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Abstract 

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder characterized by 
heterogeneous molecular changes across diverse cell types, posing significant challenges for 
treatment development. To address this, we introduced a cell-type-specific, multi-target drug 
discovery strategy grounded in human data and real-world evidence. This approach integrates 
single-cell transcriptomics, drug perturbation databases, and clinical records. Using this 
framework, letrozole and irinotecan were identified as a potential combination therapy, each 
targeting AD-related gene expression changes in neurons and glial cells, respectively. In an AD 
mouse model, this combination therapy significantly improved memory function and reduced 
AD-related pathologies compared to vehicle and single-drug treatments. Single-nuclei 
transcriptomic analysis confirmed that the therapy reversed disease-associated gene networks in 
a cell-type-specific manner. These results highlight the promise of cell-type-directed 
combination therapies in addressing multifactorial diseases like AD and lay the groundwork for 
precision medicine tailored to patient-specific transcriptomic and clinical profiles. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.12.09.627436doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.09.627436
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Introduction 
 
Alzheimer’s disease (AD) is a neurodegenerative disorder with severe impacts on individuals, families, 
and society1, and yet without a cure. AD patients suffer progressive memory loss, behavior changes, and 
cognitive and motor deficits, leading to diminished quality of life2. Over 50 million people currently live 
with AD or other related dementias worldwide, a number projected to triple by 20503,4. With global costs 
exceeding $1 trillion annually, AD is one of the most costly health conditions worldwide5. Urgent action 
is needed to develop effective and accessible treatments.  

Despite rigorous preclinical and clinical research efforts, AD drug development faces significant 
challenges, with a 98% failure rate in recent decades6. Current therapeutic options are mostly limited to 
symptom-managing treatments7. Furthermore, recently approved immunotherapies have only modest 
effects on disease progression8,9. The lack of effective treatments stems from the pathological 
heterogeneity in AD. While AD’s most prominent disease hallmark is proteopathy, characterized by 
extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles (NFTs), their interplay 
and exact mechanisms leading to disease remain unclear10. Genetic heterogeneity further complicates the 
disease, including risk mutations in the amyloid precursor protein (APP) and presenilin genes, and 
APOE4, a risk isoform of apolipoprotein E (APOE)11. Emerging evidence highlights the critical roles of 
different brain cell types, with neuroinflammation and inadequate neuronal support from malfunctioning 
glial cells contributing to AD progression12. Considering the multifactorial nature of AD, traditional 
therapeutic approaches focusing on single disease hallmarks or bulk-tissue-level pathologies are often 
insufficient, leading to variable treatment outcomes. 

Given the unmet need for disease-modifying treatments, drug repurposing has gained interest due to its 
faster development, lower costs, and improved safety13. In addition, technical advancements in mining 
large-scale databases offer new opportunities for discovering promising candidates. These developments, 
combined with various drug screening approaches such as in vitro14 and in vivo assays15, gene signature 
matching16, network modeling17,  machine learning18, and data mining19, have identified numerous 
repurposed candidates for AD over the past decade. However, the extensive array of potential candidates 
complicates the establishment of priorities for clinical translation20.   

In this study, we proposed repurposing a combination of two existing drugs, letrozole21 and irinotecan22, 
to reverse cell-type-specific gene expression alterations across multiple distinct cell types implicated in 
AD. Our drug screening strategy is entirely driven by human data, utilizing large-scale omic datasets from 
post-mortem brains23–25, a drug perturbation library generated in human cell lines26, and clinical records 
encompassing millions of individuals, thereby maximizing the chance of clinical translation. We validated 
our predicted drug candidates through dosing experiments in an AD mouse model27,28, showing that the 
combination therapy targeting both neurons and glial cells significantly ameliorated memory deficits and 
AD-related pathologies compared to vehicle treatment, and outperformed single-drug treatments targeting 
either neurons (letrozole) or glial cells (irinotecan) alone. The successful in vivo validation underscores 
the power of multi-cell-type network-correction therapies in effectively treating AD, highlighting the 
promise of our human data-driven, cell-specific drug discovery approach to develop comprehensive 
therapies for complex diseases. Furthermore, by targeting molecular signatures and clinical features 
derived from real-world individuals, this study demonstrates the potential for AI-enabled precision 
medicine leveraging large-scale multimodal personalized measurements. 
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Results 

Computational integration of large-scale single-nucleus transcriptomic datasets from multiple 
studies enables the identification of cell-type-specific AD signature profiles 

We organized a comprehensive single nucleus RNA-sequencing (snRNA-seq) dataset by combining 
published data from three independent studies23–25(Figure 1a), covering 37 AD patients (15 females and 
22 males) and 29 controls (13 females and 22 males). Samples from individuals who did not meet both 
CERAD29 and Braak30 criteria for AD or control were excluded from our dataset. The Uniform Manifold 
Approximation and Projection (UMAP) visualization reveals clustering predominantly by the datasets of 
origin rather than biological variations, such as cell types or disease status (Figure 1b, Figure S1a-b). 
After batch harmonization with the integration algorithm, technical artifacts between datasets were 
effectively removed (Figure 1c), and distinct cell populations clustered by cell types (Figure 1d) while no 
discrete separation was observed based on disease status (Figure 1e). The integrated dataset consisted of 
expressions of 29,120 features in 137,065 cells.  

To systematically characterize cell-type-specific AD pathophysiological features, we conducted 
comprehensive analyses focusing on six disease-relevant cell types: excitatory neurons (ex.neu), 
inhibitory neurons (in.neu) microglia (mic), astrocytes (ast), oligodendrocytes (oli), and oligodendrocyte 
precursor cells (OPC). In AD patients, the proportion of inhibitory neurons significantly decreased 
compared to controls (Figure 1f), as previously reported in human and mouse models of AD31–33. Cell-
cell-communication analysis revealed heterogeneous signaling patterns among neuronal subpopulations in 
AD compared to controls. Signaling to inhibitory neurons increased from all cell types except microglia, 
while signaling to excitatory neurons decreased from all cell types except oligodendrocytes (Figure 1g).  

Cell-type-specific differential gene expression analysis between AD and control groups revealed 
significant variations in differentially expressed genes (DEGs) across cell types, with highest number of 
DEGs unique to one cell type observed in astrocytes (Figure 1h). Many DEGs were unique to specific cell 
types, while others were shared but displayed opposite regulatory patterns in AD (Figure 1i). For 
example, the APOE gene, a major genetic risk factor for AD34, was significantly upregulated in microglia 
but downregulated in astrocytes and OPCs in AD samples. Additionally, gene set enrichment analysis 
showed that AD-enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene 
ontology (GO) terms exhibited extensive cell-type heterogeneity, with most pathways and terms unique to 
individual cell types (Figure 1j, Figure S2). While pathways like chemical carcinogenesis- reactive 
oxygen species and prion disease were enriched in AD across all six cell types, unique pathways 
delineated them into two clusters. The neuronal-centric cluster included excitatory and inhibitory neurons, 
with oligodendrocytes sharing estrogen signaling with excitatory neurons and cAMP signaling with 
inhibitory neurons. The glial-centric cluster was comprised of astrocytes, microglia, and OPCs, with 
astrocytes and OPCs sharing gap junction pathway enrichment, and microglia and OPCs enriched for 
oxidative phosphorylation. These findings suggest AD pathogenesis involves heterogeneous 
transcriptomic-driven molecular alterations manifested in discordant behaviors of multiple cell types. 
Effective treatment likely needs to correct malfunctions in multiple, if not all, cell types. 
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Computational drug repurposing pipeline predicts cell-type-specific therapeutic candidates 

