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Abstract 
Artificial intelligence (AI) is revolutionizing scientific discovery because of its super capability, following 

the neural scaling laws, to integrate and analyze large-scale datasets to mine knowledge. Foundation 
models, large language models (LLMs) and large vision models (LVMs), are among the most important 

foundations paving the way for general AI by pre-training on massive domain-specific datasets. 
Different from the well annotated, formatted and integrated large textual and image datasets for LLMs and 

LVMs, biomedical knowledge and datasets are fragmented with data scattered across publications and 

inconsistent databases that often use diverse nomenclature systems in the field of AI for Precision Health 

and Medicine (AI4PHM). These discrepancies, spanning different levels of biomedical organization from 
genes to clinical traits, present major challenges for data integration and alignment. To facilitate foundation 

AI model development and applications in AI4PHM, herein, we developed BioMedGraphica, an all-in-one 

platform and unified text-attributed knowledge graph (TAKG), consists of 3,131,788 entities and 

56,817,063 relations, which are obtained from 11 distinct entity types and harmonizes 29 
relations/edge types using data from 43 biomedical databases. All entities and relations are labeled a 

unique ID and associated with textual descriptions (textual features). Since covers most of research 
entities in AI4PHM, BioMedGraphica supports the zero-shot or few-shot knowledge discoveries via 

new relation prediction on the graph. Via a graphical user interface (GUI), researchers can access the 

knowledge graph with prior knowledge of target functional annotations, drugs, phenotypes and diseases 

(drug-protein-disease-phenotype), in the graph AI ready format. It also supports the generation of 

knowledge-multi-omic signaling graphs to facilitate the development and applications of novel AI models, 

like LLMs, graph AI, for AI4PHM science discovery, like discovering novel disease pathogenesis, signaling 
pathways, therapeutic targets, drugs and synergistic cocktails. 
Keywords: biomedical knowledge graph; precision medicine; graph AI models, knowledge graph 

integration and generation  
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1 Background and Summary 
In recent years, the exponential growth of biomedical data has created unprecedented opportunities to 

advance research, improve clinical decision-making, and accelerate drug discovery. However, the 

landscape of biomedical knowledge remains highly fragmented, with essential information dispersed across 

a multitude of publications, databases, and proprietary datasets. This fragmentation presents significant 

challenges as different sources often employ inconsistent nomenclature and terminologies, hindering 

effective data integration1. The vast scope of biomedical data—from genes and proteins to clinical 
phenotypes and diseases—complicates the development of unified solutions, particularly in terms of entity 

matching and data harmonization. As a result, several knowledge graph systems have been developed to 

integrate this extensive array of data resources, aiming to merge information across the spectrum of 

biomedical domains2–7. However, existing knowledge graphs struggle to reconcile entities across these 

diverse, heterogeneous datasets, which are often noisy, inconsistent, and formatted in various ways. 

Without harmonizing nomenclature systems over multiple resources in biomedical domains, most current 

systems lack comprehensive coverage of biomedical resources, which leads to failure on implementing 

efficient matching algorithms, and rely heavily on manual work, making them less efficient for large-scale 
data integration. As a result, converting unstructured data into formats suitable for graph-based artificial 

intelligence (AI) models becomes an onerous task, and existing tools (e.g., mosGraphGen8, IntergAO9) 

require extensive manual curation, limiting their scalability.  

 
To address these challenges, BioMedGraphica was developed as an advanced platform that transforms 

the integration and utilization of biomedical data. By integrating data from 43 high-quality biomedical 

databases, we unify 11 key biomedical entity types—ranging from promoters, genes, transcripts, proteins, 

signaling pathways, metabolites and microbiotas to clinical phenotypes, diseases, and drugs—and 29 

relations / edge types into a cohesive knowledge graph, resulting in 3,131,788 entities and 56,817,063 
relations. With harmonizing over multiple knowledge bases, this study provides one of the most 
comprehensive biomedical knowledge graphs available today, enabling large-scale exploration of biological 

and clinical relations. Another core innovation is the use of language models, such as BioBERT10, to 

generate high-quality embeddings that facilitate soft matching of phenotype, disease and drug entities 

across datasets. This approach enhances entity recognition by ranking potential matches based on 

similarity scores, allowing for more accurate and flexible integration compared to traditional rule-based 

methods. This machine learning-driven algorithm is particularly effective in addressing the variability and 

subtle differences inherent in biomedical data, providing greater precision in data harmonization. 

 
The platform also distinguishes itself by offering a user-friendly, Windows-based client software with an 

intuitive graphical user interface (GUI). This interface allows researchers, clinicians, and data scientists to 

input heterogeneous biomedical datasets and receive integrated, structured outputs that are ready for 

graph-based AI applications. By lowering the barrier to entry, it fosters the widespread adoption of 
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knowledge graph technologies in both research and clinical settings, significantly accelerating translational 

research. Its ability to generate AI-ready datasets from complex inputs facilitates discoveries in areas such 

as biomarker identification, drug target exploration, disease etiology, and the development of personalized 

therapeutic strategies. Moreover, the platform is designed with scalability in mind. Its low coupling in entity 
space and streamlined software pipeline allow for continuous updates and integration of new data sources, 

ensuring that it remains up-to-date and highly relevant as biomedical knowledge expands. By addressing 

critical issues such as data fragmentation, inconsistent terminologies, and entity recognition, it provides a 

powerful tool for exploring complex biological systems and deriving new insights into disease mechanisms, 

treatment responses, and personalized medicine. Through its innovative application of machine learning 

and natural language processing (NLP) techniques, the platform not only pushes the boundaries of 

precision healthcare but also contributes to the next generation of biomedical research. By tackling key 

obstacles to data harmonization and entity recognition, this research empowers researchers and clinicians 
to better understand complex biological systems and accelerates the development of new therapeutic 

strategies. With its comprehensive and scalable architecture, BioMedGraphica stands at the forefront of 

efforts to integrate and utilize the vast and growing body of biomedical data. 

 
2 Methods 
2.1 Overview of Data Resources Used in BioMedGraphica 
2.1.1 Entity Databases Introduction and Collection 
A wide range of reputable biomedical databases were utilized to gather and integrate various types of data 

related to genes, transcripts, proteins, and other biomedical entities. This comprehensive integration 

ensured data consistency and accuracy, creating a unified framework essential for research. As shown in 

Table 1, the total number of entries in the original data file from each respective database were listed. For 

the ChEBI (Chemical Entities of Biological Interest) database, we utilized two primary datasets: one 

provided the mapping between ChEBI IDs and their corresponding InChI, while the other contained the 

mapping between ChEBI IDs and another database. For UNII (Unique Ingredient Identifier) database, our 

source data was obtained from two origins: one from PubChem, and the other provided by the FDA. For 
SILVA, we selected the LSU and SSU datasets. Similarly, for GTDB (Genome Taxonomy Database), we 

selected the data for both Archaea and Bacteria. The total number of entries after merging is indicated, with 

the individual row counts for each dataset provided in parentheses. Below is an expanded description of 

the databases used and the extracted data (see data overall details in Table 1 and details of data resources 

in supplementary section A).  

Table 1. Overview of Entity Databases 
Database Names Full Names Entity Types Total Number of Rows 

Ensembl11 Ensembl Gene 70,614 

Transcript 318,178 

Protein 150,346 
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OMIM12 Online Mendelian Inheritance in Man Gene 28,833 

HGNC13 HUGO Gene Nomenclature Committee Gene 43,861 

NCBI14 National Center for Biotechnology Information Gene 68,932 

Microbiota 2,614,590 

RefSeq15 NCBI - Reference Sequence Database Gene 844,996 

Transcript 19,352 

Protein 320,530 

RNACentral16 RNACentral Transcript 66,789 

UniProt17 Universal Protein Resource Protein 20,428 

Reactome18 Reactome Pathway 2,711 

KEGG19 Kyoto Encyclopedia of Genes and Genomes Pathway 359 

WikiPathways20 WikiPathways Pathway 1,510 

Pathway Ontology21 Pathway Ontology Pathway 2,677 

ComPath22 Comparative Pathology Platform of the University of Bern Pathway 1,592 

HMDB23 Human Metabolome Database Metabolite 217,920 

ChEBI24 Chemical Entities of Biological Interest Metabolite 5,750 

393,172 

Drug 44,924 

225,102 

SILVA25 SILVA Microbiota 2,214,227(227318; 2,224,690) 

Greengenes26 Greengenes Microbiota 1,144,866 

RDP27 Ribosomal Database Project Microbiota 10,302 

GTDB28 Genome Taxonomy Database Microbiota 596,859(12,477; 584,382) 

CTD29 The Comparative Toxicogenomics Database Exposure 179,179 

ToxCast30 Toxicity Forecasting Exposure 9,403 

ChemIDplus31 Chemical Identification Plus Database Exposure 409,325 

HPO32 Human Phenotype Ontology Phenotype 22,789 

ICD10 / ICD1133,34 International Classification of Diseases Disease 12,597 / 36,044 

DO35 Disease Ontology Disease 38,037 

MeSH36 Medical Subject Headings Disease 5,032 

UMLS37 Unified Medical Language System Disease 14,036,386 

SNOMED-CT38 Systematized Nomenclature of Medicine Clinical Terms Disease 204,464 

Mondo39 Mondo Disease 134,406 

PubChem40 Public Chemical Databases Drug 123,155 

CAS41 Chemical Abstracts Service Drug 447,699 

NDC42 National Drug Code Drug 113,850 

UNII43 Unique Ingredient Identifier Drug 154,561 

152,870  

DrugBank44 DrugBank Drug 16,581 

Not only the total number of entries after merging the two files were presented, but also the total number of 

rows were indicated for each dataset in parentheses.  
 
2.1.2 Relation Database Introduction and Collection 
This study integrates not only entity datasets but also a comprehensive range of relational datasets, 

facilitating the exploration of various biological and chemical interactions. These relational datasets capture 

complex relations between genes, transcripts, proteins, drugs, diseases, phenotypes, pathways, 
metabolites, and microbiotas, supporting advanced analyses in precision health (check data overall details 

in Table 2 and Table S1 for data collection details in supplementary section). 
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Table 2. General Information about Relation Databases 
Database Names Full Names From To Edge Types Number of Rows 

Ensembl11 Ensembl Gene Transcript Gene-Transcript 278,220 

Transcript Protein Transcript-Protein 123,540 

RefSeq15 Reference Sequence Database Gene Transcript Gene-Transcript 33,401 

 Transcript Protein Transcript-Protein 30,193 

UniProt17 Universal Protein Database Transcript Protein Transcript-Protein 81,757 

 Protein Disease Protein-Disease 204,411 

BioGrid45,46 Biological General Repository for 

Interaction Datasets 

Protein Protein Protein-Protein 925,035 

STRING47,48 Search Tool for the Retrieval of 

Interacting Genes/Proteins 

Protein Protein Protein-Protein 13,715,404 

KEGG19 Kyoto Encyclopedia of Genes 

and Genomes 

Protein Protein Protein-Protein 52,155 

Protein Pathway Protein-Pathway 21,051 

Drug Pathway Drug-Pathway 3,922 

Pathway Protein Pathway- Protein 24,475 

Pathway Drug Pathway-Drug 2,334 

HPO32 Human Phenotype Ontology Protein Phenotype Gene-Phenotype 312,812 

Protein Disease Gene-Disease 154,16 

Phenotype Phenotype Phenotype-

Phenotype 

19,434 

Phenotype Disease Phenotype-Disease 154,431 

Disease Phenotype Disease-Phenotype 154,431 

DisGeNet49 DisGeNet Protein Disease Protein-Disease 91,484 

DISEASES50 DISEASES Protein Disease Protein-Disease 346,173 

HMDB23 Human Metabolome Database Metabolite Protein Metabolite-Protein 863,759 

Metabolite Disease Metabolite-Disease 24,755 

Drug Metabolite Drug-Metabolite 3,258 

MetaNetX51 MetaNetX Metabolite Metabolite Metabolite- 

Metabolite 

11,723 

DisBiome52 DisBiome Microbiota Disease Microbiota-Disease 616,390 

MDAD53 Microbe-Drug Association 

Database 

Microbiota Drug Microbiota-Drug 5,055 

Drug Microbiota Drug-Microbiota 5,055 

PharmacoMicrobiomics54 PharmacoMicrobiomics Microbiota Drug Microbiota-Drug 69 

Drug Microbiota Drug-Microbiota 69 

CTD29 The Comparative 

Toxicogenomics Database 

Exposure Gene Exposure-Gene 766,820 

Exposure Pathway Exposure-Pathway 1,591,611 

Exposure Disease Exposure-Disease 9,114,984 

DO35 Disease Ontology Disease Disease Disease-Disease 14,172 

DrugBank44 DrugBank Drug Protein Drug-Protein 5,350 

Drug Drug Drug-Drug 2,839,610 

BindingDB55 Binding Database Drug Protein Drug-Protein 1,541,006 

DrugCentral56 DrugCentral Drug Protein Drug-Protein 14,301 

Drug Disease Drug-Disease 42,307 

SIDER57 Side Effect Resource Drug Phenotype Drug-Phenotype 309,849 

The last column represents the total number of rows in the original dataset from each database. 
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2.2 Harmonizing Resources 
As shown in Figure 1, the integrated biomedical knowledge graph system, BioMedGraphica, has been 

proposed. With collected datasets from various sources, the knowledge graph will integrate 11 different 

types of entities from 33 databases into a universal knowledge database. And The promoter entities were 

directly derived from the gene entities because BioMedGraphica, by default, assumes that promoters 

influence genes. In addition, the relationship between those entities were included by harmonizing the 20 

relational databases with 29 edge types. The details of merging and harmonizing can be found in the 
following descriptions. 

