Nanoparticles co-delivering mRNA and siRNA for simultaneous restoration and silencing of gene/protein expression *in vitro* and *in vivo*

Shireesha Manturthi^{1,3,4&}, Sara El-Sahli^{2,4,5&}, Yuxia Bo^{1,2,3}, Emma Durocher^{1,3,4,5}, Melanie Kirkby^{2,4,5}, Alyanna Popatia^{2,4,5}, Karan Mediratta^{2,4,5}, Redaet Daniel^{2,4,5}, Seung-Hwan Lee^{2,4,5}, Umar Iqbal⁶, Marceline Côté^{2,4,5}, Lisheng Wang^{2,4,5*}, Suresh Gadde^{1,3,4,5,7*}

- 1. Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- 2. Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- 3. Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- 4. Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- 5. Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- 6. Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
- 7. Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, ON K1S 5B6, Canada

& Contributed equally

*Corresponding Authors

Suresh Gadde, <u>Suresh.Gadde@uottawa.ca</u> Lisheng Wang, <u>Lisheng.Wang@uottawa.ca</u>

Supplementary information

PEI-C ₁₄ synthesisFigure S1
PEI-C ₁₄ H-NMR characterizationFigure S2
Cy5-siRNA+EGFP-mRNA-NPs characterizationFigure S3
PDI of all NPsFigure S4
Flow cytometry analysis of Cy5 and EGFP expression in HT1080Figure S5-7
Flow cytometry analysis of GFP knockdown in GFP+ cells with single and dual-drug NPs
Percentage (quantitative graph) of GFP knockdown in GFP+ cells with single and dual- drug NPsFigure S10
Luciferase analysis with single-drug and dual-drug NPs in GFP+ and GFP- cells respectively

Figure S1. PEI-C₁₄ lipid synthetic route: epoxide ring opening by polyethylenimine in presence of ethanol and toluene solvents at 70 $^{\circ}$ C.

Figure S2. ¹H (400 MHz Bruker AVANCE) NMR Spectrum of PEI-C₁₄ lipid; ¹H NMR (400 MHz, CDCl₃) δ 3.71 – 3.30 (m, 4H), 2.91 – 2.10 (m, 26H), 1.51-1.24 (d, m 171H), 0.92 – 0.76 (m, 18H).

Figure S3. (A) Size of Cy5-siRNA+EGFP-mRNA-NPs along with control-NPs, measured by diluting 20 μ L of NP in 980 μ L sterile water using Dynamic light scattering n=3. (B) Stability of Cy5-siRNA+EGFP-mRNA-NPs in different percentages of FBS; NPs incubated for 6 hours and measured the size; n=3 (ns-no significant difference). (C) Surface of Cy5-siRNA+EGFP-mRNA-NPs along with control-NPs, measured by diluting 20 μ L of NP in 980 μ L sterile water using Dynamic light scattering n=3. (D) Size and morphology of Cy5-siRNA+EGFP-mRNA-NPs by transmission electron microscopy (scale bar-50 nm).

Figure S4. PDI (polydispersity index) of all single and dual NPs formulations analysed by DLS; n=3.

Figure S5. Representative flow cytometry histogram showing GFP (A) and Cy5 (B) expression in HT1080 cells after treated with (48 h post-treatment) Cy5-siRNA +EGFP-mRNA-NPs and Empty-NPs (control is non-treated).

Figure S6. Cy5-siRNA+EGFP-mRNA-NPs or Empty-NPs treated to HT1080 cells. Representative flow cytometry histogram showing dual-drug in single plot, GFP population in x-axis and Cy5 population in y-axis; control is non-treated.

Figure S7. Representative flow cytometry SSC-A plots showing GFP (A), and Cy5 (B) expression in HT1080 cells 48 h post-treatment with Cy5-siRNA+EGFP-mRNA-NPs and Empty-NPs (control are non-treated).

Figure S8. Single or dual-NPs along with Empty-NPs treated to HT1080 GFP (+) cells and 48 h post-treatment, the count of GFP knockdown was quantified by flow cytometry; (A) FSC-

A plots; (B) histograms representing count of GFP knockdown cells. HT1080 cells used as positive control.

Figure S9. Single or dual-NPs along with Empty-NPs treated to MDA-MB-231 GFP (+) cells and 48 h post-treatment, the count of GFP knockdown was quantified by flow cytometry; histograms representing count of GFP knockdown cells. MDA-MB-231 cells used as positive control.

Figure S10. Percentage of GFP knockdown in (A) HT1080 GFP+ (B) MDA-MB-231 GFP+ was quantified with flow cytometry analysis; n=3 (Data represent means \pm SD, ****p < 0.0001 ***p < 0.001).

Figure S11. (A) Single drug (M)-NPs (0.016 nmol) and Empty-NPs (10 μ M) treated to HT1080 GFP+ and MDA-MB-231 GFP+ cells, and 48 h post-treatment luciferase (RLU) measured by plate reader n=3 (Data represent means ± SD, *p < 0.05 ***p < 0.001). (B) HT1080 and MDA-MB-231 cells treated with (M+S)-NPs co-loaded with siRNA-GFP (1 nmol) and Luc mRNA (0.016 nmol) for 48 h, luciferase (RLU) measured by plate reader n=3 (Data represent means ± SD, *p < 0.05 **p < 0.05 **p < 0.01).

References

1. Billingsley, M. M.; Singh, N.; Ravikumar, P.; Zhang, R.; June, C. H.; Mitchell, M. J. Ionizable Lipid Nanoparacle-Mediated mRNA Delivery for Human CAR T Cell Engineering. Nano LeM 2020, 20 (3), 1578-1589. DOI: 10.1021/acs.nanole`.9b04246 From NLM Medline