After establishing cell-type-specific AD profiles from our integrated human dataset, we screened for 
network-correcting drug candidates targeting AD-specific transcriptomic changes across multiple cell 
types. We queried each cell-type-specific AD transcriptomic profile against the Connectivity Map 
(CMap) drug expression database26 using a computational pipeline that matches gene expression profiles 
of diseases and existing drugs (Figure 2a). Most AD signatures overlapped with drug profile features, 
which were then used as inputs in the pattern-matching algorithm (Figure 2b). With a false discovery rate 
(FDR) < 0.05, we predicted 35 hits for excitatory neurons, 12 hits for inhibitory neurons, 8 hits for 
microglia, 33 hits for astrocytes, 4 hits for oligodendrocytes, and 8 hits for OPCs. Several drug hits 
overlapped across cell types, forming linkages in a network visualization of drug interactions with cell 
types (Figure 2c).  

Notably, 25 repurposed drugs significantly reversed cell-type-specific AD profiles in multiple cell types 
(Figure 2d), indicating a multi-targeted potential with these drugs. These multi-cell-type drug candidates 
span various therapeutic classes, including cardiac glycosides (digitoxigenin, digoxigenin, helveticoside), 
chemotherapeutic agents (methotrexate, irinotecan, etoposide, mitoxantrone), aromatase inhibitors 
(letrozole), histone deacetylase inhibitors (trichostatinA, vorinostat, scriptaid), 
immunosuppressants/mTOR inhibitors (sirolimus),  anti-inflammatory/anti-tumor agents (15-delta 
prostaglandin J2), nonsteroidal anti-inflammatory drugs (fenbufen), antifungal agents (ciclopirox), 
antibiotic (monensin, ionomycin), antiepileptics (valproic acid), antipsychotics (haloperidol), and several 
experimental compounds with undefined pharmacological classifications (LY-294002, CP-320650-01, 
CP-690334-01, syrosingopine, hycanthone, 5155877)35.  

Validation of candidate drug effects in humans using real-world evidence derived from electronic 
medical records 

We aimed to validate the effects of the repurposed drug candidates in humans using real-world data. A 
distinct advantage of existing pharmaceutical agents is their potential for population-level analysis using 
real-world patient data to explore associations between drug use and AD outcomes. We explored the 
University of California (UC)-wide Electronic Medical Records (EMR) database, which includes clinical 
records of more than 10 million individuals across six university health centers in California. We 
identified 25,257 individuals diagnosed with AD within the UC-wide EMR database, out of 1.4 million 
individuals aged 65 or older, creating a substantial clinical dataset for analysis. 

Focusing on the 25 multi-cell-type candidate drugs, we found usage records for 10 of these drugs, as only 
a subset of the drugs from CMap is FDA-approved or prescribed (Figure 2e, Supplementary Table 4). Of 
these ten drugs, five (letrozole, irinotecan, methotrexate, ciclopirox, and sirolimus) were associated with a 
significantly reduced risk of AD compared to matched controls, suggesting potential protective effects of 
them against AD. Although three drugs (etoposide, trifluoperazine, and vorinostat) showed reduced risk, 
statistical significance was not achieved due to insufficient patient representations. Lastly, two drugs 
(valproic acid and haloperidol), both used for neurological conditions, showed higher relative risk scores. 

Prioritization of letrozole and irinotecan as combination therapy for AD based on human-derived 
evidence 
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We hypothesized that combination therapy targeting both neuronal and glial transcriptomic profiles might 
more effectively alleviate AD pathologies. Among five drug candidates showing significant AD risk 
reduction in UC-wide EMR, we prioritized letrozole for its predicted reversal effects in excitatory and 
inhibitory neurons, and irinotecan for its effects on the glial-centric cluster, including astrocytes, 
microglia, and OPCs (Figure 2f). Therefore, a combination of letrozole and irinotecan potentially targets 
five cell types in AD.  

When visualizing AD and drug profiles side by side, genes upregulated in AD neurons shifted downward, 
while genes downregulated shifted upward in letrozole-treated gene expression profiles (Figure 2g). 
Irinotecan-treated profiles showed similar shifts across glial cells (Figure 2g). Letrozole, an aromatase 
inhibitor primarily prescribed for breast cancer treatment and occasionally for male infertility21,36, had a 
relative risk ratio of 0.466 for AD in UC-wide EMR. It demonstrated reversal scores of -0.37 and -0.61 
for excitatory and inhibitory neurons, respectively. Despite a female-skewed cohort (33 females to 1 
male), the risk reduction ratios were comparable for both sexes when analyzed individually 
(Supplementary Table 5). Irinotecan, a DNA topoisomerase I inhibitor used for colorectal cancer 
treatment22, showed a relative risk ratio of 0.195 for AD. It demonstrated AD reversal capabilities across 
all three cell types of the glial-centric clusters, with reversal scores of -0.29, -0.31, and -0.45 for 
astrocytes, microglia, and OPCs, respectively. 

The combination treatment with letrozole and irinotecan rescues both short-term and long-term 
spatial memory in a mouse model of AD  

To experimentally test the efficacy of the combination therapy with letrozole and irinotecan, we 
conducted dosing experiments in an AD mouse model expressing mutant human APP/PS1 and tau 
(5xFAD28 x PS1927), which recapitulates many AD-related phenotypes including amyloid plaque 
formation, tau tangles, and gliosis, with an early and aggressive pathology onset37,38 (Figure 3a). A sex-
balanced double transgenic cohort was evenly divided into four groups (n=20, including both sexes) and 
each treated with either vehicle, letrozole, irinotecan, or the combination of both drugs every other day for 
three months. Spatial learning and memory performance were evaluated using the Morris Water Maze 
(MWM) test39. While no significant difference was observed in hidden platform training trials across 6 
days between each treatment and vehicle group (Figure 3b), the memory test in probe trials revealed that 
only the combination-treatment group exhibited a statistically significant preference for the target 
quadrant at both 24- and 72-hours post-training (Figure 3c, d), suggesting a rescue of both short-term and 
long-term memory deficits by the combination treatment. Furthermore, only the combination-treatment 
group demonstrated significantly better location recall by making more frequent crossings to the platform 
location at both time points after platform removal (Figure 3e, f). Mice in the combination-treatment 
group also significantly outperformed the vehicle mice in latency to the first platform crossing during the 
72-hour probe trial (Figure S3a, b). Average swim speeds were similar across all groups, indicating that 
the observed behavioral differences were not confounded by visual or motor impairments (Figure S3c, d).  

Additionally, sex differences were observed in the dosing experiment, with significantly improved 
learning performance only observed in combination-treated males compared to vehicle-treated males, and 
not in females (Figure S4e-f). Memory rescue by the single drug treatments was also evident in males at 
24 and 72 hours of the probe trials but not in females (Figure S4g-j). Taken together, AD-related 
behavioral assessments, particularly in males, demonstrated that only the combination therapy with 
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letrozole and irinotecan effectively rescued memory deficits in an AD mouse model with both amyloid 
and tau pathologies. Notably, the combination treatment significantly outperformed single-drug 
treatments, which demonstrated markedly less pronounced efficacies. 