 
Figure 1. Overview of BioMedGraphica. Upper panel shows integration of the entities from various 

databases. Lower panel demonstrate the relation harmonization process and constructed knowledge graph. 
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Mid panel display the general procedures of BioMedGraphica, with entity recognition and relation 

construction based on the user input files, outputting the graph AI ready format files. 

 
2.2.1 Entity Integration 
Gene Entity Merging The Ensembl database was utilized as the primary basis for data integration. Initially, 

Ensembl, HGNC, and NCBI were merged based on matching Ensembl IDs. Subsequently, data from 

RefSeq and OMIM were incorporated, with NCBI IDs serving as the common identifier. The NCBI ID was 

chosen as the minimal unit for unifying the data, and a final integration of gene information was conducted 

according to NCBI IDs (refer to Table 3 and Figure S1 in the supplementary section for details). The 

columns highlighted in bold within the table denote those used for merging across databases, with the IDs 

in these columns being unique. Additionally, a textual description of each gene entity was appended. Using 

the free Perl script geneDocSum.pl provided by NCBI (download link: 
https://ftp.ncbi.nih.gov/gene/tools/geneDocSum.pl), all human records marked as current (alive) and 

containing summaries were retrieved. By mapping NCBI Gene IDs to corresponding entries in 

BioMedGraphica_Gene, the descriptions associated with BioMedGraphica_Gene IDs (BMG_GN) were 

obtained. 
 
Table 3. Gene Entity Information 

Database Names 

Raw Data After Data Cleaning 
Total Number of 

BioMedGraphica ID 
Total Number of 

Rows 
Unique 

Total Number of 

Rows 
Unique 

Ensembl 

Ensembl Gene ID 70,614 70,611 70,611 70,611 

215,608 

Ensembl Gene ID 

version 
70,614 70,611 70,611 70,611 

HGNC ID 46,525 40,982 46,522 40,982* 

Total Number of 

Rows 
70,614 70,611 

HGNC 

HGNC ID 43,861 43,861 43,860 43,861* 

Ensembl Gene ID 41,222 41,221 41,221 41,221 

NCBI ID 43,807 43,807 43,806 43,807* 

Total Number of 

Rows 
43,861 43,860 

NCBI 

NCBI ID 36,998 36,967 36,867 36,967* 

Ensembl Gene ID 36,998 36,867 36,867 36,867 

Total Number of 

Rows 
36,998 36,867 

RefSeq 

RefSeq ID 844,996 279,097 160,882 134,965* 

NCBI ID 844,996 191,101 160,882 160,887 

Total Number of 

Rows 
844,996 160,882 

OMIM 

OMIM ID 28,833 28,833 17,193 17,205* 

NCBI ID 18,315 18,303 17,193 17,193 

Total Number of 

Rows 
28,833 17,193 
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*this column contains multiple IDs in one row 

 

Transcript Entity Merging The integration of the three databases utilized the Ensembl ID as the standard 

reference. For transcript entities, the Ensembl Transcript Stable ID was adopted as the smallest unit of data 
granularity. The integration process is illustrated in Figure S2 of the supplementary section, and the merged 

results are detailed in Table 4. Bolded entries in the table identify the columns used for database merging, 

where the IDs in these columns are unique. Transcript descriptions were extracted from the Ensembl 

database using the BioMart API. By mapping the Transcript Stable ID to corresponding transcripts in 

BioMedGraphica, transcript descriptions were successfully assigned to the majority of BioMedGraphica 

transcripts. 

 

Table 4. Transcript Entity Information 

Database 

Raw Data After Data Cleaning 

Total Number of 
BioMedGraphica ID 

Total Number 
of Rows 

Unique 
Total 

Number of 
Rows 

Unique 

Ensembl 

Ensembl Transcript ID 318,178 278,220 278,220 278,220 

278,326 

Ensembl Transcript ID 
version 

318,178 278,220 278,220 278,220 

Ensembl Gene ID 318,178 70,611 278,220 70,611 

RefSeq mRNA ID 85,578 66,801 47,717 66,801* 

RefSeq ncRNA ID 34,813 19,091 16,758 19,091* 

RefSeq MANE Select ID 38,479 19,288 19,288 19,288 

Total Number of Rows 318,178 278,220 

RefSeq 

Ensembl Transcript ID 
version 

19,352 19,352 19,352 19,352 

RefSeq ID 19,352 19,352 19,352 19,352 

Total Number of Rows 19,352 19,352 

RNAcentral 

RNAcentral ID 66,789 62,925 66,789 62,925 

Ensembl Transcript ID 66,789 66,789 66,789 66,789 

Total Number of Rows 66,789 66,789 

*this column contains multiple IDs in one row 

 
Protein Entity Merging The integration process began by merging data from Ensembl and UniProt based 

on the Protein Stable ID Version. Subsequently, RefSeq data was incorporated by leveraging mapping 

relationships between RefSeq and the two databases. The Ensembl Protein ID Version was established as 
the minimal unit of data granularity for protein entities (refer to Figure S3 in the supplementary section for 

the merging workflow and Table 5 for detailed results). Bolded entries in the table highlight the columns 

used for cross-database merging, where the IDs are uniquely assigned. Protein descriptions were retrieved 

from the UniProt database using the UniProt API. By mapping UniProt IDs to corresponding proteins in 

BioMedGraphica, descriptive information was successfully provided for BioMedGraphica proteins. 
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Table 5. Protein Entity Information 

Database 

Raw Data After Data Cleaning 
Total Number of 

BioMedGraphica ID Total Number of 

Rows 
Unique 

Total Number 

of Rows 
Unique 

Ensembl 

Ensembl Protein ID 150,346 123,495 123,495 123,495 

204,835 

Ensembl Protein ID 
version 

150,346 123,495 123,495 123,495 

UniProt ID 70,537 19,336 49,656 19,336* 

RefSeq ID 74,348 66,631 47,503 66,631* 

Total Number of Rows 150,346 123,495 

UniProt 

UniProt ID 20,428 20,428 51714 20428 

Ensembl Protein ID 
version 

19,320 19,320* 50,606 50,606 

Total Number of Rows 20,428 51,714 

RefSeq 

RefSeq-

Uniprot 

RefSeq ID 320,530 105,808 99,482 81,855* 

UniProt ID 320,530 116,043 99,482 99,482 

Total Number of Rows 320,530 99,482 

RefSeq-

Ensembl 

RefSeq ID 47,223 47,183 47,223 47,183 

Ensembl Protein ID 
version 

47,223 47,223 47,223 47,223 

Total Number of Rows 68,932 47,223 

*this column contains multiple IDs in one row 

 
Pathway Entities Integration The data integration process began with Pathway Ontology (PO) as the 

foundational framework, merging datasets from PO, KEGG, and Reactome. Missing data was subsequently 

addressed through equivalent mapping relations between KEGG and Reactome, as provided by ComPath. 

Finally, human pathway data from WikiPathway was integrated using equivalent mappings between KEGG 
and WikiPathway also facilitated by ComPath. Bolded columns in the table represent the fields used for 

merging with other databases, where the IDs in these columns are uniquely assigned (refer to Figure S4 

in the supplementary section for the detailed integration workflow and Table 5 for results). 
 

Table 5. Pathway Entity Information 

Database 

Raw Data After Data Cleaning 
Total Number of 

BioMedGraphica ID Total Number of 
Rows 

Unique 
Total Number 

of Rows 
Unique 

Pathway 

Ontology 

PO ID 2677 2677 2677 2677 

6,724 

KEGG ID 237 211 201 179 

Reactome ID 326 320 326 320 

Total Number of 

Rows 
2677 2677 

KEGG 

KEGG ID 359 359 359 359 

Total Number of 

Rows 
359 359 

Reactome Reactome ID 2711 2711 2711 2711 
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Total Number of 

Rows 
2711 2711 

ComPath 

KEGG ID 953 859 113 89 

Reactome ID 1,274 1,055 58 57 

WikiPathway ID 940 724 55 55 

Total Number of 

Rows 
1,592 113 

WikiPathway 

WikiPathway ID 1,510 1,510 1,510 1,510 

Total Number of 

Rows 
1,510 1,510 

*this column contains multiple IDs in one row 

Values separated by semicolons indicate data from multiple files 

 
Metabolite Entities Integration The integration of the two databases utilized the ChEBI ID as the primary 

linking key. Subsequently, entries with identical HMDB IDs were consolidated, establishing the HMDB ID 

as the smallest unit of data granularity. Columns highlighted in bold within the table denote those used for 

database merging, ensuring the uniqueness of IDs in these columns (see Figure S5 in the supplementary 

section for details on the merging process and Table 6 for the results). 

 
Table 6. Metabolite Entity Information 

Database 

Raw Data After Data Cleaning 
Total Number of 

BioMedGraphica ID 
Total Number of 

Rows 
Unique 

Total Number of 
Rows 

Unique 

HMDB 

HMDB ID 217,920 217,920 217,920 217,920 

218,333 

CAS 15,672 15,647 15,672 15,647 

ChemSpider ID 31,269 31,015 31,269 31,015 

PubChem CID 104,230 103,682 104,230 103,682 

ChEBI ID 13,701 13,562 13,701 13,562 

PDB ID 522 520 522 520 

KEGG ID 6,814 5,908 6,814 5,908 

Total Number of 

Rows 
217,920 217,920 

ChEBI 

ChEBI ID 5,750; 393,172 5,750;161,158 2,931 2,931 

CAS Number NA; 28,867 NA; 28,695 1,698 1,670* 

HMDB ID NA; 19,619 NA; 19,203 2,201 2,169* 

Total Number of 

Rows 
5,750; 393,172 2,931 

*this column contains multiple IDs in one row 

Values separated by semicolons indicate data from multiple files 

 
Microbiota Entities Integration The NCBI Taxon ID was employed as the standard key for harmonizing 

data across all microbiota datasets. This identifier was chosen due to its widespread presence in the 

included databases, enabling data merging. Columns highlighted in bold within the accompanying table 

indicate those used for cross-database integration, ensuring the uniqueness of IDs in these fields. For a 
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detailed explanation of the integration methodology, refer to Figure S6 in the supplementary section, with 

comprehensive results presented in Table 7. 

