.2, 129.1 (d, J = 3.6 Hz), 128.6, 128.2, 127.1, 126.9, 126.7, 126.6, 126.1, 112.5 (d, J = 17.3 Hz), 62.7, 52.8, 52.7, 48.5, 45.1 (d, J = 27.6 Hz), 41.4, 36.4 (d, J = 4.8 Hz) ppm; HRMS (ESI) calcd for $C_{32}H_{30}FO_6$ [M+H]⁺ 529.2021, found 529.2025.

Trimethyl 5-fluoro-4-(4-methoxyphenyl)-6-phenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (3ae): Colorless oil (56%, 54.0 mg); $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.42$ -7.36 (m, 4H), 7.30-7.27 (m, 1H), 7.21-7.19 (m, 2H), 6.87-6.83 (m, 2H), 3.80 (s, 6H), 3.79 (s, 3H), 3.70 (s, 3H), 3.54 (d, J = 4.8 Hz, 2H), 3.35-3.31 (m, 2H), 3.06-3.01 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -99.29$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.5$, 171.3, 159.7 (d, J = 257.1 Hz), 158.4, 143.5 (d, J = 4.8Hz), 130.5, 129.9 (d, J = 3.4 Hz), 128.2, 126.7, 126.2, 113.4, 112.4 (d, J = 18.0 Hz), 62.8, 55.2, 52.8, 52.7, 48.6, 45.0 (d, J = 27.7 Hz), 41.4, 36.7 (d, J = 4.6 Hz) ppm; HRMS (ESI) calcd for C₂₇H₂₇KFO₇ [M+K]⁺ 521.1372, found 521.1361.

Trimethyl5-fluoro-6-phenyl-4-(4-(trimethylsilyl)phenyl)bicyclo[4.1.1]oct-4-ene-1,2,2-tri-carboxylate (3af): Colorless oil (81%, 85.0 mg); $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR(400 MHz, CDCl_3): $\delta = 7.49-7.43$ (m, 4H), 7.39-7.36 (m, 2H), 7.30-7.26 (m, 1H), 7.21-7.19 (m, 2H),3.81 (s, 6H), 3.71 (s, 3H), 3.57 (d, J = 4.8 Hz, 2H), 3.36-3.32 (m, 2H), 3.07-3.03 (m, 2H), 0.25 (s, 9H);¹⁹F NMR (376 MHz, CDCl_3): $\delta = -97.29$ (s); ¹³C NMR (100 MHz, CDCl_3): $\delta = 173.5$, 171.2, 160.3 (d,J = 259.3 Hz), 143.3 (d, J = 4.9 Hz), 139.1, 138.7, 133.0, 128.2, 127.9 (d, J = 3.1 Hz), 126.7, 126.2,
112.8 (d, J = 18.0 Hz), 62.7, 52.8, 52.7, 48.6, 45.0 (d, J = 27.7 Hz), 41.4, 36.4 (d, J = 4.7 Hz), -1.20 ppm; HRMS (ESI) calcd for C₂₉H₃₃SiKFO₆ [M+K]⁺ 563.1662, found 563.1666.

Trimethyl 5-fluoro-4-(4-fluorophenyl)-6-phenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (3ag): White solid (94%, 88.3 mg); m.p.: 125-126 °C; $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.47-7.43$ (m, 2H), 7.40-7.36 (m, 2H), 7.31-7.27 (m, 1H), 7.20-7.18 (m, 2H), 7.02-6.97 (m, 2H), 3.80 (s, 6H), 3.71 (s, 3H), 3.52 (d, J = 4.8 Hz, 2H), 3.36-3.32 (m, 2H), 3.05-3.01 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -97.47$ (s), -115.11 (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.3$, 171.2, 161.6 (d, J = 244.5 Hz), 160.2 (d, J = 259.0 Hz), 143.2 (d, J = 5.0 Hz), 134.1 (d, J = 3.7 Hz), 130.5 (dd, J = 7.8, 3.7 Hz), 128.2, 126.8, 126.1, 114.8 (d, J = 21.2 Hz), 112.1 (d, J = 17.8 Hz), 62.8, 52.9, 52.7, 48.5, 45.0 (d, J = 27.6 Hz), 41.4, 36.6 (d, J = 4.0 Hz) ppm; HRMS (ESI) calcd for $C_{26}H_{24}KF_2O_6$ [M+K]⁺ 509.1173, found 509.1199.

Trimethyl 4-(4-chlorophenyl)-5-fluoro-6-phenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (3ah): White solid (90%, 87.8 mg); m.p.: 137-138 °C; $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): δ = 7.39-7.32 (m, 4H), 7.24-7.21 (m, 3H), 7.16-7.13 (m, 2H), 3.76 (s, 6H), 3.66 (s, 3H), 3.47 (d, *J* = 4.8 Hz, 2H), 3.32-3.28 (m, 2H), 3.01-2.96 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): δ = -97.41 (s); ¹³C NMR (100 MHz, CDCl₃): δ = 173.3, 171.2, 160.5 (d, *J* = 260.4 Hz), 143.1 (d, *J* = 4.8 Hz), 136.7, 132.6, 130.1 (d, *J* = 3.4 Hz), 128.2, 128.1, 126.8, 126.1, 112.0 (d, *J* = 17.9 Hz), 62.7, 52.9, 52.7, 49.5, 45.0 (d, *J* = 27.1 Hz), 41.3, 36.4 (d, *J* = 4.3 Hz) ppm; HRMS (ESI) calcd for C₂₆H₂₅ClFO₆ [M+H]⁺ 487.1318, found 487.1322.