The combination treatment with letrozole and irinotecan rescues AD pathologies in a mouse model 
of AD  

To determine whether the single or combination drug treatments can also rescue AD-related pathologies, 
we morphologically assessed the cohort at 9 months of age (4 months post-treatment). According to 
previous literature, this AD mouse model develops extensive neurodegeneration, Aβ deposits, 
hyperphosphorylated tau (p-tau), gliosis, and severe loss of CA1 neurons in the hippocampus at this 
age37,38. We first evaluated neurodegeneration in the hippocampal region, as atrophy in this region is a 
hallmark of AD progression. Analyses of hippocampal volume showed rescue of atrophy in all treatment 
groups, with the most significant improvement in the combination-treatment group compared to the 
control group (Figure 4a, b). Thioflavin S (Thio-S) staining for β-amyloid pathology revealed significant 
reductions in all treatment groups compared to vehicle-treated controls, measured by the Thio-S-positive 
percent area and plaque counts normalized by hippocampal size (Figure 4c, d). P-tau pathology was 
assessed by immunofluorescent staining using the p-tau-specific AT8 antibody. While all treatment 
groups showed a trend of reduced p-tau pathology compared to vehicle-treated controls, only the 
combination-treatment group had a statistically significant reduction in the p-tau coverage area of the 
hippocampus (Figure 4e, f).  

Given the cell-type-precision therapeutic design, we investigated the effects of each treatment on gliosis 
and neuronal loss through immunostaining of specific cell types.  As major contributors to 
neuroinflammation, microgliosis and astrogliosis were evaluated by quantifying the coverage area of cell 
type-specific markers Iba1 and GFAP, respectively. Mice in irinotecan and combination-treatment groups 
showed a significant reduction in the Iba1-positive percent area in the hippocampus, indicating alleviation 
of microgliosis (Figure 4g, h). Astrogliosis reduction was moderate, with significant reduction observed 
only in the irinotecan-treated group (Figure 4i, j). Neuronal loss was assessed by measuring neuronal 
layer thickness via NeuN staining in the CA1 region of the hippocampus. Significant rescue of neuronal 
loss was evident in the CA1 region (Figure 4k, l). The most significant rescues were observed in letrozole 
and combination-treatment groups. Interestingly, irinotecan-treated mice also showed moderate rescue in 
neuronal loss, likely attributable to the alleviation of gliosis that may help prevent neuronal loss.  

The combination-treatment group demonstrated improvement across all pathology markers except 
astrogliosis, whereas the single treatments only partially addressed these pathologies and notably failed to 
reduce p-tau levels. To evaluate the relationship between cognitive performance and underlying 
neurodegenerative changes, correlation analysis was conducted between behavioral test metrics and 
pathological measurements. Significant correlations were observed between memory probes, percent time 
spent in target quadrant, and pathology metrics, including NeuN layer thickness, hippocampal volume, p-
tau level, and plaque counts (Figure S5). Notably, the combination-treatment group exhibited consistently 
stronger correlations compared to the vehicle-treated group, particularly between the percent time spent in 
the target quadrant during memory probes and the thickness of NeuN-positive layers. These findings 
suggest that improvements in cognitive performance in the combination-treatment group were more 
closely associated with reductions in pathological markers, reinforcing the potential therapeutic synergy 
observed. 
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The combination treatment with letrozole and irinotecan promotes neuroprotective functional 
pathways in a cell-type-specific manner  

To investigate the cell-type-specific transcriptomic changes in response to the combination treatment, 
snRNA-seq was performed on dissected hippocampi obtained from mice on combination treatment of 
letrozole and irinotecan (L+I) or vehicle treatment (n=8 per group, including both sexes). After standard 
processing and quality control, we obtained a filtered dataset containing 25,642 gene features expressed 
across 237,853 nuclei for further analysis. Through graph-based clustering and visualization using 
UMAP, we identified 31 distinct cell clusters, including clusters assigned to the six major cell types 
(Figure 5a). Additionally, we found that the L+I treatment reduced the excessive communication between 
inhibitory neurons and other cell types (Figure 5b, Figure S6), evident in AD (see Figure 1g). 

To account for the granularity and selective vulnerabilities among neuronal subtypes, we subdivided the 
excitatory and inhibitory neurons into CA1 pyramidal cells, CA3 pyramidal cells, dentate granule cells 
(DGC), subiculum neurons, and interneurons based on expressions of hippocampal subregion marker 
genes. Notably, in the UMAP plot split by treatment groups, there is a discernible higher density of cells 
observed in the L+I-treated group compared to the vehicle-treated group within the pyramidal neuron 
clusters of the CA1 and CA3 regions (Figure 5c). This was quantified via cell type abundance analysis, 
revealing that the proportions of CA1 and CA3 pyramidal neurons in L+I-treated mice were significantly 
higher than in vehicle-treated mice (Figure 5d), consistent with our findings from pathological analysis.  

Differential gene expression analysis comparing L+I and vehicle treatments revealed varying counts and 
compositions of DEGs (abs(logFC) > 0.1, padj < 0.05) across cell types, with the fewest DEGs observed 
in oligodendrocytes, suggesting they were least affected (Figure 5e, Supplementary Table 6). Gene set 
enrichment analysis of cell-type-specific DEGs revealed enrichments in disease-relevant functional 
pathways (Figure 5f). Notably, the treatment enriched pathways related to nervous system development 
and synaptic activities in neurons. For example, in excitatory neurons, the dendrite morphogenesis 
pathway was enriched, while the axonogenesis pathway was enriched in inhibitory neurons. In glial cells, 
oligodendrocyte differentiation pathway was enriched in OPCs, and actin filament-based movement and 
synapse assembly pathways in oligodendrocytes. Essential microglial functions like pathways of response 
to oxidative stress and histamine, regulation of neuron death and synaptic plasticity, and neuron 
projection development were enriched, as were neuron development and regulation of synaptic activity 
pathways in astrocytes. KEGG pathway analysis revealed that L+I-treatment perturbed pathways 
associated with AD, such as long-term potentiation, circadian entrainment, cAMP signaling, and calcium 
signaling (Figure 5g), suggesting that the combination treatment promotes neuroprotective functional 
pathways in a cell-type-specific manner. 