 
Table 7. Microbiota Entities Information 

Database 

Raw Data After Data Cleaning 
Total Number of 

BioMedGraphica ID 
Total Number 

of Rows 
Unique 

Total Number 
of Rows 

Unique 

NCBI 

NCBI ID 2,614,590 2,614,590 532,783 532,783 

616,390 

Total Number of 

Rows 
2,614,590 532,783 

SILVA 

SILVA ID 
227,318; 

2,224,690 

157,873; 

2,152,602 
272,419 2,214,227* 

NCBI ID 
227,318; 

2,224,690 

51,697; 

267,817 
272,419 272,419 

Total Number of 

Rows 
227,318; 2,224,690 272,419 

Greengene 

Greengene ID 1,144,866 1,144,866 92,684 1,144,866* 

NCBI ID 1,144,866 92,684 92,684 92,684 

RNAcentral ID 1,144,866 1,004,892 92,684 1,004,892* 

Total Number of 

Rows 
1,144,866 92,684 

RDP 

RDP ID 10,302 10,302 2,487 10,302* 

NCBI ID 10,302 2,487 2,487 2,487 

RNAcentral ID 10,302 4,779 2,487 4,779* 

Total Number of 

Rows 
10,302 2,487 

GTDB 
GTDB ID 12,477; 584,382 

12,477; 

584,382 
92,444 596,859* 

NCBI ID 12,477; 584,382 2,768; 89,701 92,444 92,444  
Total Number of 

Rows 
12,477; 584,382 92,444 

*this column contains multiple IDs in one row 
Values separated by semicolons indicate data from multiple files 

 

Exposure Entity Integration The data integration for this entity was based on the CAS number. Since all 

exposure databases contain the CAS ID, it was leveraged for integrating these databases. The bolded 
content in the table indicates the columns used for merging with other databases, where the IDs in those 

columns are unique (see Figure S7 in the supplementary section for merging process and results in Table 
8). 

 

Table 8. Exposure Entities Information 
Database Raw Data After Data Cleaning Total Number of 

BioMedGraphica 
ID 

Total Number of 
Rows Unique Total Number of 

Rows Unique 

CTD MeSH ID 179,179 179,179 179,179 179,179 532,942 
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CAS ID 56,661 56,661 56,661 56,661 

Total Number of 

Rows 

179,179 179,179 

ToxCast ToxCast ID 9,403 9,403 9,403 9,403 

CAS ID 9,403 9,403 9,403 9,403 

Total Number of 

Rows 

9,403 9,403 

ChemIDplus ChemIDplus ID 409,325 409,325 409,354 409,325 

CAS ID 409,325 409,325 409,354 409,325 

PubChem CID 336,401* 327,151 336,430 327,151 

PubChem SID 409,160* 409,160 409,160 409,160 

Total Number of 

Rows 

409,325 409,354 

*this column contains multiple IDs in one row 
 
Phenotype Entity Merging The integration process began with importing data from the HPO database 

(version 2024-8-13), including HPO identifiers and their associated terms. Relevant rows containing valid 

phenotype labels were isolated by filtering out entries with raw HPO identifiers. To refine the phenotype 
labels, a predefined list of descriptive expressions deemed unnecessary for entity extraction, such as 

"obsolete," "increased," "decreased," and similar terms commonly used in phenotype descriptions, was 

systematically removed. This cleaning process employed regular expression patterns for precision. 

Afterward, duplicate entries were consolidated with the assistance of LLM, resulting in a refined dataset 

where each unique cleaned label (represented by a BioMedGraphica ID) was associated with one or more 

HPO IDs. Columns highlighted in bold within the table represent fields used for database merging, with IDs 

in these columns being unique (see Figure S8 in the supplementary section for details on the merging 
workflow and Table 9 for results). 
 
Table 9. Phenotype entities database description 

Database 

Raw Data After Data Cleaning 
Total Number of 

BioMedGraphica ID Total Number of 
Rows 

Unique 
Total Number of 

Rows 
Unique 

HPO 

HPO ID 22,879 22,879 17,711 17,711 

17,711 

Total Number of 

Rows 
22,879 17,711 

UMLS 

UMLS ID 14,036,386 3,211,875 14,914 15,958* 

HPO ID 40,197 17,664 14,914 14,914 

Total Number of 

Rows 
14,036,386 14,914 

*this column contains multiple IDs in one row 

 
Disease Entity Integration The integration of disease entities began with the alignment of UMLS and 

MeSH datasets. Subsequently, SNOMED-CT data was incorporated, leveraging its comprehensive 

mappings to ICD-10. This was followed by the consolidation of mappings for ICD-10 and ICD-11. Using the 
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relations provided by Disease Ontology, UMLS, MeSH, and ICD-10 were mapped to append the 

corresponding Disease Ontology (DO) IDs to the dataset. Missing UMLS data was then supplemented 

through mappings between UMLS and SNOMED-CT. Finally, Mondo data was integrated using its 

mappings to UMLS and MeSH. Throughout the integration process, the UMLS ID was designated as the 
smallest unit of data granularity, ensuring unique identification across the entire dataset. Bolded columns 

in the table indicate the fields used for database merging, with IDs in these columns being uniquely assigned 

(refer to Figure S9 in the supplementary section for a detailed workflow and Table 10 for results). 

 
Table 10. Disease Entity Information 

Database 

Raw Data After Data Cleaning 
Total Number of 

BioMedGraphica ID Total Number of 
Rows 

Unique 
Total Number of 

Rows 
Unique 

UMLS 

UMLS ID 14,036,386 3,211,875 62,479 62,479 

198,730 

ICD10 110,875 97,615 12,805 11,359* 

MeSH ID 1,010,573 354,269 10,173 7,829 

OMIM ID 197,480 107,706 6,129 8,470* 

SNOMEDCT ID 988,281 372,524 37,334 37,278* 

Total Number of Rows 14,036,386 62,479 

MeSH 
MeSH ID 5,032 5,032 5,032 5,032 

Total Number of Rows 5,032 5,032 

SnomedCT 

SnomedCT ID 204,464 147,056 126,961 126,961 

ICD10 ID 170,993 11,033 86,353 9,662* 

Total Number of Rows 204,464 126,961 

ICD11 
ICD11 ID 34,663 34,663 34,663 34,663 

Total Number of Rows 36,044 34,663 

ICD10 

ICD10 ID 12,597 12,597 10,077 10,077 

ICD11 ID 12,301 6,710 10,077 5,876* 

Total Number of Rows 12,597 10,077 

Disease 

Ontology 

DO ID 38,037 10,942 10,942 10,942 

UMLS ID 6,976 6,931 6,367 6,931* 

MeSH ID 4,044 3,679 3,967 3,679* 

ICD10 ID 3,656 2,438 3,530 2,438* 

OMIM ID 6,010 5,979 5,492 5,979* 

Total Number of Rows 38,037 10,942 

Mondo 

Mondo ID 134,406 26,466 29,270 29,270 

UMLS ID 20,918 20,918 20,918 20,918 

MeSH ID 8,354 8,188 8,230 8,188* 

OMIM ID 9,931 9,931 9,837 9,837* 

Total Number of Rows 134,406 29,270 

*this column contains multiple IDs in one row 

 
Drug Entity Merging The integration process commenced by merging NDC and UNII datasets using the 

SUBSTANCENAME as the key identifier. PubChem data was then incorporated through its mapping with 

PubChem CIDs. CAS data integration followed, leveraging the relation between PubChem CIDs and CAS 
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numbers. ChEBI data was subsequently added using InChI as the common identifier. DrugBank data was 

integrated next, utilizing mappings between DrugBank IDs, CAS numbers, and SIDs. Finally, any missing 

data within the same row was supplemented using synonyms from both PubChem and DrugBank. The 

CAS number was designated as the minimal unit of data granularity for this entity. Bolded entries in the 
table indicate the columns used for merging across databases, where IDs in these columns are uniquely 

assigned (refer to Figure S10 in the supplementary section for details on the merging process and Table 
11 for the results). 
 
Table 11. Drug Entity Information 

Database 

Raw Data After Data Cleaning 
Total Number of 

BioMedGraphica ID Total Number 
of Rows 

Unique 
Total Number 

of Rows 
Unique 

NDC 

UNII Name 111,491 8,809 7,859 7,859 

626,581 

NDC ID 113,850 112,614 7,859 110,275* 

Total Number of 

Rows 
113,850 7,859 

UNII 

UNII ID 
152,870; 

154,561 

152,870; 

154,561 
157,960 154,569 

UNII Name 
152,870; 

154,561 

152,870; 

154,561 
156,082 154,568 

PubChem CID 
112,013; 

112,245 

110,750; 

111,447 
117,965 116,580 

PubChem SID 152,727; NA 152,727; NA 156,082 152,727 

CAS Number NA; 116,361 NA; 114,937 119,699 114,937 

Total Number of 

Rows 
152,870; 154,561 157,960 

PubChem 

PubChem CID 20,472; 114,969 
20,472; 

114,969 
123,155 123,155 

Total Number of 

Rows 
20,472; 114,969 123,155 

CAS 

CAS Number 447,699 447,699 402,378 386,907* 

PubChem CID 389,855 402,378* 402,378 402,378 

Total Number of 

Rows 
447,699 402,378 

ChEBI 

ChEBI ID 44,924; 225,102 44,924; 43,260 44,101; 17,691 44,924*; 17,691 

CAS Number NA; 27,735 NA; 17,601 NA; 17,691 NA; 17,601* 

Total Number of 

Rows 
44,924; 225,102 44,101; 17,691 

DrugBank 

DrugBank ID 16,581 16,581 16,581 16,581 

CAS Number 10,102 10,070 10,102 10,070 

PubChem CID 8,724 8,724 8,724 8,724 

PubChem SID 10,450 10,450 10,450 10,450 

Total Number of 

Rows 
16,581 16,581 

*this column contains multiple IDs in one row 

Values separated by semicolons indicate data from multiple files 
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2.2.2 Relation Integration 
The construction of edges utilized data from 22 distinct databases, mapping raw database IDs to their 

corresponding BioMedGraphica IDs to form relations. A notable challenge arose from one-to-many 

mappings, where a single database ID, such as A0PJY2 (UniProt ID), corresponded to multiple 
BioMedGraphica IDs (BMG_PT033926 and BMG_PT044226), due to the UniProt and Ensembl databases 

having one-to-many relations. Aside from this, all relations were directional and presented in a From-To 

format. To address bidirectional relations, two distinct methodologies were employed. The first involved 

reversing the direction of the relation. For instance, while protein-protein interactions are intrinsically 

bidirectional, the original dataset lacked explicit directionality. To resolve this, a reversed copy of the data 

was generated, merged with the original dataset, and duplicates were subsequently eliminated. The second 

approach entailed establishing new relations where reversal was inappropriate. For example, in disease-

phenotype associations, reversing the data alone was insufficient; instead, a complementary phenotype-
to-disease relation was created to accurately represent the connection. The edge structure was 

meticulously designed to conform to a one-to-one mapping framework, ensuring that each instance of a 

database ID mapping to multiple BioMedGraphica IDs resulted in the generation of distinct edges. This 

strategy significantly amplified the total number of edges, exceeding a straightforward summation of inter-

database relations due to the one-to-many nature of the mappings. 

