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Theoretical detail in modes generation mechanism  

Referring to the wave equation for electromagnetic waves in cylindrical 

coordinates (𝑟, 𝜙, 𝑧): 

∇2𝐸 + k2𝐸 = 0.                       (1) 

Since the electric field is cylindrically symmetric, we can separate variables in the 

wave equation: 

𝐸(𝑟, 𝜙, 𝑧) = 𝑅(𝑟)𝛷(𝜙)𝑍(𝑧).                (2) 



This results in independent equations for the radial, angular, and axial 

components. The radial part of the equation can be expressed as Bessel's 

differential equation: 
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Its solution is the Bessel function: 

𝑅(𝑟) = 𝐽𝑚(𝑘𝑟) = 0,                   (4) 

where 𝐽𝑚 is the Bessel function of the first kind of order m, and 𝑘𝑟 is the radial 

wave vector. 

The azimuthal part satisfies the following equation: 

d2Φ

𝑑𝜙2 + 𝑚2Φ = 0.                    (5) 

Its solution is 𝛷(𝜙) = 𝑒𝑖𝑚𝜙. Since the thickness of the microring is very small, 

the axial mode distribution can be neglected. Combining all the parts and 

including the time dependence, the wave function of the radial mode can be 

expressed as: 

𝛹Radial(𝑟, 𝜙, 𝑡)

= 𝐴𝐽𝒎(𝑘𝑟𝑅)𝑒𝑖𝒎𝜙𝑒−𝑖𝜔𝑡.                               (6) 

 

Under typical conditions, the dominant radial mode can be estimated using the 

effective refractive index neff, boundary conditions R, and the gain wavelength 

range of the active material. The leading radial mode is determined by identifying 

the azimuthal order that satisfies 𝐽𝒎(𝑘𝑟𝑅)=0. It can also be reduced to the 

propagation of wave vectors, where the propagation of radial wave vectors still 

satisfies the generation of conventional standing wave modes. The radial wave 

vector 𝑘𝑟 is given by 𝑘𝑟 =
ξ𝒎,𝒏 

𝑅
, where ξm,𝐧 are the solutions of 𝐽𝒎(𝑘𝑟𝑅)=0, 

and 𝒎 = 0 or 1 . Additionally, for a given microring, the wave vector is related 

to the standing wave condition as: 𝑘𝑟 =
2𝜋𝑛𝑒𝑓𝑓 

𝜆
. Rearranging, we get: ξ𝐦,𝐧𝜆 =



2𝜋𝑛eff . For integer n, this can be written as 2𝑅𝑛eff = 𝒏𝜆, which is also the 

standing wave condition in a cavity length with 2R. The free spectral range (FSR) 

of the fundamental modes is: 

 Δ𝜆radial =

𝜆2

4𝑛eff𝑅
.                                                           (7)   

 

In microrings with small radii, radial modes are primarily governed by low-order 

Bessel functions. The zero-order Bessel function exhibits a peak at the center of 

the circle (R=0). Due to the characteristics of the zero-order Bessel function and 

the first-order Bessel function—the zero-order Bessel function is peaked at the 

center of the circle, while the first-order Bessel function is zero at the center of 

the circle and is symmetric about the center—it can be further concluded that for 

radial modes, the modes can be described by the zero-order Bessel function (𝐽𝟎) 

when the optical length is an odd multiple of the light wavelength (odd mode), 

while the modes can be described by the first-order Bessel function (𝐽𝟏) when the 

optical length is an even multiple of the mode wavelength (even mode)1. These 

modal properties are influenced by the boundary conditions and neff of the 

microring, which together determine whether the fundamental mode within a 

given wavelength range is an even or odd mode. In conclusion, for an active 

cladding microring, the dominant radial mode can be estimated using the neff, 

boundary conditions, and the gain wavelength range of the active material. 

  

Moreover, in this active layer, light waves do not undergo total internal reflection 

at the junction between the circular active layer and the microring, which is 

necessary for the formation of whispering gallery modes (WGMs). This occurs 

because light is not reflected when it travels from the low refractive index of the 

active layer into the high refractive index of the microring; instead, it is scattered 



into the microring. As a result, there is no WGM propagating along the edges of 

the active layer, and no high-order WGMs are formed. However, as the 

dimensions increase and the modes become more complex, the emergence of 

radial modes with high azimuthal order is expected. 

 

When the light wave propagates in a high 𝑛eff  microring, the radially 

propagating wavevector 𝑘𝑟  is gradually transformed into an angularly 

propagating wavevector 𝑘𝜙 after many reflections. This transformation occurs 

due to the microring's geometry and boundary conditions, which guide the light 

within the ring. In such microrings, the light wave is confined and propagates 

minimally in the radial direction due to the narrow ring width, while it resonates 

along the circumference. Each reflection reduces the radial component 𝑘𝑟 as the 

light path adjusts to maximize its length within the ring 2. The microring supports 

specific resonant modes, particularly WGMs, where light circulates the 

circumference with minimal radial leakage. This resonance favors propagation 

paths with strong angular components, aligning the wavevector more with the 

ring's circumference over time. Consequently, the energy of the radial mode is 

converted into the energy of the angular mode, forming a WGM.  