The combination treatment with letrozole and irinotecan effectively reverses multiple cell-type-
specific transcriptomic signatures of AD  

Lastly, we explored combination treatment-reversed transcriptomic signatures of AD to elucidate 
potential molecular and cellular mechanisms underlying the observed benefits of the L+I treatment. We 
mapped human AD signatures to homologous mouse genes. With an absolute log fold change cutoff of 
0.01, the L+I treatment reversed the expression patterns of AD signatures in multiple cell types: 56 (27%) 
in excitatory neurons, 36 (29%) in inhibitory neurons, 90 (27%) in astrocytes, 52 (20%) in microglia, 37 
(15%) in oligodendrocytes, and 64 (34%) in OPCs (Figure 6a, Figure S7). With a p-adj-value < 0.05 
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cutoff, 49 and 27 AD signatures were significantly reversed by L+I treatment in excitatory and inhibitory 
neurons, respectively, with 13 shared between them (Figure 6a). In glial cells, fewer reversed gene 
expressions reached statistical significance: 13 in astrocytes, 6 in microglia, 11 in oligodendrocytes, and 
19 in OPCs. However, they unveiled intriguing patterns. For instance, APOE, identified as a DEG in the 
human integrated analysis, was upregulated in microglia and downregulated in astrocytes and OPCs (see 
Figure 1i). The expression patterns of Apoe in the tested AD mouse model were reversed by L+I 
treatment across all three cell types (Figure 6a), although statistical significance was only achieved in 
astrocytes and OPCs, possibly due to the presence of a small but diverse microglia population in the 
sequenced cohort.  

We then conducted gene set enrichment analysis on significantly reversed genes to identify potential 
mechanistic targets. Combining reversed genes in excitatory and inhibitory neurons revealed associations 
with the estrogen signaling pathway among others (Figure 6b). Reversed genes within this pathway are 
also involved in regulation of protein kinase and phosphatase activity, as well as tau kinase activity, 
highlighting potential mechanisms by which letrozole may modulate neuronal dysfunction in AD. 
Furthermore, certain reversed genes are associated with synaptic activities and neuron projections, 
potentially contributing to the rescue of neurodegeneration noted in the pathological analysis. In 
astrocytes, reversed genes are associated with the regulation of long-term synaptic potentiation, chemical 
synaptic transmission, and cholesterol metabolism (Figure 6c). In microglia, reversed genes are associated 
with pathways regulating synapses and cell growth (Figure 6c). Additionally, we combined reversed 
genes from oligodendrocytes and OPCs, revealing associations with pathways related to cell growth 
regulation, response to reactive oxygen species, and neuron projection regulation (Figure 6c). These 
findings provide a transcriptomic foundation, supporting the network correction concept that L+I 
combination treatment rescues AD-related behavioral and pathological deficits by rectifying complex 
dysregulated gene networks across multiple disease-relevant cell types. 
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Discussion 

This study is the first to investigate the therapeutic potential of a combination therapy addressing 
pathology across multiple cell types implicated in AD, with each component precisely targeting 
transcriptomic disease signatures specific to either neuronal or glial cells. Despite that over 2,700 clinical 
trials primarily targeting single core pathologies were initiated in the past two decades, only two received 
FDA approval6. The limited success of single-target approaches underscores the need for strategies 
addressing AD’s heterogeneous pathologies across various cell types, such as synaptic loss, neuronal 
death, neuroinflammation, cholesterol homeostasis alteration, energy metabolism deficit, dysfunctional 
phagocytosis, and demyelination12. To address this complexity, we designed a cell-type-directed 
combination therapy to correct cell-type-specific dysregulated gene networks in both neuronal and glial 
cells. This transformative therapeutic approach employs network-correction strategy to restore essential 
cellular function by targeting multiple AD-related pathways simultaneously. By reversing the expressions 
of hundreds of disease signature genes within distinct disease-relevant cell types, this strategy provides a 
more comprehensive and synergistic therapeutic approach, potentially offering greater efficiency in 
addressing complex disease mechanisms. 

While systems biology approaches and single-cell data mining have been employed for computational 
AD drug repurposing40,41, these attempts often yield extensive lists of candidates without comprehensive 
validation or prioritization, thereby limiting clinical translation. To address this challenge, we leveraged 
real-world evidence from the UC-wide EMR to examine the prevalence of AD diagnosis in patients after 
drug exposure. Among the predicted drug candidates with sufficient patient representation, the majority 
were associated with decreased relative risk for AD, indicating potential therapeutic benefits in humans. 
Based on their intended cell-type-specific targets, we prioritized letrozole (targeting neurons) and 
irinotecan (targeting glial cells) as a combination therapy from the EMR-validated drugs. Both drugs also 
demonstrate the ability to cross the blood-brain barrier42,43, ensuring delivery to the brain for therapeutic 
activity. Epidemiological evidence further supports this prioritization, with studies showing reduced 
dementia risk among breast cancer patients treated with letrozole44 and decreased AD risk among 
colorectal cancer survivors treated with irinotecan45. Together, these findings provide strong clinical and 
mechanistic support for the potential efficacy of letrozole and irinotecan as a combination therapy for AD. 

Dosing validation in the 5xFAD28 x PS1927 mouse model, characterized by pronounced Aβ and tau 
pathologies, revealed significant rescue of memory impairment exclusively in the combination-treatment 
group. The combination therapy demonstrated robust alleviation across all pathology markers except 
astrogliosis. In contrast, single-drug treatments only partially rescued subsets of the investigated markers, 
highlighting the superior therapeutic effectiveness of the combination approach. Notably, only the 
combination treatment significantly reduced p-tau pathology, a key predictor of cognitive function and 
decline in AD patients according to clinical studies46,47, potentially accounting for the statistically 
significant memory improvement observed exclusively with the combination therapy. These findings 
underscore the importance of targeting both neuronal and glial cell pathologies to achieve a more 
comprehensive and effective treatment outcome. 

The network-correcting effects of the combination therapy was investigated through snRNA-seq analysis 
of hippocampal samples from combination-treated and vehicle-treated mice. In addition to rescuing 
memory deficits and pathologies, the combination treatment reversed the expression of AD signature 
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genes enriched across diverse AD-related pathways. In neurons, these included synaptic activity, 
axonogenesis, neuronal projections, and protein phosphorylation regulation; in astrocytes, cholesterol 
metabolism and long-term synaptic potentiation; in microglia, synaptic organization and cell growth 
regulation; and in oligodendrocytes and OPCs, regulation of neuronal projections and synaptic signaling. 
These findings support the hypothesis that a targeted, multifaceted therapeutic approach confers AD-
specific benefits by rectifying multiple pathological processes in a cell-type-specific manner. Further 
investigation is required to delineate the precise mechanisms and key pathways modulated by the 
combination therapy.  

Despite these promising findings, several limitations of this study should be noted. First, the CMap 
database were measured in cancer cells and may not accurately reflect brain tissue profiles; they were 
used to screen drug candidates and require validations in neurological models. Relevant drug perturbation 
databases on different brain cell types are currently unavailable. Second, validation on animal models, 
though necessary, may not fully represent human biology. Significant sex differences to treatment were 
observed in behavior tests and pathology analyses, with male mice generally responding better 
behaviorally to all treatments (Figure S4). Sex differences in AD are well-documented and the impact of 
sex hormones in AD remain inconclusive48. As an aromatase inhibitor, letrozole might contribute to this 
sex difference. However, we observed no difference between sexes in AD prevalence after drug 
exposures in the UC-wide EMR sex-stratified analysis. This discrepancy suggests the observed sex 
differences may be specific to the mouse models, as both 5xFAD and PS19 have shown strong sex 
difference in prior studies49,50. Additionally, EMR analysis presents potential caveats, as data tend to be 
sparse and are not collected with specific research in mind. Two of the ten drug candidates screened using 
EMR data, both used in neurological disorders, showed significantly higher relative risk scores for AD, 
suggesting detrimental effects. However, these neurological conditions are comorbidities of AD, 
increasing the likelihood of exposure to these drugs in AD patients. Despite efforts to propensity-match, 
the control populations may not accurately represent the drug-exposed populations if relevant diagnoses 
are missing. Therefore, rather than using relative risk scores as a measure of drug effectiveness, we relied 
on EMR results to prioritize drug candidates for experimental validation. 