 

Table 12. Harmonized Relations Information 

Interaction Type Database Initial Edge Number 
Matching 

Total 
Unique Total 

Gene-Transcript 
Ensembl 278,220 274,774 277,924 

278,352 
RefSeq 33,401 6,870 6,994 

Transcript-Protein 

Ensembl 123,540 123,528 123,528 

408,270 Uniprot 122,941 58,831 306,748 

RefSeq 30,193 6,865 47,823 

Protein-Protein 

BioGrid 1,660,759 1,660,213 16,309,791 

32,916,130 STRING 13,715,404 13,287,544 13,287,544 

KEGG 52,155 51,317 3,739,606 

Protein-Pathway KEGG 21,051 20,866 207,492 207,492 

Protein-Phenotype HPO 255,891 255,703 2,598,140 2,598,140 

Protein-Disease 

UniProt 4,775 4,735 17,170 

1,318,893 
DISEASES 346,173 283,986 608,291 

HPO 7,336 7,139 8,256 

DisGeNet 91,484 80,183 80,183 

Pathway-Protein KEGG 24,475 24,367 239,199 239,199 

Pathway-Drug KEGG 2,334 2,011 3,227 3,227 

Pathway-Exposure CTD 1,591,611 1,537,730 1,532,389 1,532,389 

Metabolite-Protein HMDB 863,759 849,980 2,124,047 2,124,047 

Metabolite-Metabolite MetaNetX 23,711 886 931 931 

Metabolite-Disease HMDB 24,755 24,667 24,967 24,979 

Microbiota-Disease DisBiome 616,390 10,414 10,414 10,414 

Microbiota-Drug MDAD 5,055 668 1,770 1,837 
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PharmacoMicrobiomics 69 67 67 

Exposure-Gene CTD 766,820 763,150  763,150 763,150 

Exposure-Pathway CTD 1,591,611 1,537,730 1,532,389 1,532,389 

Exposure-Disease CTD 9,114,984 3,185,626 4,537,063 4,537,063 

Phenotype-Phenotype HPO 23,436 14,678 14,678 14,678 

Phenotype-Disease HPO 153,944 152,017 177,481 177,481 

Disease-Phenotype HPO 153,944 152,017 177,265 177,265 

Disease-Disease DO 11,683 9,654 121,806  121,806  

Drug-Protein 

DrugBank 21,941 3,208 18,989 

269,972 BindingDB 1,508,106 61,844 199,783 

DrugCentral 14,301 13,412 72,391 

Drug-Pathway KEGG 3,922 3,646 5,906 5,906 

Drug-Metabolite HMDB 3,258 2,431 3,577 3,577 

Drug-Microbiota 
MDAD 5,055 668 1,770 

1,837 
PharmacoMicrobiomics 69 67 67 

Drug-Phenotype SIDER 152,759 58,903 58,377 58,377 

Drug-Disease DrugCentral 58,013 45,669 117,234 117,234 

Drug-Drug DrugBank 2,839,610 2,679,244 7,156,432 7,156,432 

 
2.3 Final Results 
The database for BioMedGraphica includes 11 entity types and 27 edge types, contains 3,132,161 entities 

and 56,825,152 relations, composing the knowledge graph 𝒢 = (𝒱, ℰ) (check number of each entity and 

edge type in Table 13 and Table 14). 

 

Table 13. Summarized Entity Information 
Entity Type Math Annotation Count Percentage 

Promoter 𝒱("#) 215,608 6.8845% 

Gene 𝒱(%&) 215,608 6.8845% 

Transcript 𝒱('() 278,326 8.8871% 

Protein 𝒱("') 204,835 6.5405% 

Pathway 𝒱(")) 6,724 0.2147% 

Metabolite 𝒱(#') 218,333 6.9715% 

Microbiota 𝒱(#*) 616,390 19.6817% 

Exposure 𝒱(+") 532,942 17.0172% 

Phenotype 𝒱(",) 17,711 0.5655% 

Disease 𝒱(-() 198,730 6.3456% 

Drug 𝒱(-%) 626,581 20.0071% 

Total 𝒱 3,131,788 100% 

 

Table 14. Summarized Information of Relation Types 
Relation Type Math Annotation Count Percentage 

Promoter-Gene ℰ("#.%&) 215,608 0.3795% 

Gene-Transcript ℰ(%&.'() 278,352 0.4899% 

Transcript-Protein ℰ('(."') 408,270 0.7186% 

Protein-Protein ℰ("'."') 32,916,130 57.9335% 

Protein-Pathway ℰ("'.")) 207,492 0.3652% 
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Protein-Phenotype ℰ("'.",) 2,598,140 4.5728% 

Protein-Disease ℰ("'.-() 1,318,893 2.3213% 

Pathway- Protein ℰ(")."') 239,199 0.4210% 

Pathway-Drug ℰ(").-%) 3,227 0.0057% 

Pathway-Exposure ℰ(").+") 1,532,389 2.6971% 

Metabolite-Protein ℰ(#'."') 2,124,047 3.7384% 

Metabolite-Metabolite ℰ(#'.#') 931 0.0016% 

Metabolite-Disease ℰ(#'.-() 24,967 0.0439% 

Microbiota-Disease ℰ(#*.-() 10,414 0.0183% 

Microbiota-Drug ℰ(#*.-%) 1,837 0.0032% 

Exposure-Gene ℰ(+".%&) 763,150 1.3432% 

Exposure-Pathway ℰ(+".")) 1,532,389 2.6971% 

Exposure-Disease ℰ(+".-() 4,537,063 7.9854% 

Phenotype-Phenotype ℰ(",.",) 14,678 0.0258% 

Phenotype-Disease ℰ(",.-() 177,481 0.3124% 

Disease-Phenotype ℰ(-(.",) 177,265 0.3120% 

Disease-Disease ℰ(-(.-() 121,806 0.2144% 

Drug-Protein ℰ(-%."') 269,972 0.4752% 

Drug-Pathway ℰ(-%.")) 5,906 0.0104% 

Drug-Metabolite ℰ(-%.#') 3,577 0.0063% 

Drug-Microbiota ℰ(-%.#*) 1,837 0.0032% 

Drug-Phenotype ℰ(-%.",) 58,377 0.1027% 

Drug-Disease ℰ(-%.-() 117,234 0.2063% 

Drug-Drug ℰ(-%.-%) 7,156,432 12.5956% 

Total ℰ 56,817,063 100% 

 
2.4 Software for Improving Data Integration and Generation 

 
Figure 2. Workflow of software BioMedGraphica.  
 

As shown in Figure 2, user can input the files into BioMedGraphica software, which are denoted as 𝒳 =

)𝒳($%), 𝒳('(), 𝒳()*), 𝒳($)), 𝒳($+), 𝒳(%)), 𝒳(%,), 𝒳(-$), 𝒳($.), 𝒳(/*), 𝒳(/')* , where 𝒳(-) ∈ ℝ((")×|ℱ(")|  and 𝑒 

denotes one of the 11 entity types mentioned above, 𝑛(-) stands for the number of samples, and 
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ℱ(-)represents features set of the entity type 𝑒. After inputting files into the software, the number of samples 

across the different entity types will be aligned into 𝑛(3(), which is the intersection of all input files. In this 

way, the input files can be considered as a giant unified file with matrix 𝒳(3() ∈ ℝ(($%)×ℱ($%)	, and |ℱ(3()| =

∑ |ℱ(-)|- . By matching the features ℱ(3() with entities 𝒱	existing in BioMedGraphica knowledge graph	𝒢, 

the entities will be formed with 𝒱(*56) and mapping function 𝒟:ℱ(3() → 𝒱(3(), which is curated in python 
dictionary format. Aside from this, users can choose the types of relations they would like to form in this 

process, resulting in 𝒢(3() = (𝒱(3(), ℰ(3()). Following we describe the details of how entities are matched, 

and relations are formed. 

 

2.4.1 Entity Recognition 
When matching the features inputted by users to the existing entities in the BioMedGraphica knowledge 

base, the specialized designed algorithm using a pre-trained BioBERT model was leveraged for phenotype, 
drug, disease entities, which allows for the comparison of phenotypic, drug and disease terms based on 

their semantic similarity for building the mapping function 𝒟. Then, the similarity score will be calculated 

between a given queried feature name, 𝑓789:	(𝑓  is the corresponded entity), and precomputed entity 

embeddings by scoring function 𝑆 with 

𝑆(𝑓) =
LM(𝑓789:);	LM(𝒱789:)

‖LM(𝑓789:)‖ ⋅ ‖LM(𝒱789:)‖
(1) 

, where 𝑓789: (𝑓789: ∈ ℱ789:
(3() ) is the queried feature name from the unified user input file, ℱ789:

(3()  (ℱ789:
(3() ∈

ℝ<ℱ($%)< ) and 	𝒱789:  (𝒱789: ∈ ℝ|𝒱| ) is the corresponding entity names of ℱ(3()  and 𝒱 , and pre-trained 

BioBERT language model (LM) model is denoted as LM. In detail, the model will process phenotype, drug 

and disease entities in BioMedGraphica by 

𝑧 = LM(𝑣789:) (2) 

, where 𝑣789: (𝑣789: ∈ 𝒱789:) is entity name and 𝑧 (𝑧 ∈ ℝ/) denotes the transformed embedding space for 

𝑣789:. Similarly, the queried feature name will be embedded by 

𝑧′ = LM(𝑓789:) (3) 

, where 𝑧′	(𝑧′ ∈ ℝ/) denotes the transformed embedding space for 𝑓789:. Afterwards, the top 𝑘 most similar 

entities will be extracted by 

𝒱=
(>) = 𝐼[argmax=[𝑆(𝑓)]] (4) 

, where argmax= can identify top 𝑘 most similar entity names 𝒱=
(>) (𝒱(>) ∈ ℝ=) and 𝐼(⋅) is the one-to-one 

mapping function which will map the entity names to entities in BioMedGraphica. In these top 𝑘 most 

similar entity, the user will define the only one entity, 𝒱(>), to be matched for the queried feature name 𝑓789:. 
For other entity types, the hard match method was leveraged to search for exact entity name for the queried 

feature name 𝑓789: with 𝒱(>). With this, the dictionary function 𝒟 will be generated. 

 

2.4.2 Relation / Knowledge Graph Construction 
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By extracting the corresponding entities 𝒱(*56) of the input features ℱ(3() from the whole knowledge graph 

𝒢, users can select the edge types annotated in Table 14 to construct the ℰ(3(). 
 

2.4.3 Graphical User Interface (GUI) Design 
The GUI for this workflow is designed to streamline the process of data input, recognition, and filtering 

before output. The interface begins with a user input section, where users can either upload their data file 

or manually input data. The system will automatically perform data recognition, displaying the detected data 

format in a preview pane for confirmation. Users are then presented with options to select the format 
recognition type from a dropdown or radio buttons (e.g., Entity Type A, Entity Type B, etc.), allowing them 

to specify the format more accurately if necessary. Once the format is confirmed, the GUI moves to the 

entity matching section, where users can match their input data to the BioMedGraphica ID system. Only 

the data that matches the BioMedgraphica ID will be kept for further processing. Users can then filter the 

matched data based on their choice of relational entities from a selection of databases (e.g., Relation 

Database 1, Relation Database 2). Finally, after applying the desired filters, the system will produce the 

data output, which users can download or view in a structured format, concluding the process. The GUI is 

designed to be user-friendly, guiding the user through each step with clear instructions and real-time 
feedback on their data processing choices. 

 

3 Data Records 
Due to licensing restrictions or controlled access to certain portions of the data, raw data download links 

are provided in the supplementary materials. Tutorials for processing the raw data into harmonized entities 

and relations are available. After completing the procedures outlined in the tutorial, the BioMedGraphica 

database can serve as a comprehensive knowledge base, forming the foundation for initiating the 

BioMedGraphica software. A detailed software tutorial is also available for reference. Both tutorials can 

be found in GitHub link:  

https://github.com/FuhaiLiAiLab/BioMedGraphica/blob/main/README.md 
 

4 Technical Validation 
4.1 Entities / Relations Matching Accuracy 
For entity recognition part, the hard match strategy can match most of the entities if such nomenclature 

system was collected in BioMedGraphica knowledge base. For soft matching strategy, the pre-trained 
language model significantly improved the matching accuracy and efficiency. Nevertheless, even current 

advanced large language models cannot provide solid support for named entity recognition in zero-shot or 

few-shots scenarios. For example, ChatGPT-4o will mistakenly match the NC_000019.10 (RefSeq ID) with 

an incorrect Ensembl ID ENSG00000272512. Aside from this, the relation identification is also very difficult, 

let alone the knowledge graph construction. For instance, when ChatGPT-4o tried to identify the relation 

between phenotype Leukocytosis and drug with CAS number 106-60-5, it will mistakenly match the drug 
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with incorrect name due to its poor performance on named entity recognition. Hence, it will make incorrect 

assertions about the relations. 

