Supporting Information *for*

Crystal Facet Regulation and Ru Incorporation of Co₃O₄ for Acidic Oxygen Evolution Reaction Electrocatalysis

Mengting Zhao, Hanfeng Liang*

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry

and Chemical Engineering, Xiamen University, Xiamen 361005, China

*Email: hfliang@xmu.edu.cn

Figure S1. (a) TEM image and (b) SAED pattern of the *h*-Co₃O₄.

Table S1. Surfce Co^{3+}/Co^{2+} ratio of the *c*-Co₃O₄, *o*-Co₃O₄ and *h*-Co₃O₄ based on XPS analysis.

Catalyst	Co^{3+} (%)	Co^{2+} (%)	C0 ³⁺ /C0 ²⁺
c-C03O4	55.01	44.99	1.22
0-C03O4	57.05	42.96	1.33
<i>h</i> -C03O4	59.56	40.54	1.47

Figure S2. Atomic configuration of Co_3O_4 (a) {100}, (b) {111} and (c) {220} crystal faces and (d-e) the corresponding crystal plane projections. The white spheres in S2c represent false atoms that pass through the crystal surface and do not actually exist.

Table S2. Co^{3+}/Co^{2+} ratio of the *c*-Co₃O₄, *o*-Co₃O₄ and *h*-Co₃O₄ based on Raman analysis.

Catalyst	Co ³⁺ /Co ²⁺	
c-C03O4	2.72	
<i>0</i> -C03O4	3.11	
<i>h</i> -C03O4	3.65	

Figure S3. SEM images of the *c*-Co₃O₄, *o*-Co₃O₄ and *h*-Co₃O₄ after the OER catalysis.

Figure S4. Co 2p_{3/2} XPS spectra of (a) *c*-Co₃O₄ (b) *o*-Co₃O₄ and (c) *h*-Co₃O₄.

Figure S5. XRD pattern of carbon paper.

Figure S6. CV curves of (a) h-Co₃O₄ and (b) Co₃O₄/RuO₂ at different scanning rates.

Figure S7. Structural and electrochemical characterization of (a-c) o-Co₃O₄ and (b-d) c-Co₃O₄: (a, d) SEM images, (b, e) LSV curves, and (c, f) chronopotentiometry curves collected at 10 mA cm⁻².

Figure S8. XRD patterns of Co₃O₄/RuO₂ before and after test.

Enerav (KeV)

Figure S9. (a) TEM image and (b) EDS spectrum of the Co_3O_4/RuO_2 after chronopotentiometry test.

Figure S10. (a) Co 2p, (b) Ru 3p, and (c) O 1s XPS spectra of the Co₃O₄/RuO₂ before and after the chronopotentiometry test.