In summary, this study introduces a transformative approach to AD drug discovery by focusing on cell-
type-specific interventions and predicting multi-target drug combinations based on human-derived data. 
Utilizing extensive omic data from post-mortem human brains and clinical records from millions of 
diverse patients, our methodology provides a robust framework for identifying effective therapeutic 
agents through real-world evidence. Preclinical validation in an AD mouse model demonstrated that the 
proposed drug combination significantly improved memory deficits and alleviated AD-related 
pathologies, whereas the single drugs alone showed limited or no efficacy, highlighting the superior 
therapeutic potential of the combination treatment. Our finding that the treatment reversed AD-specific 
gene networks supports the multi-cellular network correction concept of this strategy and facilitates 
further investigation elucidating the precise mechanistic targets to advance it as a novel AD therapeutic. 
Besides highlighting the translational potential of the proposed drug combination, this study also 
exemplifies the promise of a cell-type-directed, network-correcting treatment strategy. It paves the way 
for precision medicine leveraging AI and large-scale patient-level data. Integrating advanced computation 
with evolutionary scale multi-omic, clinical, and drug perturbation databases, future efforts can develop 
AI systems to design tailored treatments for patients based on molecular signatures and clinical profiles of 
specific subpopulations or individuals. 
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Methods 

Human single nuclei RNA-sequencing (snRNA-seq) data curation. 

To ensure a diverse representation of AD patients, we curated publicly available human snRNA-seq 
datasets from three independent sources. Both Mathys et al. and Zhou et al. studies were obtained from 
the Accelerating Medicines Partnership Alzheimer’s Disease Project (AMP-AD) Knowledge Portal 
(https://adknowledgeportal.org) under the Religious Order Study and Memory and Aging Project 
(ROSMAP). The Mathys et al. dataset is accessible through https://doi.org/10.7303/syn2580853. The 
Zhou et al. dataset is available under the study snRNAseqAD_TREM2 and is also accessible through 
https://doi.org/10.7303/syn21125841. Only individuals without TREM2 mutations were included in our 
integrated dataset. The third dataset by Lau et al. was obtained from Gene Expression Omnibus (GEO) 
under the accession number GSE157827.  

Case-control standardization across datasets. 

To standardize AD identification across studies, samples were re-classified into AD or control groups 
based on tau tangles severity with Braak clinical staging30 scores and Aβ burden using Consortium to 
Establish a Registry for Alzheimer’s Disease (CERAD) scores29 as a proxy. Braak staging ranges from I 
to VI to represent low to high levels of tau deposition. The CERAD scoring ranges from 1 to 4 to indicate 
high to low Aβ burden severity. Based on the available metadata from the original studies, we defined AD 
cases as individuals with severe tau deposition (Braak ≥ IV) and high Aβ load (CERAD ≤ 2), and non-AD 
controls as individuals with low tau (Braak ≤ III) and low Aβ load (CERAD ≥ 3).  Individuals with scores 
that did not fulfill both criteria were excluded. Our final integrated dataset consisted of 37 AD cases and 
29 controls. 

Human snRNA-seq dataset integration, normalization, and batch correction. 

Before merging the datasets, cells deemed as poor quality were removed with the following criteria: total 
feature count less than 500, total features less than 250, or mitochondrial gene ratio higher than 10%. 
Sparse features, expressed in fewer than 10 cells, were also removed. 

Simply merging datasets based on principle component analysis (PCA) reveals apparent study-associated 
variations. To perform batch harmonization while maximizing the conservation of disease-relevant 
biological variance, we performed canonical correlation analysis (CCA)51 using the Seurat package v4.0.4 
to harmonize the merged dataset. We applied the default settings to first log-normalize the merged dataset 
with Seurat’s NormalizeData function. Then, for each dataset independently, the top 2000 variable 
features were identified using the FindVariableFeatures function with "vst" as the selection method. 
Integration anchors were identified with the FindIntegrationAnchors function based on the top variable 
features. Finally, a harmonized dataset consisting of 137,065 cells and 29,120 features was generated 
using the IntegrateData function in Seurat. 

The data matrix was linearly transformed using Seurat’s ScaleData function. Dimensionality reduction 
through Uniform Manifold Approximation and Projection (UMAP) was performed with the RunUMAP 
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function, which considers the top 30 dimensions selected from the corresponding principal component 
analysis (PCA) obtained by running the RunPCA function in Seurat. 

Clustering was determined based on the first 30 PCs using the FindNeighbors function in Seurat, which 
embeds cells in a K-nearest neighbor graph based on Euclidean distance in PCA space and refines the 
edge weights between any two cells based on the shared overlap in their local neighborhoods. Clustering 
was implemented using a resolution of 0.5 in the FindClusters function, which applies modularity 
optimization techniques such as the Louvain algorithm, resulting in a set of 21 distinct clusters.  

Human cell type annotation. 

Cell type identities were determined by applying Seurat’s AddModuleScore function to lists of known 
human brain marker genes (~ 8 per cell type) collected from PanglaoDB and referenced by Jiang et al. 
Cell type assignment included astrocytes, microglia, oligodendrocytes, oligodendrocyte precursor cells, 
endothelial cells, pericytes, and excitatory and inhibitory neurons. Each cell was assigned the 
corresponding cell type identity that generated the highest scores among scores for all cell types. If the 
highest and second highest scores of a cell were within 20% of the highest score, then the cells were 
deemed hybrids and excluded from further analysis. We assessed the validity of the assigned cell type 
identities by examining the homogeneity, distribution, and separation of cell types by clusterings in 
UMAP plots.  

Cell-cell communication analysis 

Cell-cell communication (CCC) was calculated using the CellChat method52. Briefly, CellChat utilizes 
ligand, receptor, and cofactor expression from transcriptomic data to calculate a CCC probability. First, 
based on a CellChat-curated database of ligand-receptor interactions, differentially expressed signaling 
genes are used to calculate the ensemble average expression of signaling genes.  Communication 
probability is modeled using the law of mass action, and statistically significant communications are 
identified using a permutation test. We then evaluated the interaction across cell types (excitatory 
neurons, inhibitory neurons, oligodendrocytes, oligodendrocyte precursor cells, and astrocytes). For the 
mouse vehicle-treatment comparison, and the human control-AD comparison, the 
netVisual_diffInteraction was used to calculate the net differential interaction strength between each of 
the two groups.  

Cell-type-specific differential expression analysis. 

For each cell type, we performed differential gene expression analysis comparing AD samples to controls 
using the FindMarkers function in the Seurat package. We set the test.use a parameter to MAST, which 
uses a two-part generalized linear model that models gene expression rate using linear regression and 
expression level using Gaussian distribution, as recommended by Mou et al53. in a study comparing 9 DE 
methods for single-cell RNA sequencing analysis. We determined differentially expressed genes (DEGs) 
as those with adjusted p-value < 0.05 based on Bonferroni correction using all genes in the dataset and a 
log2 fold change (LFC) greater than 0.1. 