 

4.2 A Case Study of Software BioMedGraphica 
Users are required to transform the raw data into formats such as csv, txt or tsv, which are compatible with 

conversion into two-dimensional dataframes. These formats allow the data to be easily structured and 
manipulated for further processing. By adhering to the software's prescribed workflow, users can ensure 

that the final output will be generated as numpy files, a widely used format for numerical data in scientific 

computing. For instance, a specific example using The Cancer Genome Atlas Program (TCGA) multi-omics 

and clinical cancer genomics dataset is provided. This dataset serves as the input, including selected 

features such as methylation, copy number variation (CNV), gene expression, proteomics, and breast 

cancer (BRCA) clinical data. After undergoing some basic data processing steps, the data can be 

transformed into the required 𝑛	 ×	𝐹$ dimensions and imported into the software for integration within a 

graph-based AI model. For further technical details and step-by-step guidance, users are encouraged to 

refer to Figure 3 and the associated GitHub repository link: 
https://github.com/FuhaiLiAiLab/BioMedGraphica/blob/main/README.md 
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Figure 3. BioMedGraphica Software Graphical User Interface and User Demonstration Using the TCGA 

Dataset. Step 1: Validate the integrity of the BioMedGraphica database by locating its path. This step 

includes assessing the distribution and count of various entities within the database. Step 2: Users input 

the file path and specify corresponding attributes for each file feature, such as entity labels, types, and data 
nomenclature. In the example using the TCGA dataset, Ensembl_Gene_ID and HGNC_Symbol were used 

to annotate four types of entities—protein, gene, transcript, and promoter. Clinical data served as output 

labels, requiring no additional label or entity type selection. Step 3: File attributes and the name of the first 

column in each file are displayed for user confirmation of the entity file format. After validation, users click 

‘Compute Intersection’ to preprocess the data, reducing the TCGA BRCA demo dataset to identified 141 

common samples. Step 4: After matching entities from the input files, relationship with subgraph from whole 

knowledge graph will be extracted. Users can choose to build all or specific relationships, such as Promoter-

Gene, Gene-Transcript, Protein-Protein, and Transcript-Protein. Step 5: Review the output files and 
optionally perform a K-Fold Split for subsequent graph AI model training and evaluation. The final output 

directory includes processed graph AI-ready files and mappings from original entity IDs to BioMedGraphica-

specific IDs. 

 

5 Usage Notes 
Database Preparation and Access Due to access control restrictions on the collected database, we 

provide users with data download links for convenient access. Additionally, we offer a Jupyter notebook 

that facilitates the merging of entities and the harmonization of relations into designated folders. Once the 

data has been curated and placed in the appropriate folder, users can run the software locally on their 

machine in a client-based environment to begin processing. 
 

Required File Preparation Before running the software, it is essential to prepare the necessary files, 

including entity files and a clinical data file. Each file should use a standardized naming convention for 

sample IDs and a consistent database identifier format for features, like the Ensembl stable Gene ID. Files 

will be intersected in the final step to obtain a common sample set. For more detailed data formatting 

guidelines, please refer to the GitHub link:  

https://github.com/FuhaiLiAiLab/BioMedGraphica/blob/main/README.md 

 
Starting the GUI Once files are prepared, launch the GUI. On the Welcome tab, locate the BioMedGraphica 

database path and verify its integrity to ensure smooth processing. Next, go to the Import tab, where you’ll 

provide each entity file with a unique label to identify it during subsequent processing. Select the appropriate 

entity type and ID type for each file from the dropdown menu. Then, use the file path button to select each 

file’s path. When all inputs are complete, click the Export button at the top of the page to save inputs as 

config.csv, making future processing easier. Click Next to proceed to the Read tab. 
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File Reading and Validation In the Read tab, the software will read column names to identify the sample 

ID column in each file. For simplicity and readability, place the sample ID column as the first column in each 

file and label it as id. The software will also perform an intersection of sample IDs across all entity files to 

obtain a common set of samples, reducing storage requirements. After confirming that the data is read 
correctly, click Next to proceed to the Process tab. 

 

Processing and Finalizing Files The Process tab includes individual processing for each entity file (saved 

to /cache in the root directory). Sort entity files by clicking and arranging them from top to bottom in the 

dialog box. Import clinical data and aggregate all individually processed entity files into a format required 

for GNN training with the Finalize function. Note that if files have many columns, the Finalize operation may 

need significant available RAM (20GB+). In case of issues or unexpected exits during individual file 

processing, reprocess the specific entity file, then use Finalize to aggregate it with the others. The final 
output heavily depends on the contents of the cache folder; if starting a new process, click the Clear Cache 

Folder button in the top-right corner to clear the cache. Once processing is complete, click Next to enter 

the Export tab. Here, preview all processed files in the cache folder. After confirming accuracy, set the save 

path and click Export. When all tasks are finished, click Exit to close the software. 
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Supplementary Materials 

Section A. Details of Data Resources  
A.1. Data Resources for Entities 

Ensembl11 Ensembl is a widely used resource for genome annotation and provides access to a wide variety 
of genomic data across numerous species, with a strong focus on vertebrate genomes. The Ensembl 

project integrates gene, transcript, and protein data, offering detailed genomic features. This database was 

accessed through the BioMart API, which allows flexible retrieval of large datasets based on specific criteria. 

For gene entities, Gene Stable IDs were selected, including versioned identifiers that ensure traceability 

across different releases. Important genomic features such as gene start and end positions, biotypes, and 

chromosomal coordinates were extracted. To maintain consistency in gene nomenclature, the mapping 

relations between Ensembl and the HUGO Gene Nomenclature Committee (HGNC) were preserved. This 
consistency is crucial for ensuring that gene annotations align across various databases. Additionally, 

transcript entities were obtained using Transcript Stable IDs and corresponding Gene IDs, while protein 

entities were extracted with Protein Stable IDs. Mapping relations between Ensembl, UniProt, and RefSeq 

were also preserved to ensure accurate and cross-compatible dataset integration. 

 
OMIM12 (Online Mendelian Inheritance in Man) OMIM is an essential resource for understanding the 

genetic basis of human diseases and provides detailed information on gene-phenotype relations. The 

database integrates clinical features with genetic data, offering insights into the hereditary nature of various 
conditions. Data from OMIM was retrieved to capture gene-related records, particularly focusing on 

mapping relations between OMIM IDs and NCBI gene IDs. This facilitated the standardization of gene-

related data across different resources. Furthermore, HGNC symbols were retained to align OMIM gene 

identifiers with other databases used in this study. Chromosomal information was also supplemented, which 

aids in genomic localization and contextual understanding of the data. Ensuring the uniqueness of gene 

records was a priority, and merging was performed based on gene IDs to guarantee that each entry in the 

dataset remained unique and free from redundancy. 

 
HGNC13 (HUGO Gene Nomenclature Committee) The HGNC is the authoritative resource for assigning 

unique symbols and names to human genes. As gene nomenclature can vary across different databases, 

the HGNC serves as a standard for the human genome, providing approved gene symbols and names. 

Data was accessed via BioMart to extract HGNC-approved gene information, including attributes such as 

HGNC ID, gene symbol, gene name, and chromosomal location. The inclusion of HGNC data ensures that 

gene-related information in the dataset is standardized and consistent with official naming conventions. 

Mapping relations between HGNC, Ensembl, and NCBI IDs were retained to facilitate cross-referencing 
across these major databases. To ensure accuracy and prevent redundancy, the uniqueness of Ensembl 

IDs was verified during the merging process. 
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NCBI14 (National Center for Biotechnology Information) - Gene The NCBI Gene database provides 

extensive information on genes and their functions, supporting a wide range of research in genetics, 

genomics, and bioinformatics. For this study, human gene data was extracted, retaining key attributes such 

as NCBI gene IDs, gene symbols, descriptive gene names, and chromosomal positions. The NCBI Gene 
database is an important resource for identifying gene sequences, gene structure, and gene functions, 

making it essential for the construction of a comprehensive gene dataset. Mapping relations between NCBI 

gene IDs and Ensembl IDs were preserved to ensure consistency across datasets, facilitating the 

integration of data from different sources. For microbiome-related data, entries from the NCBI Taxonomy 

Database were also included. This database provides authoritative taxonomic classifications, focusing on 

bacterial taxa, and corresponding NCBI Taxon IDs were retained to ensure accurate classification and 

integration with other microbiome datasets. 
 
NCBI - RefSeq15 (Reference Sequence Database) RefSeq is a curated collection of publicly available 

nucleotide sequences and their corresponding protein translations, which provides a critical reference 

standard for the annotation of genes, transcripts, and proteins. RefSeq data was retrieved for both gene 

and transcript entities in this study, focusing on entries with the status of either "REVIEWED" or "MODEL" 

to ensure high data quality. Essential attributes such as gene ID, RefSeq ID, and chromosomal information 

were retained to provide accurate gene annotations. Additionally, the MANE project, which provides a set 

of transcript alignments between RefSeq and Ensembl, was utilized to ensure that transcript mapping 

between these databases was consistent and high-quality. Protein entities were also integrated, with 
mapping relations between RefSeq, UniProt, and Ensembl retained to ensure cross-database compatibility. 

Uniqueness of the Ensembl IDs was verified throughout the data processing stages to ensure data integrity. 

 

RNAcentral16 RNAcentral is a comprehensive resource for non-coding RNA sequences, integrating data 

from over 40 specialist databases. RNAcentral provides access to a wide variety of RNA sequence 

information, including microRNAs, tRNAs, and other functional RNA molecules that play critical roles in 

gene regulation. Human-specific RNAcentral IDs and corresponding Ensembl IDs were retrieved for this 
study, ensuring that non-coding RNA entities could be accurately integrated with gene and protein data 

from other databases. The uniqueness of each Ensembl ID was verified to ensure the integrity of the dataset 

and to avoid duplications during the integration process. 

 

UniProt17 (Universal Protein Resource) UniProt is a globally recognized repository of protein sequences 

and functional information. It provides detailed annotations on protein sequences, structure, function, and 

interactions. Data from UniProt was accessed via its API, and UniProt IDs, along with protein names and 

their corresponding Ensembl IDs, were retrieved. This enabled the integration of protein-specific data with 
the broader dataset, ensuring that protein information was accurately cross-referenced with gene and 
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transcript data from Ensembl. The uniqueness of each Ensembl ID was verified during the data integration 

process to ensure consistency and to prevent errors in protein-related data.  

 

Reactome18 Reactome is a curated knowledgebase of biological pathways, and it is a key resource for 
understanding the molecular mechanisms underlying cellular processes. Human-specific pathway data was 

extracted from Reactome for this study, enabling the integration of pathway-related information with gene 

and protein data. The inclusion of Reactome pathways facilitates research into functional genomics and 

systems biology, where pathway analysis is critical for understanding complex biological processes. 
 
KEGG19 (Kyoto Encyclopedia of Genes and Genomes) KEGG is a comprehensive resource for 

understanding high-level functions and utilities of biological systems, such as cells, organisms, and 

ecosystems. Human pathway data was retrieved using the bioservices package, with a focus on integrating 
KEGG pathways with other biological pathways from Reactome and WikiPathways. The inclusion of KEGG 

enables the dataset to support metabolic and signaling pathway analysis, providing valuable insights into 

cellular functions and disease mechanisms. 
 
WikiPathways20 WikiPathways is an open, collaborative platform for the curation of biological pathways. 

Data from WikiPathways was converted to CSV format, and human-specific pathways were filtered for 

inclusion in this study. Mapping relations between WikiPathways, KEGG, and Reactome were maintained 

to ensure consistent integration of pathway-related data. The inclusion of WikiPathways supports research 
into a wide variety of biological pathways, complementing the curated data from Reactome and KEGG. 
 
Pathway Ontology21 Pathway Ontology provides a standardized framework for the classification of 

biological pathways and their relations. Preprocessing of the OBO-formatted file enabled the extraction of 

PO IDs, and mapping relations with KEGG and Reactome were preserved. This integration allows for 

comprehensive pathway analysis, ensuring that biological pathways from multiple sources can be 

consistently linked. 
 
ComPath22 ComPath is a database that integrates pathway mapping relations across KEGG, Reactome, 

and WikiPathways. All equivalent mappings were selected for this study, ensuring that pathway data from 

different sources could be cross-referenced. This comprehensive approach to pathway integration enables 

in-depth biological pathway analysis and facilitates the exploration of molecular mechanisms underlying 

diseases. 
 
HMDB23 (Human Metabolome Database) HMDB is the most comprehensive, freely accessible database 
of small molecule metabolites found in the human body. It provides extensive mapping relations related to 

metabolomics data. For this study, HMDB data was parsed from XML files, retaining key attributes such as 
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CAS number, SMILES, InChI, and mapping relations with other databases. The inclusion of HMDB supports 

research into human metabolism, drug interactions, and disease mechanisms, enabling detailed 

metabolomics analysis. 