Trimethyl 4-(4-bromophenyl)-5-fluoro-6-phenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (3ai): Colorless oil (97%, 94.0 mg); $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): δ = 7.45-7.42 (m, 3H), 7.38-7.36 (m, 3H), 7.30-7.28 (m, 1H), 7.20-7.18 (m, 2H), 3.80 (s, 6H), 3.71 (s, 3H), 3.52 (d, J = 4.8 Hz, 2H), 3.36-3.32 (m, 2H), 3.05-3.01 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -96.55$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.2$, 171.1, 160.5 (d, J = 260.3 Hz), 143.0 (d, J = 4.8 Hz), 137.2, 131.1, 130.5 (d, J = 3.6 Hz), 128.2, 126.8, 126.1, 120.9, 112.0 (d, J = 17.3 Hz), 62.7, 52.9, 52.7, 48.5, 45.0 (d, J = 27.6 Hz), 41.3, 36.3 (d, J = 4.5 Hz) ppm; HRMS (ESI) calcd for C₂₆H₂₅BrFO₆ [M+H]⁺ 531.0813, found 531.0824.

Trimethyl 5-fluoro-6-phenyl-4-(4-(trifluoromethyl)phenyl)bicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (3aj): Colorless oil (69%, 71.8 mg); R_f = 0.3 (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): \delta = 7.61-7.55 (m, 4H), 7.40-7.37 (m, 2H), 7.31-7.29 (m, 1H), 7.21-7.19 (m, 2H), 3.81 (s, 6H), 3.71 (s, 3H), 3.55 (d, J = 4.8 Hz, 2H), 3.39-3.35 (m, 2H), 3.07-3.03 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): \delta = -62.41 (s, 3F), -95.78 (s, 1F); ¹³C NMR (100 MHz, CDCl₃): \delta = 173.2, 171.1, 161.2 (d, J = 261.6 Hz), 142.9 (d, J = 4.9 Hz), 142.0, 129.1 (d, J = 3.7 Hz), 128.9 (q, J = 33.2 Hz), 128.3, 126.9, 126.2, 124.9 (q, J = 3.0 Hz), 124.1 (q, J = 270.5 Hz), 112.0 (d, J = 17.3 Hz), 62.8, 52.9, 52.8, 48.5, 45.1 (d, J = 27.0 Hz), 41.4, 36.3 (d, J = 4.5 Hz) ppm; HRMS (ESI) calcd for C₂₇H₂₄LiF₄O₆ [M+Li]⁺ 527.1664, found 527.1640.

Trimethyl 5-fluoro-4-(3-methoxyphenyl)-6-phenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (**3ak**): White solid (86%, 83.2 mg); m.p.: 139-140 °C; $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.40-7.36$ (m, 2H), 7.30-7.28 (m, 1H), 7.23-7.19 (m, 3H), 7.05-7.03 (m, 2H), 6.80-6.77 (m, 1H), 3.81 (s, 6H), 3.80 (s, 3H), 3.71 (s, 3H), 3.56 (d, J = 4.8 Hz, 2H), 3.36-3.32 (m, 2H), 3.08-3.03 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -96.77$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.4$, 171.2, 160.2 (d, J = 259.6 Hz), 159.2, 143.3 (d, J = 4.8 Hz), 139.6, 128.9, 128.2, 126.7, 126.2, 121.2 (d, J = 3.1 Hz), 114.2 (d, J = 3.2 Hz), 112.9, 112.7, 62.7, 55.1, 52.8, 52.7, 48.6, 45.0 (d, J = 27.1 Hz), 41.4, 36.5 (d, J = 4.7 Hz) ppm; HRMS (ESI) calcd for C₂₇H₂₇KFO₇ [M+K]⁺ 521.1372, found 521.1382.

Trimethyl 4-(3-acetylphenyl)-5-fluoro-6-phenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (3al): White solid (89%, 88.5 mg); m.p.: 117-118 °C; $R_f = 0.2$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.08$ (s, 1H), 7.82-7.80 (m, 1H), 7.67-7.64 (m, 1H), 7.42-7.35 (m, 3H), 7.30-7.27 (m, 1H), 7.20-7.18 (m, 2H), 3.82 (s, 6H), 3.70 (s, 3H), 3.56 (d, J = 4.8 Hz, 2H), 3.37-3.33 (m, 2H), 3.08-3.03 (m, 2H), 2.60 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -97.21$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 198.1$, 173.3, 171.1, 160.9 (d, J = 260.3 Hz), 143.0 (d, J = 4.9 Hz), 138.8, 137.0, 133.6, 133.56, 128.6 (d, J = 2.9 Hz), 128.2, 126.9, 126.8, 126.2, 112.2 (d, J = 17.4 Hz), 62.8, 52.9, 52.7, 48.6, 45.0 (d, J = 27.2 Hz), 41.4, 36.4 (d, J = 4.4 Hz), 26.6 ppm; HRMS (ESI) calcd for C₂₈H₂₇NaFO₇ [M+Na]⁺ 517.1633, found 517.1639