 

The wave travels in the circumferential direction, undergoing total internal 

reflection along the outer sidewall, with the field being radially confined. This 

primarily results in standing waves forming in the angular direction. The angular 

mode number 𝑚 represents the number of wavelengths around the circumference 

and corresponds to the order of the Bessel function. The angular phase transition 

translates into an angular wave vector 𝑘𝜙 =
𝒎

𝑅
, representing the propagation 

constant in the circumferential direction. In the radial direction, only one node 



exists, corresponding to the first zero of this type of Bessel function. The radial 

wave vector 𝑘𝑟 =  
ξ𝐦,1 

𝑅
. The wave function of the WGM can be expressed as: 

𝛹WGM(𝑟, 𝜙, 𝑡) = 𝐴𝐽𝒎(𝑘𝑟𝑅)𝑒𝑖(𝒎𝜙−𝜔𝑡)

=   𝐴𝐽𝒎(ξ𝐦,1)𝑒𝑖(𝑘𝜙𝑅𝜙−𝜔𝑡).          (8) 

The angular wave vector 𝑘𝜙 =
𝒎

𝑅
 also satisfies 𝑘𝜙 =

2𝜋𝑛𝑒𝑓𝑓 

𝜆
 as a propagating 

constant. For integer m, it satisfies 2𝜋𝑅𝑛eff = 𝒎𝜆, and the FSR of the WGMs 

is:  

Δ𝜆WGM

=
𝜆2

2𝜋𝑛eff𝑅
.                                                                          (9) 

In summary, this simulation highlights the formation of cylinder waves formation 

in micoring structures with an out-clad active layer. The next part mainly 

discusses how the grating structure influences the cylinder waves. 

 

According to Huygens' principle, when light is incident on a grating, the 

secondary spherical waves produced by each grating element interfere with each 

other, forming an interference pattern. Each grating element has a fixed phase 

difference in the angular direction, resulting in constructive interference of the 

secondary waves in specific directions determined by the grating period, thereby 

producing enhanced light intensity at these positions, known as the diffraction 

maxima. At this point, the wave vector points towards the distribution of the 

diffraction maxima. When the bulk wave from the center of the microring, 

described by a Bessel function, is incident on the microring and the azimuthal 

grating, cylindrical waves with angular and radial wave vector components are 

produced, and the resonance mode is related to the grating period.  

 



For radial modes, the boundary condition of the microring is not simply R but can 

be described by 𝑅(𝜙) = 𝑅 − 𝑑𝑔cos (𝑴𝜙), where 0≤𝜙<2π, 𝑑𝑔  is the grating 

depth, and M is the number of grating elements. The radial mode can then be 

described by the following formula: 

𝛹Radial(𝑟, 𝜙, 𝑡)

= 𝐴𝐽𝒎(𝑘𝑟(𝑅

− 𝑑𝑔 cos(𝑴𝜙)))𝑒𝑖𝒎𝜙𝑒−𝑖𝜔𝑡.                 (10) 

By simplifying this complex secondary wave interference to the wave vector 

condition, and when the microring size is relatively large (i.e., the curvature is 

much larger than the grating period, with the number of grating elements around 

the microring exceeding 50 3,4), the CMT for DFB structure can be used to 

simplify the calculation on how the grating parameter influence the guide-mode 

resonance (GMR) mode.  

 

However, it is necessary to quantitatively evaluate and compensate for the 

bending loss for diffraction waves propagating on the grating. For the microring 

and grating, the bending loss coefficient of a curved waveguide can be simplified 

and evaluated by α=Ae(-B/R) 5, where A and B depend on the material properties. 

Furthermore, when light is incident radially (at an incident angle of 0˚) and the 

substrate thickness beneath the grating is very small, resulting in negligible phase 

shift, multiple diffraction orders emerge in various directions, with the first-order 

and second-order diffractions being the most prominent. According to the Bragg 

condition, the first-order diffraction exits radially (with a diffraction angle of 0˚), 

while the second-order diffraction exits angularly (with a diffraction angle of 90˚). 

Within the microring, light primarily propagates in the angular direction, allowing 

the second-order diffraction to more easily couple with the propagating light and 

resonate, forming GMR modes. Considering the bending loss of the grating during 



feedback, the wavelength of the GMR is determined by the Bragg condition for 

the bent second-order diffraction, expressed as: 

𝜆GMR

= (1

− 𝛼)𝑛eff𝛬.                                                                 (11) 

 

Simulation on OAM WGMs carried.  