 
ChEBI24 (Chemical Entities of Biological Interest) ChEBI is a database focused on 'small' chemical 

compounds and is used extensively for research in chemistry and biology. ChEBI provides manually 

annotated information about the structure, formula, and biological roles of chemical entities. In this study, 

ChEBI data was selected for drug entities, particularly those with a 3-star rating to ensure the highest data 

quality. Important attributes such as ChEBI ID, InChI, and the mapping relation to CAS Registry Numbers 

were retained. In addition to drug entities, metabolome data from ChEBI was included, focusing on human 

metabolites. Mapping relations with other databases, such as the Human Metabolome Database (HMDB), 

were preserved to enable cross-referencing of metabolite information. 
 

SILVA25 SILVA is a high-quality, curated database of ribosomal RNA (rRNA) sequences, widely used for 

taxonomic classification of microbial communities. Data from both the small subunit (SSU) and large subunit 

(LSU) ribosomal RNA sequences were included, along with corresponding NCBI Taxon IDs. The SILVA 

database provides valuable insights into the composition of microbiomes, supporting research into 

microbial diversity and ecology. 
 
Greengenes26 Greengenes is a database of 16S ribosomal RNA gene sequences used for the identification 
of microbial species. Data was sourced from RNAcentral, and RNAcentral IDs, Greengenes IDs, and NCBI 

Taxon IDs were retained to ensure consistent taxonomic classification of microbiome-related data. The 

inclusion of Greengenes allows for the accurate classification of bacterial species, supporting research into 

microbiomes and their impact on human health. 
 
RDP27 (Ribosomal Database Project) The Ribosomal Database Project (RDP) provides quality-controlled 

ribosomal RNA gene sequence data. Similar to Greengenes, RDP data was sourced via RNAcentral, and 
mapping relations between RNAcentral IDs, RDP IDs, and NCBI Taxon IDs were preserved. This allows 

for the consistent classification of microbial entities, supporting microbiome research and analysis. 
 
GTDB28 (Genome Taxonomy Database) GTDB is a comprehensive resource for the classification of 

Archaea and Bacteria. Data from GTDB was retrieved for both archaeal and bacterial entities, with GTDB 

IDs and NCBI Taxon IDs retained to ensure accurate taxonomic classification. By verifying the uniqueness 

of NCBI Taxon IDs, the dataset provides reliable support for microbiome research, enabling the exploration 

of microbial diversity across various environments. 
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CTD29 (The Comparative Toxicogenomics Database) CTD is a pivotal resource for integrating chemical, 

gene, disease, and exposure data, facilitating the study of toxicogenomics and environmental health. CTD 

serves as an entity-centric database where chemicals, genes, and diseases are interconnected through 

curated interaction data. For chemical entities, CTD uses standardized identifiers such as Chemical 
Abstracts Service (CAS) numbers to ensure consistent representation and integration with other chemical 

databases like PubChem. 

 

ToxCast30 (Toxicity Forecasting) ToxCast is a large-scale program developed by the U.S. Environmental 

Protection Agency (EPA) to assess and predict the potential toxicological effects of chemicals using high-

throughput screening methods. ToxCast evaluates thousands of chemicals across hundreds of biological 

assays, providing a comprehensive dataset to analyze chemical interactions with various biological 

pathways. The database is focused on integrating chemical, biological, and toxicity data to improve hazard 
identification, prioritize chemicals for further testing, and reduce reliance on traditional animal-based toxicity 

studies. 

 

ChemIDplus31 (Chemical Identification Plus Database) ChemIDplus is a comprehensive resource 

developed by the U.S. National Library of Medicine (NLM) that provides detailed information on over 

400,000 chemical substances, including small molecules, mixtures, and complex compounds. It offers 

access to chemical properties, structures, synonyms, and regulatory data, making it a vital tool for 

researchers in toxicology, pharmacology, and environmental sciences. ChemIDplus utilizes standardized 
identifiers such as CAS Registry Numbers to ensure consistency and interoperability with other databases 

like PubChem. 

 

HPO32 (Human Phenotype Ontology) The Human Phenotype Ontology (HPO) provides a standardized 

vocabulary for phenotypic abnormalities encountered in human disease. Data was imported from the HPO 

database, version 2024-8-13, and relevant phenotype labels were extracted. After filtering and cleaning 

unwanted descriptive expressions, mapping relations between HPO IDs were retained, ensuring that 
phenotypic data could be integrated with other disease and genomic datasets. This integration facilitates 

research into genotype-phenotype correlations, a key area in genetic and clinical research. 
 

ICD33,34 (International Classification of Diseases) The International Classification of Diseases (ICD), 

maintained by the World Health Organization, is the global standard for the coding and classification of 

diseases. Both ICD-10 and ICD-11 codes were included to ensure that the dataset could be used in various 

research and clinical contexts. Mapping relations between ICD versions were retained, allowing for 

compatibility across different healthcare systems and facilitating research on disease epidemiology and 
outcomes. 
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Disease Ontology35 (DO) The Disease Ontology (DO) provides a standardized ontology for the 

classification of human diseases. DO includes cross-references to other medical ontologies, such as UMLS, 

MeSH, and ICD-10, which were retained in this study to ensure consistent disease classification across 

databases. The inclusion of DO enabled the dataset to capture detailed and structured information on 
diseases, supporting research in medical informatics and bioinformatics. 

 

MeSH36 (Medical Subject Headings) MeSH is a comprehensive controlled vocabulary for the purpose of 

indexing journal articles and books in the life sciences. It is widely used in medical and biomedical research 

for categorizing diseases, drugs, and other entities. In this study, MeSH terms were retrieved from the 

MeSH XML files, focusing on records under the Diseases category. Mapping relations with UMLS, ICD-10, 

and other disease ontologies were preserved to ensure consistency in terminology across datasets. This 

facilitated the integration of disease data and enabled the dataset to support detailed disease-related 
analyses. 

 

UMLS37 (Unified Medical Language System) The Unified Medical Language System (UMLS), developed 

by the National Library of Medicine (NLM), integrates multiple biomedical terminologies into a single 

framework. The Disease or Syndrome category of UMLS was selected for this study, with an emphasis on 

"Preferred" terms defined in English. Mapping relations between UMLS, MeSH, SNOMED-CT, and ICD-10 

were maintained to ensure accurate classification and cross-referencing of disease entities. The inclusion 

of UMLS data ensures that disease-related data can be consistently linked across multiple terminological 
systems, facilitating research in clinical informatics and biomedical research. 

 

SNOMED-CT38 (Systematized Nomenclature of Medicine Clinical Terms) SNOMED-CT is an 

international clinical terminology that is used to code the entire scope of human medical practice, including 

diseases, symptoms, diagnoses, and treatments. Data from the Snapshot version of SNOMED-CT was 

used to extract active entries from the "Disorder" category, preserving mapping relations with ICD-10. This 

allowed for the integration of clinical disease information with other ontologies, enhancing the utility of the 
dataset for both clinical and research applications. 

 

Mondo39 The Mondo Disease Ontology integrates multiple disease ontologies and databases, offering 

comprehensive cross-references to UMLS, MeSH, and other classification systems. Data from Mondo was 

included in this study, with a focus on preserving mapping relations between Mondo IDs, UMLS, and MeSH. 

This integration enabled the consistent classification of disease entities, ensuring that disease-related data 

from different sources could be accurately linked. 

 
PubChem40 PubChem is a large database of chemical molecules and their biological activities, maintained 

by the National Center for Biotechnology Information (NCBI). It is widely used for retrieving chemical 
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information related to small molecules, including drugs, metabolites, and other compounds. For this study, 

data from the Drug and Medication Information and Pharmacology and Biochemistry categories within the 

PubChem compound catalog was extracted. Key chemical descriptors, such as InChI, SMILES, InChIKey, 

and IUPAC names, were selected to provide detailed chemical structure information. The PubChem CID 
(Compound Identifier) was used as a unique identifier to facilitate consistent cross-referencing of chemical 

compounds across datasets. 

 

CAS41 (Chemical Abstracts Service) CAS is a division of the American Chemical Society, and its 

Common Chemistry database provides information on chemical substances, including their molecular 

structure, properties, and nomenclature. Data from CAS was accessed via the PubChem platform, and 

mapping relations between CAS numbers and PubChem CIDs were retained. This ensures that chemical 

data can be accurately linked across multiple resources. Ensuring the uniqueness of CIDs was critical to 
maintaining reliable cross-referencing of chemical entities, particularly for pharmacological and biochemical 

data. 

 

NDC42 (National Drug Code) The National Drug Code (NDC) is a unique identifier for medications in the 

United States, maintained by the U.S. Food and Drug Administration (FDA). It is an essential resource for 

drug-related data integration. Data from the NDC was selected for inclusion, focusing on the NDC code and 

substance names, which correspond to the UNII (Unique Ingredient Identifier) code’s preferred term. By 

ensuring the uniqueness of each substance name, accurate integration with UNII data was facilitated, 
allowing for comprehensive drug-related analyses. 

 

UNII43 (Unique Ingredient Identifier) The Unique Ingredient Identifier (UNII) system, maintained by the 

FDA, assigns unique identifiers to chemical substances, including active ingredients in drugs. UNII data 

was sourced from both the PubChem website and the FDA, with mapping relations between UNII codes, 

PubChem CIDs, and CAS numbers being preserved. Additionally, structural descriptors such as SMILES 

and InChIKeys were included, providing a detailed representation of the chemical substances. This ensures 
that UNII data can be integrated seamlessly with other chemical and pharmacological databases. 

 

DrugBank44 DrugBank is a unique bioinformatics and cheminformatics resource that combines detailed 

drug data with comprehensive drug-target information. Data from DrugBank was included in this study to 

retain mapping relations between DrugBank IDs and other chemical identifiers, such as PubChem CID, SID 

(Substance ID), and CAS numbers. DrugBank's extensive annotation of drug targets and mechanisms of 

action made it a valuable resource for cross-referencing drugs with their molecular and clinical effects, 

enabling more in-depth pharmacological studies. 
 

A.2 Data Resources for Relations 
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Ensembl11 Ensembl is a comprehensive genome browser and database that provides a wealth of 

information on gene sequences, annotations, and relations across multiple species. It supports the analysis 

of gene-transcript interactions by linking genes to their corresponding transcripts. Ensembl also provides 

transcript-protein interaction, providing detailed annotations of how transcripts give rise to protein products. 
The dataset is essential for understanding gene structure, function, and the consequences of gene 

expression. 
 
NCBI - RefSeq15 (Reference Sequence Database) RefSeq is a well-curated collection of gene, transcript, 

and protein sequences, offering high-quality data for gene-transcript and transcript-protein relations. It 

provides standardized and curated sequences that ensure consistency in gene annotations. RefSeq is 

crucial for researchers needing reliable reference sequences for various biological analyses, particularly in 

understanding the relations between transcripts and their encoded proteins. 
 
UniProt17 (Universal Protein Resource) UniProt is a leading repository of protein sequence and functional 

information. It plays a dual role by linking transcripts to their corresponding protein products. In addition to 

capturing transcript-protein interactions, UniProt also includes annotations of protein-disease relations, 

making it essential for understanding how protein dysfunctions can lead to disease. 
 
BioGrid46 BioGrid is a key resource for protein-protein interaction data, curated from both high-throughput 

and small-scale experimental studies. This database is essential for exploring how proteins interact within 
cellular networks, facilitating the study of complex biological processes such as signaling pathways, 

metabolic networks, and structural assemblies. BioGrid data on protein-protein interactions supports a wide 

range of applications, from basic research to drug discovery. 
 
STRING48 STRING is a database of known and predicted protein-protein interactions, integrating data from 

various sources such as experimental studies, computational predictions, and publicly available text 

collections. It is essential for understanding the functional interactions between proteins and mapping 
protein interaction networks. STRING helps to identify potential interactions that play critical roles in 

biological processes and disease states, making it a valuable tool for systems biology research. 
 
KEGG19 (Kyoto Encyclopedia of Genes and Genomes) KEGG is a comprehensive database that 

integrates genomic, chemical, and systemic functional information, offering valuable insights into various 

biological interactions. It is essential for studying protein-protein interactions, illustrating how proteins 

cooperate in cellular processes, as well as gene-pathway interactions, showing how genes function within 

specific biological pathways. Furthermore, KEGG explores drug-pathway interactions, revealing how drugs 
influence these pathways, and facilitates the study of pathway-gene and pathway-drug interactions, 

providing a clear understanding of how pathways are regulated by genes and targeted by drugs. 
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HPO32 (Human Phenotype Ontology) HPO provides a standardized vocabulary of phenotypic 

abnormalities associated with human diseases. It is invaluable for connecting genes to phenotypes (gene-

phenotype interaction), linking diseases to their phenotypic presentations (disease-phenotype interaction), 
and mapping genes to diseases (gene-disease interaction). HPO also facilitates the study of phenotype-

phenotype relations, enabling researchers to compare phenotypic similarities and differences across 

genetic conditions.  
 