Trimethyl 4-(benzo[*d*][1,3]dioxol-5-yl)-5-fluoro-6-phenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (3am): White solid (59%, 58.6 mg); m.p.: 142-143 °C; $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.39-7.35$ (m, 2H), 7.30-7.27 (m, 1H), 7.19-7.17 (m, 2H), 6.98-6.92 (m, 2H), 6.76 (d, *J* = 8.0 Hz, 1H), 5.91 (s, 2H), 3.80 (s, 6H), 3.70 (s, 3H), 3.51 (d, *J* = 4.8 Hz, 2H), 3.34-3.30 (m, 2H), 3.04-2.99 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -97.55$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.4$, 171.2, 159.9 (d, *J* = 258.3 Hz), 147.2, 146.3, 143.3 (d, *J* = 5.2 Hz), 132.0, 128.2, 126.7, 126.2, 122.2 (d, *J* = 3.4 Hz), 112.6 (d, *J* = 17.8 Hz), 109.4 (d, *J* = 3.8 Hz), 107.8, 100.86, 62.7, 52.8, 52.7, 48.5, 45.0 (d, *J* = 27.8 Hz), 41.4, 36.8 (d, *J* = 4.3 Hz) ppm; HRMS (ESI) calcd for C₂₇H₂₅KFO₈ [M+K]⁺ 535.1165, found 535.1171.

Trimethyl 4-(dibenzo[*b*,*d*]thiophen-3-yl)-5-fluoro-6-phenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (3an): Colorless oil (63%, 74.2 mg); $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): δ = 8.31 (s, 1H), 8.19-8.17 (m, 1H), 7.85-7.79 (m, 2H), 7.62-7.59 (m, 1H), 7.46-7.40 (m, 4H), 7.34-7.27 (m, 2H), 7.25-7.24 (m, 1H), 3.86 (s, 6H), 3.74 (s, 3H), 3.70 (d, *J* = 4.8 Hz, 2H), 3.43-3.39 (m, 2H), 3.15-3.11 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): δ = -97.30 (s); ¹³C NMR (100 MHz, CDCl₃): δ = 173.4, 171.3, 160.4 (d, *J* = 259.6 Hz), 143.3 (d, *J* = 4.8 Hz), 139.6, 138.0, 135.4 (d, *J* = 4.5 Hz), 134.7, 128.2, 127.6, 126.8, 126.6, 126.2, 124.2, 122.7, 122.2, 121.8, 121.6, 112.8 (d, J = 17.4 Hz), 62.9, 52.9, 52.7, 48.6, 45.1 (d, J = 27.5 Hz), 41.5, 36.9 (d, J = 4.5 Hz) ppm; HRMS (ESI) calcd for C₃₂H₂₈FO₆S [M+H]⁺ 559.1585, found 559.1588.

$$Ph$$

 F
 CO_2Me
 $CO_2'Pr$
 $CO_2'Pr$

2,2-Diisopropyl 1-methyl 5-fluoro-4,6-diphenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (**3ao**): White solid (38%, 38.7 mg); m.p.: 106-107 °C; $R_f = 0.4$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.52-7.49$ (m, 2H), 7.39-7.27 (m, 5H), 7.24-7.20 (m, 3H), 5.16-5.06 (m, 2H), 3.68 (s, 3H), 3.54 (d, *J* = 4.8 Hz, 2H), 3.35-3.31 (m, 2H), 3.09-3.04 (m, 2H), 1.28 (d, *J* = 6.0 Hz, 6H), 1.25 (d, *J* = 6.0 Hz, 6H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -97.81$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.5$, 170.1, 160.3 (d, *J* = 258.9 Hz), 143.5 (d, *J* = 4.9 Hz), 138.5, 128.8 (d, *J* = 3.5 Hz), 128.2, 127.9, 126.9, 126.6, 126.2, 112.9 (d, *J* = 17.7 Hz), 69.4, 62.7, 52.4, 48.3, 44.9 (d, *J* = 27.7 Hz), 41.5, 36.5 (d, *J* = 4.4 Hz), 21.6, 21.5 ppm; HRMS (ESI) calcd for C₃₀H₃₄FO₆ [M+H]⁺ 509.2334, found 509.2343.

2,2-Dibenzyl 1-methyl 5-fluoro-4,6-diphenylbicyclo[4.1.1]oct-4-ene-1,2,2-tricarboxylate (**3ap**): Colorless oil (85%, 102.7 mg); $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.45-7.43$ (m, 2H), 7.41-7.38 (m, 2H), 7.37-7.35 (m, 6H), 7.33-7.28 (m, 6H), 7.25-7.20 (m, 4H), 5.24 (s, 4H), 3.65 (d, J = 4.8 Hz, 2H), 3.54 (s, 3H), 3.37-3.34 (m, 2H), 3.12-3.07 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -97.25$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.4$, 170.4, 160.3 (d, J = 259.3 Hz), 143.2 (d, J = 4.9 Hz), 138.1, 135.1, 128.7 (d, J = 3.2 Hz), 128.4, 128.2, 128.22, 128.1, 127.9, 126.9, 126.7, 126.2, 112.7 (d, J = 17.3 Hz), 67.7, 62.9, 52.4, 48.6, 44.9 (d, J = 27.7 Hz), 41.4, 36.4 (d, J = 4.3 Hz) ppm; HRMS (ESI) calcd for C₃₈H₃₄FO₆ [M+H]⁺ 605.2334, found 605.2344.