Pathway analysis 
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Pathway enrichment analysis was conducted using g:Profiler, a web tool that performs functional over-
representation analysis by mapping a given gene list to known functional information sources and detects 
statistically significant enriched terms. As input gene lists, we queried each cell-type-specific DEG list 
independently with an adjusted p-value cutoff of 0.05 to obtain significant pathway enrichment in both 
directions. Multiple testing correction was performed using the g:SCS algorithm, which is specifically 
correct for p-values obtained from GO and pathway enrichment analysis. This method is designed to 
correct for multiple tests that may be potentially dependent on each other due to term associations. In 
addition to considering Gene Ontology cellular components, biological processes, and molecular 
functions as supplementary data, we focused our analysis on the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) functional pathways. 

Computational drug repurposing analysis 

The computational drug repurposing algorithm, which was developed by Sirota et al. and Dudley et al., 
and taken from Chen et al., was applied to each disease gene signature profile using the publicly available 
Connectivity Map (CMap) database, consisting of treatment profiles of more than 1300 FDA-approved 
drugs or previously investigated compounds. The drug repurposing algorithm we employed takes two 
inputs: 1) an ordered list of up and down-regulated genes from individuals with disease as compared to 
controls and 2) the data from CMap, consisting of rank FC of each gene after drug treatment relative to 
vehicle controls on the same plate. The pipeline assesses the disease-drug relationship using CMap scores 
derived from a Kolmogorov-Smirnov test (K-S test), comparing gene expression ranks in disease and by a 
drug. The pipeline was adapted for single-cell analysis, where each cell-type-specific DEG signature set 
was overlaid with 6100 drug profiles on the 1300 drugs provided by the CMap. A drug with a strong 
negative CMap score indicates an opposing mechanistic relationship with the disease, suggesting 
therapeutic potential by reversing the regulation direction of disease signatures. The absolute values of 
CMap scores reflect the degrees to which the drug “flips” the signature of the disease. To address 
variations in input counts across cell types, significantly reversed drug profiles were identified for each 
cell type separately using a permutation-based approach. The false discovery rate (FDR; Benjamini-
Hochberg) was calculated to adjust P-values. P-values for individual drug hits were determined by 
comparing reversal scores to a distribution of random scores that were generated by the permutation 
strategy. Negative reversal scores were deemed significant if they met the criterion of FDR < 0.05. For 
drugs tested multiple times (e.g., in different cell lines), the profile with the most substantial reversal 
(lowest negative score) was used.  

Validation in real-world human electronic medical records (EMR) 

While our drug screening approach generated a total of 86 drug candidates targeting six major brain cell 
types, we prioritized 25 drugs that significantly reverse more than one brain cell type. This allows 
maximizing coverage of multiple disease-relevant cell types by combining just two drugs. The beneficial 
effects of the top drug hits were examined by analyzing AD prevalence (% AD diagnosis) in drug-
exposed individuals and compared to propensity-matched controls, via UC-wide EMR. AD diagnosis was 
defined with ICD10 codes G30.0, G30.1, G30.8, and G30.9. At the time of surveying, the UC-wide EMR 
aggregated clinical data covering 1,441,778 individuals across six University of California (UC) 
campuses, encompassing more than 10 million patient records including diagnosis and medication 
prescriptions. For each screened drug candidate, patients prescribed or taken the drug will be identified 
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using the medication order table and string-matching for drug names. Only individuals above the age of 
65 were considered.  

The matched controls were identified using a propensity score matching approach based on age, age at 
death (if applicable), race, ethnicity, sex, original indications (for example, breast cancer was used for 
Letrozole and colorectal cancer was used for Irinotecan), AD comorbidity (such as hypertension and 
edema), and UC center locations (including UC San Francisco, UC Davis, UC Los Angeles, UC Irvine, 
UC San Diego, and UC Riverside). We measured the relative risk score for AD diagnosis (not including 
patients with only a diagnosis of Mild Cognitive Impairment) in the drug-exposed group and compared it 
to the matched control groups by calculating the ratios of AD to total patients in each group. Bootstrapped 
χ-squared tests across 10 permutations of the iterative matching of the control group were applied to 
establish significance. Drugs with a significantly reduced risk of AD were included in Fig 2e. Other drugs 
found in the UC-wide EMR but did not yield significance or reduced risk were reported in Supplementary 
Table 5. Different original indications were used for matching each drug, and the ICD10 codes were listed 
in Supplementary Table 5. 

Drug selection rationale for validation in AD mouse model 

Our integrated human single-cell transcriptomic analysis revealed two distinct pathological clusters 
among the six cell types analyzed. Additionally, we observed that AD inhibitory neurons exhibited the 
most pronounced disparity between AD cases and controls, underscoring its significance in AD 
pathology. These discoveries informed our prioritization of drug candidates targeting these specific 
clusters and accommodating inhibitory neurons for treating AD. Among a selection of five promising 
drug candidates that demonstrated a significant reduction in AD risk in humans, we prioritized letrozole 
and irinotecan, since letrozole targets the neuronal pathological cluster while irinotecan targets the glial 
pathological cluster. We hypothesize that the combination of letrozole and irinotecan holds synergistic 
therapeutic effects, with each pathological cell type cluster addressed by one EMR-validated drug 
candidate. Consequently, we examined AD outcomes in patients receiving both drugs under their original 
disease indications in the UC-wide EMR. Unfortunately, fewer than 100 patients were ever prescribed 
both medications, rendering statistical analysis inconclusive. To explore the synergistic effects of this 
combination in the context of AD, we turned to direct experimentations in animal models. 

Mouse cohort generation 

The 5xFAD (6SJL) Tg mice (The Jackson Laboratory, ME, USA), overexpress both mutant human 
amyloid beta (A4) precursor protein 695 (APP) with the Swedish (KM670/671NL), Florida (I716V), and 
London (V717I) Familial Alzheimer’s Disease (FAD) mutation and human PS1 harboring two FAD 
mutations, M146L and L286V. These mice were crossed with the widely used tauopathy model, PS19 
transgenic mice expressing P301S mutation and including four microtubule-binding domains and one N-
terminal insert. A large cohort of the cross, including both sexes, was genotyped, and the littermates 
carrying transgenes from both lines were subsequently used for the dosing experiment.  

Drug treatments 

A solution of either letrozole (1 mg/kg) or irinotecan (10 mg/kg) alone, or of the two combined was 
prepared weekly in 0.9% sterile saline containing 10% Tween-20 to obtain the final concentrations. 
Treatment dosages were established based on previously tolerated doses given during cancer studies in 
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mice. All treatments were sonicated for 30 minutes before injections to ensure proper mixing of the drugs 
into the solution. The treatments were given by i.p. injection every other day to the 5xFAD x PS19 double 
transgenic cohort, evenly split into four groups and sex-balanced, starting 12 weeks before and continuing 
throughout the behavioral assessment. Mice were aged 4-5 months old before the start of the treatment 
and the treatments lasted about 4 months until sacrificed. Body weight was measured weekly during drug 
treatment; injection volume was calculated based on body weight. Control mice were injected with a 
matched volume of vehicle, 10% Tween in 0.9% sterile saline at pH 8.5. Injections were well tolerated 
and had no adverse effects on health. 