DisGeNet49 DisGeNet is a comprehensive platform that integrates data on gene-disease associations from 

multiple sources, including expert-curated databases, scientific literature, and publicly available repositories. 

It plays a critical role in identifying gene-disease interactions, helping to elucidate the genetic basis of 

various diseases. DisGeNet supports research into disease mechanisms by providing insights into the 
complex genetic networks that underlie disease phenotypes. 
 
DISEASES50 The DISEASES database provides information on protein-disease associations, integrating 

data from literature mining and manually curated sources. It links proteins to the diseases they are 

associated with, offering a detailed view of how protein dysfunctions contribute to disease phenotypes. 

DISEASES is especially useful for identifying molecular mechanisms underlying diseases and for exploring 

potential therapeutic targets. 

 
HMDB23 (Human Metabolome Database) HMDB is an extensive resource that provides detailed 

information on human metabolites, including drugs, drug metabolites, and endogenous small molecules. It 

captures a wide range of interactions, including drug-metabolome, metabolome-disease, and metabolome-

protein relations. HMDB supports research in metabolomics, systems biology, and pharmacology, providing 

data on metabolic pathways, metabolite-protein interactions, and the role of metabolites in health and 

disease. 
 
MetaNetX51 It is a comprehensive resource developed by the SIB Swiss Institute of Bioinformatics to 

facilitate the standardization, integration, and analysis of genome-scale metabolic networks (GSMNs) and 

biochemical pathways. MetaNetX allows users to construct, modify, and analyze metabolic models through 

tools for flux balance analysis (FBA), reaction knockout simulations, and network comparison. By 

integrating data from diverse sources and providing a standardized framework, MetaNetX is a valuable tool 

for researchers in systems biology and bioinformatics, enabling a deeper understanding of complex 

metabolic processes. 

 
DisBiome52 DisBiome is a database that focuses on the relations between microbiomes and diseases. It 

captures microbiome-disease interactions, providing insights into how microbial taxa are associated with 
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health and disease. DisBiome supports research into the role of the human microbiome in various disease 

conditions, facilitating the exploration of microbial communities as potential biomarkers or therapeutic 

targets. 

 
MDAD53 (Microbe-Drug Association Database) MDAD is a comprehensive resource that compiles 

clinically and experimentally validated associations between microbes and drugs. It contains 5,055 entries, 

encompassing 1,388 drugs and 180 microbes, sourced from multiple drug databases and scientific 

publications. Each record in MDAD includes detailed annotations, such as molecular forms of drugs, links 

to DrugBank, microbe target information from UniProt, and original reference citations. This database 

serves as a valuable tool for researchers aiming to understand microbe-drug interactions, facilitating 

advancements in drug discovery, disease therapy, and personalized medicine. 

 
PharmacoMicrobiomics54 It is a field that examines the interactions between the human microbiome and 

drugs, focusing on how microbial communities influence drug metabolism, efficacy, and toxicity. This 

bidirectional relation involves microbes activating, inactivating, or transforming drugs into metabolites with 

altered effects, while drugs, in turn, can reshape the composition and function of the microbiome. These 

interactions have profound implications for personalized medicine, as variations in the microbiome can 

affect individual drug responses, side effects, and therapeutic outcomes. By understanding these dynamics, 

PharmacoMicrobiomics aims to optimize drug therapies, reduce adverse effects, and pave the way for 

microbiome-targeted medical interventions. 
 

CTD (The Comparative Toxicogenomics Database)29 CTD is a publicly available, manually curated 

resource that provides insights into the complex relations between chemicals, genes, and diseases, with a 

specific emphasis on environmental exposures. CTD integrates data on chemical-gene interactions, 

chemical-disease associations, and gene-disease relations, offering researchers a unique platform to 

explore the molecular mechanisms underlying toxicological effects and exposure-related health outcomes. 

By including exposure-related information, CTD helps bridge the gap between environmental science and 
molecular biology, enabling studies on how environmental factors influence gene function and contribute 

to disease etiology. This resource is particularly valuable for advancing research in toxicogenomics, 

precision medicine, and environmental health. 

 

DO (Disease Ontology)35 DO is a standardized biomedical ontology that provides a structured vocabulary 

and hierarchical classification for human diseases, enabling consistent annotation and integration of 

disease-related data across research and clinical domains. Each disease entry is assigned a unique 

identifier and is cross-referenced with external resources such as OMIM, ICD, SNOMED CT, and MeSH, 
ensuring interoperability and facilitating data harmonization. By linking diseases to their etiology, molecular 

mechanisms, and clinical manifestations, DO supports applications in translational medicine, computational 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2024. ; https://doi.org/10.1101/2024.12.05.627020doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.05.627020
http://creativecommons.org/licenses/by-nc-nd/4.0/


biology, and precision medicine. Its integration with genomic and phenotypic datasets makes it a critical 

tool for advancing disease research, biomarker discovery, and therapeutic development. 
 
DrugBank44 DrugBank is a comprehensive resource that integrates detailed information on drugs and their 
targets. It captures multiple types of interactions, including protein-drug, drug-drug relations. DrugBank 

provides data on drug mechanisms, drug interactions, and the diseases they are used to treat, making it 

an essential tool for pharmacological research and drug development. It also supports studies on how drugs 

interact with biological systems at the molecular level. 
 
BindingDB55 BindingDB is a public repository of measured binding affinities between proteins (mainly drug 

targets) and small, drug-like molecules. It supports research into protein-drug interactions by providing 

experimental data on the binding affinities of drugs to their target proteins. BindingDB is a valuable resource 
for drug discovery and pharmacology, helping researchers identify potential drug candidates and 

understand the molecular mechanisms of drug action. 
 
DrugCentral56 DrugCentral is a centralized portal for drug information, offering data on drug-protein, drug-

disease, interactions. It integrates information on drug indications, targets, and mechanisms of action, 

supporting the study of therapeutic interventions and pharmacodynamics. DrugCentral is an important 

resource for researchers exploring drug repurposing, drug development, and clinical applications. 

 
SIDER57 (Side Effect Resource) SIDER provides comprehensive data on the adverse effects of drugs, 

linking pharmaceutical compounds to their phenotypic side effects. This resource is essential for studying 

drug-phenotype interactions, helping researchers understand the unintended consequences of drug use. 

SIDER supports pharmacovigilance efforts and aids in optimizing drug safety profiles by highlighting 

potential risks associated with pharmaceutical compounds. 
 
Table S1. Download Links and Access Control for Entity Databases 

Database Access Download Link 

Ensembl Gene public access BioMart API 

Transcript public access BioMart API 

Protein public access BioMart API 

OMIM Gene public access https://omim.org/static/omim/data/mim2gene.txt  

HGNC Gene public access https://www.genenames.org/cgi-

bin/download/custom?col=gd_hgnc_id&col=gd_app_sym&col=gd_app_name&col=gd_p

ub_eg_id&col=gd_pub_ensembl_id&status=Approved&hgnc_dbtag=on&order_by=gd_h

gnc_id&format=text&submit=submit  

NCBI Gene public access https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2ensembl.gz  

https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene_info.gz  

Microbiota public access https://ftp.ncbi.nih.gov/pub/taxonomy/taxdmp.zip  

RefSeq Gene public access https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2refseq.gz  
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 Transcript public access https://ftp.ncbi.nlm.nih.gov/refseq/MANE/MANE_human/current/MANE.GRCh38.v1.3.su

mmary.txt.gz  

 Protein public access https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene_refseq_uniprotkb_collab.gz  

https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2ensembl.gz  

RNACentral Transcript public access https://ftp.ebi.ac.uk/pub/databases/RNAcentral/current_release/id_mapping/database_

mappings/ensembl.tsv  

UniProt Protein public access API 

Reactome Pathway public access https://reactome.org/download/current/ReactomePathways.txt  

KEGG Pathway public access Fetching data via R and Python 

WikiPathways Pathway public access Fetching data via Python 

Pathway 

Ontology 

Pathway public access https://download.rgd.mcw.edu/ontology/pathway/pathway.obo  

ComPath Pathway public access https://compath.scai.fraunhofer.de/export_mappings  

HMDB Metabolite public access https://hmdb.ca/downloads  

ChEBI Metabolite public access https://www.ebi.ac.uk/chebi/chebiOntology.do?chebiId=77746  

Drug public access https://ftp.ebi.ac.uk/pub/databases/chebi/Flat_file_tab_delimited/chebiId_inchi_3star.tsv  

https://ftp.ebi.ac.uk/pub/databases/chebi/Flat_file_tab_delimited/database_accession_3

star.tsv 

SILVA Microbiota public access https://www.arb-

silva.de/fileadmin/silva_databases/current/Exports/taxonomy/ncbi/taxmap_embl-

ebi_ena_lsu_ref_138.2.txt.gz  

https://www.arb-

silva.de/fileadmin/silva_databases/current/Exports/taxonomy/ncbi/taxmap_embl-

ebi_ena_ssu_ref_138.2.txt.gz 

Greengenes Microbiota public access https://ftp.ebi.ac.uk/pub/databases/RNAcentral/current_release/id_mapping/database_

mappings/greengenes.tsv  

RDP Microbiota public access https://ftp.ebi.ac.uk/pub/databases/RNAcentral/current_release/id_mapping/database_

mappings/rdp.tsv  

GTDB Microbiota public access https://data.ace.uq.edu.au/public/gtdb/data/releases/latest/ar53_metadata.tsv.gz 

https://data.ace.uq.edu.au/public/gtdb/data/releases/latest/bac120_metadata.tsv.gz  

CTD Exposure public access https://ctdbase.org/reports/CTD_chemicals.csv.gz  

ToxCast Exposure public access https://clowder.edap-cluster.com/files/6114f600e4b0856fdc65865c 

ChemIDplus Exposure public access Fetching data via Python 

HPO Phenotype public access https://hpo.jax.org/data/ontology  

UMLS Phenotype Registration 

required 

https://download.nlm.nih.gov/umls/kss/2024AA/umls-2024AA-

full.zip?_gl=1*14ig82q*_ga*MTA5NTI1Nzc2My4xNzEwOTU5NjM5*_ga_7147EPK006*

MTcyMzU3NDM0NC41My4xLjE3MjM1NzUyNzYuMC4wLjA.*_ga_P1FPTH9PL4*MTcy

MzU3NDM0NC41My4xLjE3MjM1NzUyNzYuMC4wLjA 

Disease Registration 

required 

ICD10 / ICD11 Disease public access https://icdcdn.who.int/static/releasefiles/2024-01/SimpleTabulation-ICD-11-MMS-en.zip 

https://icdcdn.who.int/static/releasefiles/2024-01/mapping.zip  

Disease 

Ontology 

Disease public access https://github.com/DiseaseOntology/HumanDiseaseOntology/blob/main/DOreports/allX

REFinDO.tsv  

MeSH Disease public access https://nlmpubs.nlm.nih.gov/projects/mesh/MESH_FILES/xmlmesh/desc2024.xml  

SNOMED-CT Disease Registration 

required 

https://download.nlm.nih.gov/umls/kss/IHTSDO2024/IHTSDO20240801/SnomedCT_Int

ernationalRF2_PRODUCTION_20240801T120000Z.zip?_gl=1*xret7k*_ga*MTA5NTI1N

zc2My4xNzEwOTU5NjM5*_ga_7147EPK006*MTcyMzU4ODA3OC41NC4xLjE3MjM1O

DgyNDYuMC4wLjA.*_ga_P1FPTH9PL4*MTcyMzU4ODA3OS41NC4xLjE3MjM1ODgyN

DYuMC4wLjA  

Mondo Disease public access https://github.com/monarch-initiative/mondo/blob/master/reports/xrefs.tsv  

https://github.com/monarch-initiative/mondo/releases/latest/download/mondo.obo  

PubChem Drug public access https://pubchem.ncbi.nlm.nih.gov/#query=RgHgEbsv3pPpudygXtiVibNCzyJqQo7z9NaV

v-
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Hh77v3rs&alias=PubChem%20Compound%20TOC:%20Drug%20and%20Medication%