Dimethyl 5-fluoro-4,6-diphenyl-2-(phenylsulfonyl)bicyclo[4.1.1]oct-4-ene-1,2-dicarboxylate (3aq): White solid (79%, 84.5 mg); m.p.: 92-93 °C; $R_f = 0.3$ (petroleum ether/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.92$ (d, J = 7.6 Hz, 2H), 7.68-7.64 (m, 1H), 7.55-7.51 (m, 2H), 7.37-7.33 (m, 4H), 7.30-7.27 (m, 2H), 7.26-7.19 (m, 2H), 7.16-7.13 (m, 2H), 3.83 (s, 3H), 3.77 (dd, J = 16.8, 4.8 Hz, 1H), 3.71-3.67 (m, 4H), 3.39 (dd, J = 17.2, 1.0 Hz, 1H), 3.26 (dd, J = 12.8, 0.9 Hz, 1H), 3.17 (d, J = 12.0 Hz, 1H), 3.09 (dd, J = 12.0, 5.6 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -97.70$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.5$, 167.4, 159.0 (d, J = 258.9 Hz), 142.8 (d, J = 5.0 Hz), 138.1, 137.4, 134.4, 130.6, 128.8, 128.5 (d, J = 3.1 Hz), 128.2, 128.0, 127.1, 126.8, 126.1, 111.9 (d, J = 19.1 Hz), 80.2, 53.2, 52.7, 47.4, 45.0, 44.2 (d, J = 27.7 Hz), 39.0, 35.2 (d, J = 4.7 Hz) ppm; HRMS (ESI) calcd for C₃₀H₂₈FO₆S [M+H]⁺ 535.1585, found 535.1580.

2-Ethyl 1-methyl 2-cyano-5-fluoro-4,6-diphenylbicyclo[**4.1.1**]oct-4-ene-1,2-dicarboxylate (**3ar**): Colorless oil (72%, 62.4 mg); $R_f = 0.2$ (petroleum ether/EtOAc = 1/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.40-7.34$ (m, 6H), 7.32-7.26 (m, 2H), 7.19 (d, J = 7.2 Hz, 2H), 4.29 (q, J = 7.2 Hz, 2H), 3.74-3.69 (m, 4H), 3.41 (d, J = 3.6 Hz, 2H), 3.16-3.07 (m, 3H), 1.33 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -94.53$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.6$, 168.9, 160.7 (d, J = 261.6 Hz), 142.3 (d, J = 4.8 Hz), 137.3, 128.4 (d, J = 2.9 Hz), 128.3, 127.4, 127.1, 126.1, 118.2, 111.4 (d, J = 20.4 Hz), 63.4, 52.8, 52.5, 48.1, 45.7 (d, J = 27.7 Hz), 44.9 (d, J = 4.0 Hz), 39.0 (d, J = 4.7 Hz), 34.7 (d, J = 3.0 Hz), 13.9 ppm; HRMS (ESI) calcd for C₂₆H₂₅FNO₄ [M+H]⁺ 434.1762, found 434.1765.

Dimethyl 5-fluoro-4,6-diphenylbicyclo[4.1.1]oct-4-ene-1,2-dicarboxylate (**4aa**): Colorless oil (76%, 60.0 mg); $R_f = 0.4$ (petroleum ether/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.37-7.35$ (m, 2H), 7.27-7.21 (m, 4H), 7.17-7.09 (m, 4H), 3.81 (t, J = 5.2 Hz, 1H), 3.64 (d, J = 3.2 Hz, 6H), 3.34 (d, J = 11.6 Hz, 1H), 3.18-3.07 (m, 3H), 2.65 (dd, J = 11.6, 4.2 Hz, 1H), 2.53 (dd, J = 11.6, 6.0 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -97.74$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 175.1$, 173.5, 159.5 (d, J = 257.3 Hz), 143.6 (d, J = 5.2 Hz), 138.9, 128.6 (d, J = 3.3 Hz), 128.1, 128.0, 126.8, 126.6, 126.2, 114.1 (d, J = 17.1 Hz), 52.4, 52.0, 47.7, 45.2 (d, J = 28.1 Hz), 45.0, 41.4, 39.2 (d, J = 2.3 Hz), 30.2 (d, J = 4.5 Hz) ppm; HRMS (ESI) calcd for C₂₄H₂₄FO₄ [M+H]⁺ 395.1653, found 395.1657.