When the WGMs in the microring possess an azimuthal mode number 𝑚, the 𝑀 

numbers of grating elements on the inner wall periodically modulate the phase of 

the optical field. This modulation effect can be understood as the phase 

accumulation of the optical field along the circular path. If 𝑀 = 𝑚+l, then after 

modulation by the gratings in the microring, the phase of the optical field will 

accumulate an additional phase shift of 2πl. This extra phase shift causes the 

scattered optical field to carry 𝑙 units of topological charge, thereby generating an 

OAM-carrying beam with a topological charge of 𝑙. This is the reason why grating 

integrated microrings are used as the usual method for integratable OAM emitters. 

 

 However, WGMs exhibit both Transverse Magnetic (TM) and Transverse 

Electric (TE) modes, which can propagate in both clockwise (CW) and 

counterclockwise (CCW) directions. From simulation results on microring 

without grating, the eigen TM modes around 600 nm have an azimuthal mode 

number 𝑚=98, and the eigen TE modes around 600 nm have an azimuthal mode 

number 𝑚=83. The difference in 𝑚 between TE and TM modes is due to different 

neff, respectively. In this structure, the neff of TM modes is lower because their 

electric field is distributed in the microring core and the lower refractive index 

active coating and substrate. Figures S1(A) and S1(C) show the normalized xy-

component and phase image of the electric field for the TE mode with a 

topological charge 𝑙=1 (M=84). When subjected to periodic scatterer modulation, 



these components interact to form a complex interference pattern. This 

modulation results in an interference field resembling a radial mode, indicating 

stronger coupling between the radial mode and WGM due to scattering from the 

grating. The phase image shown in Fig. S1(C) demonstrates the interference of 

phase variations in the CW and CCW directions, leading to mutual cancellation 

and resulting in negligible OAM. 

 

Figures S1(B) and S1(D) display the normalized z-component and phase image 

of the electric field for the TM mode with a topological charge 𝑙=1(M=99). Here, 

the electric field is oriented axially, and the phase variations directly add up, 

unaffected by the cancellation effects seen in the TE mode. This results in a helical 



phase structure, as shown in the phase image in Fig. S1(D), indicating a layering 

of phase shift from −𝜋 to 𝜋 in the CW and CCW directions. 

 

From the simulation, it is evident that TM modes are more effective at generating 

significant OAM through cumulative phase variations. However, separating the 

left-rotating and right-rotating components remains challenging. A common 

method for distinguishing their helical directions involves interference with right-

hand circularly polarized (RHCP) or left-hand circularly polarized  (LHCP) 6 

beams. Meanwhile, the radial mode exhibits characteristics similar to a scalar 

Bessel beam 7. The simulation shows that a zero-order Bessel beam is generated 

due to inner wall reflections and guided-mode resonance. For real samples, it is 

 

Figure S1. Simulation results on scatter field with topological charge l=1: (A) 

normalized xy-component of the electric field (TE mode), (B) normalized z-

component of the electric field (TM mode), (C) phase image of the xy-component 

of the electric field (TE mode), (D) phase image of the z-component of the electric 

field (TM mode).  



anticipated that higher-order radial modes will appear as the microring size 

increases. Higher-order Bessel beams contain angular components, which lead to 

phase shifts and the transmission of orbital angular momentum. Studies have 

investigated separating OAM from Bessel beams based on radial direction shape 

asymmetry 8. 

 

Fabrication process  

The fabrication of grating integrated Si3N4 microring lasers is shown in Fig. S2. 

The microrings were formed from Si3N4 deposited on SiO2 above a Si substrate 

by electron-beam lithography (EBPG5150, Raith GmbH) and subsequent 

reactive ion etching (Oxford PlasmaPro 80). Si3N4 is a suitable material for 

lithography and etching of nanoscale structures because of its hardness and 

stability. The thickness of the ring was 200 nm. The active layer consisted of 

triazine hyperbranched polymer with 𝑛eff = 1.78 (TZ-001, Nissan Chemical 

Co., Ltd.), doped with pyrromethene 597 (Exciton) dye with a 6.5 mM 

 

Figure S2. Procedure to manufacture active-cladding grating-integrated 

microring laser. 



concentration (before spin-coating). Our research lab has previously conducted 

research on printable dye-doped lasers 9, in which TZ-001, as a material adapted 

to laser dyes, has shown good performance in terms of dye degradation and 

stability. The active cladding thickness was set to ~200 nm by modifying the 

spin-coat rotation speed.  

 

Experimental Setup 

The experimental setup for excitation is shown in Fig. S3. Optical stimulation 

was achieved by second-harmonic generation on a Q-switched Nd: YAG laser 

(PNP-M08010-120, Teem Photonics) with a pulse repetition rate of 10 Hz and 

an operating wavelength of 532 nm. The pumping energy was nearly 0.00134 

J/cm2, varying marginally for different samples. The microring laser devices 

were placed on a microscope stage to facilitate excitation and light collection 

through confocal microscopy. A long-pass filter blocking 532 nm light ensured 

that the spectrometer captured only light from the microring laser.  

 

 

 

 

 

Figure S3. Schematic of the experimental setup of photoexcitation of the 

grating-integrated microring laser.  
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