Behavioral test 

Mice were housed with littermate controls. Each mouse was assigned a random number, so researchers 
were blinded to genotype and treatment information. Male and female mice were tested in separate rooms 
with the same settings and test duration to avoid olfactory cues becoming a distraction with testing a 
mixed sex cohort on the same equipment 

The Morris Water Maze pool (diameter, 122 cm) contained opaque water (21 + 13°C) with a platform 10 
cm in diameter.  Mice were first trained for 6 days to locate a hidden platform submerged 1.5cm below 
the surface of the water using distal cues surrounding the pool. These 6 days consisted of two training 
sessions, 2 hours apart, each consisting of two trials with a maximum latency of 60s, with a 15-minute 
inter-trial interval. Entry points were changed semi-randomly between trials, but distal visual cues on the 
walls of the behavioral testing room remained constant throughout the test. To test for memory retention, 
at 24 and 72 hours after the last hidden platform training, a 60-s probe trial (platform removed) was done. 
The entry point for the probe trial was opposite to the target. Finally, as a control for visual acuity and 
motor ability, mice were tested with a cued platform where the submerged platform is indicated by a 
black and white striped mast 15cm high extending out the surface of the water. The platform location 
remained constant in the hidden platform sessions but was changed for each visible platform session. 
Three sessions of two trials, with a maximum latency of 60s, was performed over 2 days. Performance 
was monitored with an EthoVision video-tracking system (Noldus Information Technology). For the 
probe trials, we analyzed (1) target quadrant preference- the percent time spent in the target quadrant 
versus average time spent in the three other quadrants, (2) platform crossing- the number of crossings 
over the position of the target platform versus the average number of crossings over the equivalent 
positions in the three other quadrants as well as (3) escape latency- a memory probe measuring how fast 
mice arrive at the platform location after placement in the maze.  An ANOVA was used to analyze the 
effect of treatment, genotype, and probe timing on percent on-target crosses. 

Histopathological analyses 

One hemibrain per mouse was drop-fixed in 4% paraformaldehyde prepared in 1xPBS, washed for 24 
hours in 1xPBS, then cryoprotected in 30% sucrose for 48 hours at 4°C. The fixed hemispheres were cut 
into 30 μm thick coronal slices using a freeze-sliding microtome (Leica). These sections were then stored 
in a cryoprotectant solution of 30% ethylene glycol, 30% glycerol, and 40% 1xPBS at −20 °C.  

Hippocampal brain sections (ten sections per mouse spaced approximately 300 μm apart, 30-μm thick) 
were mounted onto microscope slides from Fisher Scientific. A 0.1% Sudan Black solution was prepared 
by dissolving Sudan Black powder (Sigma) in 70% ethanol (KOPTEC) and mixing it with a magnetic 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.12.09.627436doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.09.627436
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

stirrer. After centrifuging the solution at 1,100g for 10 minutes, the supernatant was filtered using a 0.2-
μm filter syringe (Thermo Scientific). The brain sections were stained with the 0.1% Sudan Black 
solution for 10 minutes, then washed in 70% ethanol followed by Milli-Q water. The sections were then 
coverslipped with ProLong Gold mounting medium (Invitrogen). All sections were imaged; eight 
consecutive brain sections with consistent anatomic locations from AP -1.2 to -3.6 were quantified. 

For Thio-S staining, several brain sections spaced 300 μm apart were mounted onto slides, following a 
protocol adapted from a previous study. The sections were washed with 1× PBS-T and then incubated in a 
solution of 0.06% Thio-S in PBS for 8 minutes. After this incubation, the sections were washed for 1 
minute in 80% ethanol and then for 5 minutes in PBS-T. The sections were counterstained with DAPI for 
8 minutes, washed again with PBS-T, and coverslipped. Three sections per mouse were quantified and 
averaged for percent Thio-S positive area and number of plaque counts (normalized by hippocampal area 
size per section).  

For immunofluorescent staining, several brain sections spaced approximately 300 μm apart, were washed 
three times with 1× PBS-T (PBS + 0.1% Tween-20) (Millipore Sigma) and then incubated for 5 minutes 
in boiling antigen retrieval buffer (Tris buffer, pH 7.6; TEKNOVA). After this, the sections were rinsed in 
PBS-T before being placed in a blocking solution composed of 5% normal donkey serum (Jackson Labs) 
and 0.2% Triton-X (Millipore Sigma) in 1× PBS for 1 hour at room temperature. Next, the sections were 
washed again in PBS-T and incubated in Mouse-on-Mouse (MOM) Blocking Buffer (one drop MOM IgG 
in 4 ml PBS-T) (Vector Labs) for another hour at room temperature. Following the MOM block, the 
sections were incubated overnight at 4°C in primary antibodies diluted to their optimal concentrations. 
The antibodies and their dilutions included: anti-AT8 (ms, 1:300, Invitrogen), anti-GFAP (ms, 1:500, 
Millipore Sigma), anti-Iba1 (rbt, 1:300, Wako), anti-NeuN (GP, 1:500, Millipore Sigma). Three sections 
per mouse were quantified and averaged for a positive percent area. 

After the primary antibody incubation, the sections were washed in PBS-T and then incubated for 1 hour 
at room temperature in secondary antibodies. These included donkey anti-mouse 488 (1:1,000, Abcam), 
donkey anti-rabbit 594 (1:1,000, Abcam), donkey anti-guinea pig 594 (1:1,000, Jackson Immuno), and 
donkey anti-guinea pig 647 (1:1,000, Jackson Immuno). Subsequently, the sections were washed in PBS-
T and incubated in DAPI (1:30,000 dilution in PBS-T) (Thermo Fisher) for 8 minutes at room 
temperature. After a final wash with PBS-T, the sections were mounted onto microscope slides (Fisher 
Scientific), coverslipped with ProLong Gold mounting medium (Vector Laboratories) and sealed with 
clear nail polish.  

Images for quantifications were captured using a scanning microscope (Keyence) at magnifications of 
×10 or ×20, depending on the stain. To minimize batch-to-batch variation, all samples for each stain were 
processed simultaneously and imaged at the same fluorescent intensity. For quantifying the percent 
coverage area, an optimal threshold was established for each stain in ImageJ, and all samples were 
quantified using this threshold. To prevent bias, researchers were blinded to the sample identities. 
Representative images were captured using an Aperio VERSA slide scanning microscope (Leica) at ×20 
magnification. 