6-Fluoro-5,7-diphenyl-4,5,8,8a-tetrahydro-1*H*,3*H*-3a,5-methanocyclohepta[*c*]furan-1-one (5aa): White solid (45%, 45.1 mg); m.p.: 180-181 °C; $R_f = 0.4$ (petroleum ether/EtOAc = 10/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.41-7.28$ (m, 8H), 7.25-7.21 (m, 2H), 4.25 (d, *J* = 9.6 Hz, 1H), 4.18 (d, *J* = 10.0 Hz, 1H), 3.44 (dd, *J* = 11.2, 6.8 Hz, 1H), 3.31-3.22 (m, 1H), 3.13-3.04 (m, 2H), 2.85 (d, *J* = 10.0 Hz, 1H), 2.68-2.62 (m, 1H), 2.37 (dd, J = 11.2, 4.8 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -95.94$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.2$, 159.9 (d, J = 257.3 Hz), 143.1 (d, J = 5.7 Hz), 138.5, 128.3, 128.2, 128.1, 127.0, 126.8, 126.2, 113.6 (d, J = 17.7 Hz), 74.9, 46.64, 46.6 (d, J = 28.4 Hz), 43.9 (d, J = 3.6 Hz), 42.6, 39.1 (d, J = 2.6 Hz), 28.9 (d, J = 4.8 Hz) ppm; HRMS (ESI) calcd for C₂₂H₂₀FO₂ [M+H]⁺ 335.1442, found 335.1445.

Methyl 6-fluoro-3,3-dimethyl-1-oxo-5,7-diphenyl-5,8-dihydro-1*H*,3*H*-3a,5-methanocyclohep ta[c]furan-8a(4*H*)-carboxylatee (6ka): Colorless oil (55%, 46.2 mg); $R_f = 0.3$ (petroleum ether/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.51$ (d, J = 8.0 Hz, 2H), 7.36-7.32 (m, 4H), 7.27-7.22 (m, 2H), 7.18-7.15 (m, 2H), 3.80 (s, 3H), 3.37-3.28 (m, 3H), 3.05 (dd, J = 16.0, 3.6 Hz, 1H), 2.79 (dd, J = 11.2, 4.8 Hz, 1H), 2.27 (dd, J = 11.2, 7.2 Hz, 1H). 1.47 (s, 3H), 1.40 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -96.41$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 176.4, 172.1, 158.8$ (d, J = 256.2 Hz), 142.2 (d, J = 5.5 Hz), 138.7, 128.8 (d, J = 3.4 Hz), 128.2, 128.0, 127.1, 126.9, 126.0, 114.2 (d, J = 18.8 Hz), 85.0, 61.9, 52.2, 48.1, 46.2 (d, J = 28.9 Hz), 41.6 (d, J = 3.8 Hz), 39.6 (d, J = 1.7 Hz), 30.9 (d, J = 4.4 Hz), 26.5, 24.5 ppm; HRMS (ESI) calcd for C₂₆H₂₆FO₄ [M+H]⁺ 421.1810, found 421.1817.

6-Fluoro-3,3-dimethyl-5,7-diphenyl-4,5,8,8a-tetrahydro-1*H*,3*H*-3a,5-methanocyclohepta[c]furan-**1-one** (**6ka'**): White solid (34%, 24.7 mg); m.p.: 206-207 °C; $R_f = 0.4$ (petroleum ether/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.38-7.34$ (m, 2H), 7.32-7.30 (m, 4H), 7.27-7.25 (m, 1H), 7.23-7.20 (m, 3H), 3.32-3.28 (m, 1H), 3.26-3.14 (m, 2H), 3.07-3.02 (m, 1H), 2.70 (d, *J* = 10.0 Hz, 1H), 2.60-2.56 (m, 1H), 2.45-2.41 (m, 1H), 1.36 (s, 3H), 1.34 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -96.32$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 176.2$, 159.6 (d, *J* = 257.4 Hz), 143.6 (d, *J* = 5.7 Hz), 138.3, 128.3 (d, *J* = 3.8 Hz), 128.0, 127.0, 126.8, 126.3, 113.5 (d, *J* = 16.7 Hz), 85.3, 48.3, 47.2, 44.7 (d, *J* = 28.0 Hz), 43.3 (d, *J* = 3.6 Hz), 34.6, 28.9 (d, *J* = 4.9 Hz), 23.6, 23.2 ppm; HRMS (ESI) calcd for C₂₄H₂₄FO₂ [M+H]⁺ 363.1755, found 363.1763.

5-Fluoro-2,2-bis(methoxycarbonyl)-4,6-diphenylbicyclo[4.1.1]oct-4-ene-1-carboxylic acid (7la): White solid (88%, 87.7 mg); m.p.: 166-167 °C; ¹H NMR (400 MHz, DMSO-d6): δ = 12.92 (s, 1H), 7.39-7.31 (m, 6H), 7.27-7.21 (m, 4H), 3.66 (s, 6H), 3.40 (d, *J* = 4.8 Hz, 2H), 3.17-3.13 (m, 2H), 3.01-2.96 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-d6): δ = -98.43 (s); ¹³C NMR (100 MHz, DMSO-d6): δ = 174.7, 171.3, 160.5 (d, *J* = 257.6 Hz), 144.1 (d, *J* = 4.9 Hz), 139.1, 129.0, 128.7, 128.6, 127.5, 127.1, 126.7, 113.2 (d, *J* = 17.7 Hz), 62.8, 53.0, 48.5, 45.1 (d, *J* = 27.5 Hz), 42.0, 37.0 (d, *J* = 3.6 Hz) ppm; HRMS (ESI) calcd for C₂₅H₂₄FO₆ [M+H]⁺ 439.1551 found 439.1542.