20Information  

https://pubchem.ncbi.nlm.nih.gov/#query=fDvaK_Z8k8Ck7hv3mY9S3nQVH3UjzJXS7_e

OnvTmnJ_0_6A&alias=PubChem%20Compound%20TOC:%20Pharmacology%20and

%20Biochemistry 

CAS Drug public access Fetching data via Python 

NDC Drug public access https://www.accessdata.fda.gov/cder/ndctext.zip   

UNII Drug public access https://precision.fda.gov/uniisearch/archive/latest/UNII_Data.zip  

Fetching data via Python 

DrugBank Drug public access https://go.drugbank.com/releases/5-1-12/downloads/all-drug-links  

 

 
Table S2. Download Links and Access Control for Relation Databases 

Database Access Download Link 

Ensembl Gene-Transcript public 

access 

BioMart API 

Transcript-Protein BioMart API 

RefSeq Gene-Transcript public 

access 

https://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/RefSeqGene/LRG_RefSeqGene  

Transcript-Protein https://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/RefSeqGene/LRG_RefSeqGene  

UniProt Transcript-Protein public 

access 

API 

Protein-Disease https://rest.uniprot.org/uniprotkb/stream?compressed=true&fields=accession%2Ccc_

disease&format=tsv&query=%28*%29+AND+%28model_organism%3A9606%29  

BioGrid Protein-Protein public 

access 

https://downloads.thebiogrid.org/File/BioGRID/Release-Archive/BIOGRID-

4.4.237/BIOGRID-ALL-4.4.237.mitab.zip  

STRING Protein-Protein public 

access 

https://stringdb-

downloads.org/download/protein.links.full.v12.0/9606.protein.links.full.v12.0.txt.gz  

KEGG Protein-Protein public 

access 

Fetching data via R 

Protein-Pathway 

Drug-Pathway 

Pathway- Protein 

Pathway-Drug 

HPO Protein-Phenotype public 

access 

https://hpo.jax.org/data/annotations  

Protein-Disease https://hpo.jax.org/data/annotations  

Phenotype-Phenotype https://hpo.jax.org/data/ontology  

Phenotype-Disease https://hpo.jax.org/data/annotations 

Disease-Phenotype https://hpo.jax.org/data/annotations 

DisGeNet Protein-Disease Registration 

required 

API 

DISEASES Protein-Disease Registration 

required 

https://download.jensenlab.org/human_disease_benchmark.tsv  

MetaNetX Metabolite- Metabolite public 

access 

https://www.metanetx.org/cgi-bin/mnxget/mnxref/chem_xref.tsv  

https://www.metanetx.org/cgi-bin/mnxget/mnxref/chem_isom.tsv  

DisBiome Microbiota-Disease public 

access 

https://disbiome.ugent.be/export  

MDAD Microbiota-Drug public 

access 

https://github.com/Sun-Yazhou/MDAD/blob/master/MDAD.zip  

Drug-Microbiota 

PharmacoMicr

obiomics 

Microbiota-Drug public 

access 

http://pharmacomicrobiomics.com/view/relation/  

Drug-Microbiota 

HMDB Metabolite-Protein public 

access 

https://hmdb.ca/downloads  

Metabolite-Disease 

Drug-Metabolite 
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CTD Exposure-Gene public 

access 

https://ctdbase.org/reports/CTD_chem_gene_ixns.csv.gz  

Exposure-Pathway https://ctdbase.org/reports/CTD_chem_pathways_enriched.csv.gz  

Exposure-Disease https://ctdbase.org/reports/CTD_chemicals_diseases.csv.gz  

Disease 

Ontology 

Disease-Disease public 

access 

https://raw.githubusercontent.com/DiseaseOntology/HumanDiseaseOntology/refs/hea

ds/main/src/ontology/HumanDO.obo  

DrugBank Drug-Protein Registration 

required 

https://go.drugbank.com/releases/5-1-12/downloads/target-all-polypeptide-ids  

Drug-Drug https://go.drugbank.com/releases/5-1-12/downloads/all-full-database  

BindingDB Drug-Protein public 

access 

https://www.bindingdb.org/bind/downloads/BindingDB_All_202409_tsv.zip  

DrugCentral Drug-Protein public 

access 

https://drugcentral.org/ActiveDownload  

Drug-Disease 

SIDER Drug-Phenotype public 

access 

http://sideeffects.embl.de/media/download/meddra_all_se.tsv.gz  
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Section B. Details of Entity and Relation Integration 

 
Figure S1. Details of Gene Entity Merging Process 

 

Figure S1 provides a detailed overview of the integration process for BioMedGraphica Gene, using A1BG 

as an example. The “Data Resource” section depicts the original datasets sourced from various databases 

for gene entity integration. The “Data Cleaning” section presents the cleaned data format prepared for 

integration. Columns highlighted in red boxes indicate the key matching fields used during the merging 

process. In the “Data Merging” section, the gray boxes showcase the data format at each step of database 

integration. The overall gene entity integration employs an outer join approach: Ensembl and HGNC 
databases are merged first, followed by integration with the NCBI Gene database. Subsequently, RefSeq 

and OMIM are incorporated sequentially. The final unification is based on the NCBI Gene ID, ensuring that 

all entries with the same ID are consolidated. 
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Figure S2. Details of Transcript Entity Merging Process 
 

A detailed depiction of the integration process for BioMedGraphica transcript has been provided in Figure 
S2, using ENST00000337335.5 as an example. The "Data Resource" section shows the raw data sourced 

from databases used in transcript entity integration. Since the original RefSeq dataset lacked a 

corresponding RefSeq ID for ENST00000337335.5, an alternative transcript was selected as a 

supplementary example. The "Data Cleaning" section presents the cleaned data format prepared for 

integration. Columns highlighted in red boxes indicate the key matching fields used during the merging 
process. In the "Data Merging" section, gray boxes illustrate the data format after each step of database 

integration. The integration process for transcript entities employs an outer join approach: first, the Ensembl 

and RefSeq databases are merged, followed by integration with the RNAcentral database. The Ensembl 

stable ID serves as the primary unit for final data unification, consolidating all entries with the same Ensembl 

stable ID. 
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Figure S3. Details of Protein Entity Merging Process 
 

Figure S3 illustrates the integration process for BioMedGraphica Protein, using ENSP00000000233.5 as 

a representative example. The "Data Resource" section outlines the raw datasets obtained from various 

databases utilized in protein entity integration. The "Data Cleaning" section highlights the standardized 

format of the data after preparation for integration. Key matching columns, marked in red boxes, were used 

to align data across sources. The "Data Merging" section visualizes the transformation of data formats 

through successive integration steps, represented by gray boxes. The integration process employs an outer 

join methodology, starting with the merging of Ensembl and UniProt databases. This combined dataset is 
then integrated with RefSeq. The final step uses the Ensembl stable ID version as the primary key to unify 

entries, ensuring that all records associated with the same Ensembl stable ID version are consolidated. 
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Figure S4. Details of Pathway Entity Merging Process 

 
Figure S4 provides a detailed illustration of the integration process for BioMedGraphica Pathway, using 

PW:0000009 as an example. The "Data Resource" section represents the raw data from the databases 

used in the integration of the pathway entity. The "Data Cleaning" section displays the format of the cleaned 

data prepared for integration. The data highlighted in the red boxes indicates the key matching columns 

used for merging. In the "Data Merging" section, the gray boxes show the format of the data after each step 

of database integration. The pathway entity integration process follows an outer join method. First, the 

Pathway Ontology and KEGG databases are merged, followed by the integration of Reactome data into 

the combined dataset, and subsequently ComPath and WikiPathway are integrated in sequence.  
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Figure S5. Details of Metabolite Entity Merging Process 

 
Figure S5 provides a detailed illustration of the integration process for BioMedGraphica Metabolite, using 

ChEBI: 18019 as an example. The "Data Resource" section represents the raw data from the databases 

used in the integration of the metabolite entity. The "Data Cleaning" section displays the format of the 

cleaned data prepared for integration. The data highlighted in the red boxes indicates the key matching 

columns used for merging. In the "Data Merging" section, the gray boxes show the data format after each 

step of database integration. The metabolite entity integration process follows an outer join method, 

merging data from the HMDB and ChEBI databases. Finally, the HMDB ID is used as the minimal unit for 
data unification, consolidating all entries with the same HMDB ID. 
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Figure S6. Details of Microbiota Entity Merging Process 

 
Figure S6 provides a detailed illustration of the integration process for BioMedGraphica Microbiota, using 

NCBI Taxon ID: 1105100 as an example. The "Data Resource" section represents the raw data from the 

databases used in the integration of the microbiota entity. The "Data Cleaning" section shows the format of 

the cleaned data prepared for integration. The data highlighted in the red boxes indicates the key matching 

columns used for merging. In the "Data Merging" section, the gray boxes display the data format after each 

step of database integration. The microbiota entity integration process follows an outer join strategy, first 

merging data from the NCBI Taxonomy and SILVA databases, followed by integration with Greengenes, 

RDP, and GTDB in sequence. Finally, the NCBI Taxon ID is used as the primary unit for data unification, 
consolidating all entries with the same NCBI Taxon ID. 
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Figure S7. Details of Exposure Entity Merging Process 

 
Figure S7 uses CAS number 100-00-05 as an example to illustrate the integration process for 

BioMedGraphica Exposure. The "Data Resource" section displays the raw data from databases used for 

the exposure entity. The "Data Cleaning" section shows the cleaned data format prepared for integration. 

The data highlighted in the red boxes indicates the key matching columns used for merging. In the "Data 

Merging" section, the gray boxes display the data format after each step of database integration. The 

exposure entity integration process follows an outer join strategy, first merging data from the CTD and 

ChemIDplus databases, followed by integration with ToxCast. 
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Figure S8. Details of Phenotype Entity Merging Process 

 

Figure S8 provides a detailed illustration of the integration process for BioMedGraphica Phenotype, using 

HP: 0200101 as an example. The "Data Resource" section represents the raw data from the databases 

used in the integration of the phenotype entity. The "Data Cleaning" section displays the format of the 
cleaned data prepared for integration. For HPO, descriptive terms in the original names were removed. The 

data highlighted in the red boxes indicates the key matching columns used for merging. In the "Data 

Merging" section, the gray boxes show the format of the data after each step of database integration. The 

phenotype entity integration process follows an outer join approach, merging data from the HPO and UMLS 

databases. 
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Figure S9. Details of Disease Entity Merging Process 

 

Figure S9 provides a detailed illustration of the integration process for BioMedGraphica Disease, using 

C0000744 as an example. The "Data Resource" section represents the raw data from the databases used 
in the integration of the disease entity. The "Data Cleaning" section shows the format of the cleaned data 

prepared for integration. The data highlighted in the red boxes indicates the key matching columns used 

for merging. In the "Data Merging" section, the gray boxes display the data format after each step of 

database integration. The disease entity integration process follows an outer join methodology. First, the 

MeSH and UMLS databases are merged, followed by the integration of SNOMED CT data with the 

combined dataset. Subsequently, ICD-10, ICD-11, Disease Ontology, and Mondo are integrated in 

sequence. Finally, the UMLS ID serves as the primary identifier for data unification, consolidating all entries 

with the same UMLS ID. 
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Figure S10. Details of Drug Entity Merging Process 

 

Figure S10 provides a detailed illustration of the integration process for BioMedGraphica Drug, using 
100403-19-8 as an example. The "Data Resource" section represents the raw data from the databases 

used in the integration of the drug entity. The "Data Cleaning" section displays the format of the cleaned 

data prepared for integration. The data highlighted in the red boxes indicate the key matching columns used 

for merging. In the "Data Merging" section, the gray boxes show the format of the data after each database 

integration step. The drug entity integration process follows an outer join approach. First, the NDC and UNII 

databases are merged, followed by integrating the combined data with the PubChem database, and 

subsequently with CAS, ChEBI, and DrugBank. Finally, the CAS number is used as the primary identifier 
for data unification, ensuring all entries with the same CAS number are consolidated. 
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