Methyl 1-(2-([1,1'-biphenyl]-4-yl)-3,3-difluoroallyl)-5-fluoro-4,6-diphenylbicyclo[4.1.1] oct-4-ene-2-carboxylate (8la): Colorless oil (75%, 42.3 mg); $R_f = 0.3$ (petroleum ether/EtOAc = 10/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.57-7.50$ (m, 4H), 7.42-7.38 (m, 2H), 7.33-7.28 (m, 3H), 7.25-7.09 (m, 8H), 6.99-6.96 (m, 2H), 3.71 (s, 3H), 3.12-3.07 (m, 2H), 3.01 (dt, J = 16.8, 5.2 Hz, 1H), 2.84 (dt, J = 16.8, 4.0 Hz, 1H), 2.69-2.63 (m, 2H), 2.58-2.54 (m, 1H), 2.42 (d, J = 11.2 Hz, 1H), 2.08 (dd, J = 12.0, 4.4 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -89.23$ (d, J = 39.1 Hz), -89.91 (d, J = 38.7 Hz), -99.17 (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 174.1, 159.4$ (d, J = 256.7 Hz), 154.5, (t, J = 288.3 Hz), 144.6 (d, J = 5.4 Hz), 140.4, 140.3, 139.3, 132.8 (dd, J = 4.4, 2.3 Hz), 129.0 (t, J = 2.7 Hz), 128.8, 128.6 (d, J = 3.3 Hz), 128.0, 127.9, 127.5, 127.1, 127.0, 126.6, 126.3, 126.25, 114.5 (d, J = 17.1 Hz), 89.9 (dd, J = 21.0, 14.6 Hz), 51.6, 47.9, 45.9 (d, J = 27.0 Hz), 43.3 (d, J = 3.2 Hz), 42.1, 40.9, 39.8, 31.1 (d, J = 4.8Hz) ppm; HRMS (ESI) calcd for C₃₇H₃₂F₃O₂ [M+H]⁺ 565.2349, found 565.2333.

Dimethyl 1-chloro-5-fluoro-4,6-diphenylbicyclo[4.1.1]oct-4-ene-2,2-dicarboxylate (**9la**): Colorless oil (52%, 22.3 mg); $R_f = 0.3$ (petroleum ether/EtOAc = 10/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.34$ (d, J = 8.4 Hz, 2H), 7.30-7.24 (m, 3H), 7.21-7.18 (m, 2H), 7.16-7.12 (m, 1H), 7.07 (d, J = 7.2 Hz, 2H), 3.78 (s, 6H), 3.53-3.51 (m, 3H), 3.49-3.46 (m, 1H), 3.20-3.16 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -98.45$ (s); ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.7$, 159.1 (d, J = 258.9 Hz), 142.7 (d, J = 4.7 Hz), 137.9, 128.6 (d, J = 3.6 Hz), 128.4, 128.1, 127.1, 127.0, 126.3, 113.1 (d, J = 17.6 Hz), 67.4, 63.7, 52.9, 49.9, 44.7 (d, J = 28.6 Hz), 36.3 (d, J = 4.2 Hz) ppm; HRMS (ESI) calcd for C₂₄H₂₂ClNaFO₄ [M+Na]⁺ 451.1083, found 451.1087.

Dimethyl 1-bromo-5-fluoro-4,6-diphenylbicyclo[4.1.1]oct-4-ene-2,2-dicarboxylate (10la): Colorless oil (55%, 26.1 mg); $R_f = 0.3$ (petroleum ether/EtOAc = 10/1); ¹H NMR (400 MHz, CDCl₃): δ = 7.34 (d, J = 8.4 Hz, 2H), 7.30-7.23 (m, 3H), 7.22-7.20 (m, 2H), 7.15-7.12 (m, 1H), 7.06 (d, J = 6.8 Hz, 2H), 3.78 (s, 6H), 3.62-3.57 (m, 2H), 3.53 (d, J = 4.4 Hz, 2H), 3.44-3.40 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): δ = -98.78 (s); ¹³C NMR (100 MHz, CDCl₃): δ = 169.8, 159.2 (d, J = 258.5 Hz), 142.5 (d, J = 4.9 Hz), 137.9, 128.6 (d, J = 3.6 Hz), 128.4, 128.1, 127.1, 127.0, 126.2, 113.2 (d, J = 18.0 Hz), 67.9, 54.7, 52.9, 51.1, 47.0 (d, J = 28.2 Hz), 36.2 (d, J = 4.1 Hz) ppm; HRMS (ESI) calcd for C₂₄H₂₂BrNaFO₄ [M+Na]⁺ 495.0578, found 495.0582.

10 Single-crystal X-ray diffraction data for 3aa and 5aa

Preparation of the single crystals of **3aa**: 30.0 mg of pure **3aa** was dissolved in the combined solvents of MeOH and CH_2Cl_2 (2.0 mL, v/v = 1:1) at room temperature. The bottle was sealed by a piece of plastic film with several tiny holes, thus allowing the slow solvent evaporation at 0 °C. After about two days, several small crystals were observed at the bottom of the bottle. The crystals were collected and subjected to the single crystal X-ray diffraction analysis for the determination of the structure of **3aa**.

X-ray Structure of **3aa** (CCDC 2382103) 50% probability ellipsoids

Empirical formula	$C_{26}H_{25}FO_6$	
Formula weight	452.46	
Temperature/K	300.00	
Crystal system	triclinic	
Space group	P-1	
a/Å	7.28910(10)	
b/Å	9.7884(2)	
c/Å	15.6447(3)	
α/°	88.0640(10)	
β/°	84.5890(10)	
γ/°	80.1740(10)	
Volume/Å ³	1094.77(3)	
Z	2	
$ ho_{calc}g/cm^3$	1.373	
μ/mm^{-1}	0.854	
F(000)	476.0	
Crystal size/mm ³	0.2 imes 0.2 imes 0.2	
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)	
2Θ range for data collection/°	5.676 to 133.248	
Index ranges	$-8 \le h \le 8, 11 \le k \le 11, 18 \le l \le 18$	
Reflections collected	19597	
Independent reflections	3861 [$R_{int} = 0.0462$, $R_{sigma} = 0.0430$]	
Data/restraints/parameters	3861/0/302	
Goodness-of-fit on F ²	1.030	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0474, wR_2 = 0.1264$	
S45		

 Final R indexes [all data]
 $R_1 = 0.0491, wR_2 = 0.1282$

 Largest diff. peak/hole / e Å⁻³
 0.32/-0.25

Preparation of the single crystals of **5aa**: 20.0 mg of pure **5aa** was dissolved in the combined solvents of MeOH and CH_2Cl_2 (2.0 mL, v/v = 1:1) at room temperature. The bottle was sealed by a piece of plastic film with several tiny holes, thus allowing the slow solvent evaporation at 0 °C. After about two days, several small crystals were observed at the bottom of the bottle. The crystals were collected and subjected to the single crystal X-ray diffraction analysis for the determination of the structure of **5aa**.

X-ray Structure of **5aa** (CCDC 2382195) 50% probability ellipsoids

Empirical formula	$C_{22}H_{19}FO_2$
Formula weight	334.37
Temperature/K	301.00
Crystal system	orthorhombic
Space group	Pna2 ₁
a/Å	11.4103(2)
b/Å	16.6264(3)
c/Å	9.23370(10)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1751.75(5)
Z	4
$ ho_{calc}g/cm^3$	1.268
μ/mm^{-1}	0.707
F(000)	704.0
Crystal size/mm ³	0.2 imes 0.2 imes 0.2
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	9.4 to 136.506
Index ranges	$\textbf{-13} \leq h \leq \textbf{13}, \textbf{-19} \leq k \leq \textbf{20}, \textbf{-11} \leq \textbf{l} \leq \textbf{10}$
Reflections collected	12016
Independent reflections	$3049 [R_{int} = 0.0336, R_{sigma} = 0.0316]$
Data/restraints/parameters	3049/73/226

Goodness-of-fit on F ²	1.027
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0355, wR_2 = 0.0949$
Final R indexes [all data]	$R_1 = 0.0376, wR_2 = 0.0972$
Largest diff. peak/hole / e Å-3	0.15/-0.15

11 References

- (a) K. Livingstone, K. Siebold, S. Meyer, V. M. Heras, C. G. Daniliuc and R. Gilmour, ACS Catal., 2022, 12, 14507–14516; (b) R. Guo, Y.-C. Chang, L. Herter, C. Salome, S. E. Braley, T. C. Fessard and M. K. Brown, J. Am. Chem. Soc., 2022, 144, 7988–7994; (c) H.-M. Wang, H.-L. Shao, A. Das, S. Dutta, H. T. Chan, C. Daniliuc, K. N. Houk and F. Glorius, Science, 2023, 381, 75–81; (d) K. Zhang, S. Tian, W. Li, X. Yang, X.-H. Duan, L.-N. Guo and P. Li, Org. Lett., 2024, 26, 5482–5487.
- (a) M. Xu, Z. Wang, Z. Sun, Y. Ouyang, Z. Ding, T. Yu, L. Xu and P. Li, *Angew. Chem.*, *Int. Ed.*, 2022, 61, e20221450; (b) K. Dhake, K. J. Woelk, J. Becica, A. Un, S. E. Jenny and D. C. Leitch, *Angew. Chem.*, *Int. Ed.*, 2022, 61, e202204719.
- 3 G.-X. Zhang, D.-S. Li, F. Xue, A.-F. Chen and H.-P. Deng, Adv. Synth. Catal., 2023, 365, 4603–4608.
- 4 J. Tian, L. Zhou and *Chem. Sci.*, 2023, **14**, 6045–6051.
- 5 F. Chen, X. Xu, Y. He, G. Huang and S. Zhu, Angew. Chem., Int. Ed., 2020, 59, 5398 5402.
- 6 D. Wu, W. Kong, Y. Bao, D Zhao, Y. Li and G. Yin, *Nat. Catal.*, 2023, **31**, 1030-1041.
- 7 M. Chen, Z.-J. Wu, J. Song and H.-C. Xu, Angew. Chem., Int. Ed., 2022, 61, e202115954.
- 8 C. S. Gravatt, L. Melecio-Zambrano and T. P. Yoon, *Angew. Chem., Int. Ed.*, 2021, **60**, 3989–3993.
- 9 L. Tang, Y. Xiao, F. Wu, J.-L. Zhou, T.-T. Xu and J.-J. Feng, Angew. Chem., Int. Ed., 2023, 62, e202310066.
- 10 Z. Ding, Z. Liu, Z. Wang, T. Yu, M. Xu, J. Wen, K. Yang, H. Zhang, L. Xu and P. Li, J. Am. Chem. Soc., 2022, 144, 8870–8882.
- 11 J.-H. Zhang, H.-J. Miao, J.-Y. Li, W. Li, P. Ma, X.-H. Duan and L.-N. Guo, *Chem. Commun.*, 2024, **60**, 8095–8098.
- 12 J. Qian, Y. Zhang, W. Zhao and P. Hu, Chem. Commun., 2024, 60, 2764–2767.

12 ¹H NMR, ¹⁹F NMR and ¹³C NMR Spectra of Products

¹H NMR (400MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) spectra of product **1n**

 1 H NMR (400MHz, CDCl₃), 13 C NMR (100 MHz, CDCl₃) spectra of product 1r

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 2b

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 2c

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 2f

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 2g

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 2k

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 2l

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 2m

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 20

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3aa**

 ^1H NMR (400MHz, CDCl₃), ^{19}F NMR (376 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of product **3ba**

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ca

 ^1H NMR (400MHz, CDCl_3), ^{19}F NMR (376 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product **3da**

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ea**

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <th1</th>
 <th1</th>
 <th1</th>
 <th1</th>

 ^1H NMR (400MHz, CDCl_3), ^{19}F NMR (376 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product **3fa**

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ga

 ^1H NMR (400MHz, CDCl_3), ^{19}F NMR (376 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product **3ha**

 1 H NMR (400MHz, CDCl₃), 19 F NMR (376 MHz, CDCl₃) and 13 C NMR (100 MHz, CDCl₃) spectra of product **3ia**

 ^1H NMR (400MHz, CDCl_3), ^{19}F NMR (376 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product **3ja**

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ka

 ^1H NMR (400MHz, CDCl_3), ^{19}F NMR (376 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product **3la**

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ma**

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3na**

 1 H NMR (400MHz, CDCl₃), 19 F NMR (376 MHz, CDCl₃) and 13 C NMR (100 MHz, CDCl₃) spectra of product **30a**

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3pa**

 ^1H NMR (400MHz, CDCl₃), ^{19}F NMR (376 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of product **3ra**

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3sa

 ^1H NMR (400MHz, CDCl₃), ^{19}F NMR (376 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of product **3ab**

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ac**

 ^1H NMR (400MHz, CDCl_3), ^{19}F NMR (376 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product **3ad**

 1 H NMR (400MHz, CDCl₃), 19 F NMR (376 MHz, CDCl₃) and 13 C NMR (100 MHz, CDCl₃) spectra of product **3ae**

 ^1H NMR (400MHz, CDCl_3), ^{19}F NMR (376 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product **3af**

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ag**

 1 H NMR (400MHz, CDCl₃), 19 F NMR (376 MHz, CDCl₃) and 13 C NMR (100 MHz, CDCl₃) spectra of product **3ah**

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ai**

 ^1H NMR (400MHz, CDCl₃), ^{19}F NMR (376 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of product **3aj**

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ak**

 1 H NMR (400MHz, CDCl₃), 19 F NMR (376 MHz, CDCl₃) and 13 C NMR (100 MHz, CDCl₃) spectra of product **3al**

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3am**

 1 H NMR (400MHz, CDCl₃), 19 F NMR (376 MHz, CDCl₃) and 13 C NMR (100 MHz, CDCl₃) spectra of product **3an**

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ao**

 ^1H NMR (400MHz, CDCl₃), ^{19}F NMR (376 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of product **3ap**

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3aq

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ar**

 1 H NMR (400MHz, CDCl₃), 19 F NMR (376 MHz, CDCl₃) and 13 C NMR (100 MHz, CDCl₃) spectra of product **4aa**

 ^1H NMR (400MHz, CDCl_3), ^{19}F NMR (376 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product **5aa**

 ^1H NMR (400MHz, CDCl_3), ^{19}F NMR (376 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product **6ka'**

¹H NMR (400MHz, DMSO-d6), ¹⁹F NMR (376 MHz, DMSO-d6) and ¹³C NMR (100 MHz, DMSO-d6) spectra of product **7**la

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <th1</th>
 <th1</th>
 <th1</th>
 <th1</th>

 ^1H NMR (400MHz, CDCl_3), ^{19}F NMR (376 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product **8la**

 1 H NMR (400MHz, CDCl₃), 19 F NMR (376 MHz, CDCl₃) and 13 C NMR (100 MHz, CDCl₃) spectra of product **9**la

¹H NMR (400MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **10**a