snRNA-seq library preparation and sequencing 
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The other hemibrains were dissected by brain subregions, rapidly frozen on dry ice, and kept at −80 °C. 
Hippocampal samples were used for single-nuclei preparation. One frozen mouse hippocampus was 
placed into a pre-chilled 2 mL Dounce with 1 mL of cold 1X Homogenization Buffer (1X HB) (250 mM 
Sucrose, 25 mM KCL, 5 mM MgCl2, 20 mM Tricine-KOH pH7.8, 1 mM DTT, 0.5 mM Sermidine, 0.15 
mM Sermine, 0.3% NP40, 0.2 units/µL RNase inhibitor, ~0.07 tabs/ml cOmplete Protease inhibitor). 
Dounce with “A” loose pestle (~10 strokes) and then with “B” tight pestle (~10 strokes). The homogenate 
was filtered using a 70 µM Flowmi strainer (Bel-Art) and transferred to a pre-chilled 2 mL LoBind tube 
(Fischer Scientific). Nuclei were pelleted by spinning for 5 min at 4°C at 350 RCF. The supernatant was 
removed, and the nuclei were resuspended in 400 µL 1X HB. Next, 400 µL of 50% Iodixanol solution 
was added to the nuclei and then slowly layered with 600 µL of 30% Iodixanol solution under the 25% 
mixture, then layered with 600 µL of 40% Iodixanol solution under the 30% mixture. The nuclei were 
then spun for 20 min at 4°C at 3,000RCF in a pre-chilled swinging bucket centrifuge. 200 µL of the 
nuclei band at the 30%-40% interface was collected and transferred to a fresh tube. Then, 800 µL of 2.5% 
BSA in PBS plus 0.2 units/µL of RNase inhibitor was added to the nuclei and then were spun for 10 min 
at 500 RCF at 4C. The nuclei were resuspended with 2% BSA in PBS plus 0.2 units/µL RNase inhibitor 
to reach at least 500 nuclei/µL. The nuclei were then filtered with a 40 µM Flowmi cell strainer. The 
nuclei were counted and then ~13,000 nuclei per sample were loaded onto 10x Genomics Next GEM chip 
M. The snRNA-seq libraries were prepared using the Chromium Next GEM Single Cell 3� HT kit v3.1 
(10x Genomics) according to the manufacturer’s instructions. Libraries were sequenced on an Illumina 
NovaSeq 6000 sequencer at the UCSF CAT sequencing core. 

Sequence alignment, filtering, and counting 

The demultiplexed fastq files were processed following the procedure previously described by Zalocusky 
et al. In summary, the fastq files were aligned to the mouse reference genome, mm10-1.2.0, which 
includes introns, using the cellranger count function (version 4.0.0) with default parameters, as detailed in 
the Cell Ranger documentation. Subsequently, a single UMI count file per animal/sample was generated 
by the cellranger count function. Individual UMI count files were then combined into a single count 
matrix using the merge function in the Seurat package v4.0.4. Metadata, including age, sex, and treatment 
information, were added to each cell.  

Pre-processing and quality control 

The count matrix was further processed with Seurat by first calculating the percentage of mitochondria 
genes mapped per cell. The distribution of feature count, total mapped gene count, and percentage of 
mitochondria genes were visualized across biological samples as violin plots, and no obvious outlier was 
identified. We filtered the count matrix to only include cells with higher than 250 gene features, at least 
500 gene counts, and mitochondria gene percentages lower than 10%. Potential misaligned or ambiguous 
gene features expressed in fewer than 10 cells were also removed. These quality assurance steps resulted 
in a final Seurat object containing 25,642 gene features expressed by 237,853 nuclei.  

Normalization, dimensional reduction, and clustering 

Count normalization and dimensionality reduction were conducted following standard procedure in the 
Seurat package. In brief, we performed normalization and variance stabilization with an updated version 
of sctransform, v2, and principal component analysis (PCA) with RunPCA (npcs = 30). Dimensional 
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reduction through Uniform Manifold Approximation and Projection (UMAP) was performed with the 
RunUMAP function and considering the top 15 dimensions selected from the corresponding PCA. 

The clustering was based on the first 15 principal components (PCs) using the FindNeighbors function in 
Seurat. This function embeds cells in a K-nearest neighbor graph, considering the Euclidean distance in 
PCA space and refining the edge weights between any two cells based on the shared overlap in their local 
neighborhoods. The clustering was obtained using the FindClusters function, which employs modularity 
optimization techniques such as the Louvain algorithm, with a resolution parameter of, resulting in a set 
of 35 distinct clusters. 

Mouse cell type annotation, differential gene expression, and pathway enrichment analysis 

Major cell types, including astrocytes, microglia, oligodendrocytes, oligodendrocyte precursor cells, and 
excitatory and inhibitory neurons, were classified using mouse brain cell markers in PanglaoDB, a 
publicly available marker gene database. Further subdivisions of hippocampus cell types, such as CA1 
and CA3 pyramidal cells, were queried against hippocampal cell-type-specific marker genes as published 
in hipposeq (https://hipposeq.janelia.org). Cell type identities per cluster were determined by applying 
Seurat’s AddModuleScore function to sets of mouse brain marker genes. A module score for each cell 
type considered was calculated per cell. Each cell was assigned the corresponding cell type identity that 
generated the highest scores among scores for all cell types. If the highest and second highest scores of a 
cell were within 20% of the highest score, then the cells were deemed hybrids and excluded from further 
analysis. We assessed the validity of the assigned cell type identities by examining the homogeneity, 
distribution, and separation of cell types by clustering in UMAP plots. Each cluster is annotated with the 
dominated cell type identity. Minority cell types in a cluster, defined as a cell type that accounts for less 
than 5% of the total counts for that cluster, were considered potential hybrid cells and excluded from 
further analysis.  

For the cell-type-specific differential gene expression analysis, we used the same procedure and tools in 
the human-integrated analysis. For pathway enrichment analysis, in addition to using g:Profiler, we 
curated the EnrichR-KG web tool, which facilitates analysis across multiple databases and provides visual 
representations linking significantly enriched genes with the associated pathways and GO terms. The 
reversal gene-pathway network was generated and downloaded using EnrichR-KG with significantly 
differentially reversed genes as inputs. For each cell-type-stratified analysis, the top five KEGG pathways 
and GO terms were displayed in a network format.  
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Resource availability 

Lead contact 

 Corresponding: marina.sirota@ucsf.edu 
 Co-corresponding: yadong.huang@gladstone.ucsf.edu 

Materials availability 

No new material was generated in this study. 

Data and code availability 

The single-nucleus RNA-sequencing data in combination and vehicle-treated mice was uploaded to 
Figshare. https://doi.org/10.6084/m9.figshare.27041767 

Code for transcriptomic data analysis and integration of multiple datasets and single cell profiling used 
standard packages as described in the methods and will be made available on Github upon manuscript 
acceptance. Code for computational drug repurposing pipeline associated with the current submission is 
available at https://doi.org/10.1053%2Fj.gastro.2017.02.039. 

The UCSF EHR and code associated with the deidentified data analysis are available to UCSF—affiliated 
individuals who can contact UCSF’s Clinical and Translational Science Institute (CTSI) (ctsi@ucsf.edu) 
or the UCSF’s Information Commons team for more information (info.commons@ucsf.edu). UC-wide 
EHR is only available to UC researchers who have completed analyses in their respective UC first and 
have provided justification for scaling their analyses across UC health centers. (more details at 
https://www.ucop.edu/uchealth/departments/center-for-data-driven-insights-and-innovations-cdi2.html or 
by contacting healthdata@ucop.edu. 

Acknowledgments 
 
This study was supported by the National Institute on Aging grants R01AG060393 to MS, R01AG057683 
to MS and YH, RF1AG076647, R01AG078164, and P01AG073082 to YH, and NSF 2034836 to YL. We 
thank Sirota and Huang lab staff for their valuable discussions about the experimental design as well as 
data analyses and interpretation. We also thank Eric Chow and the staff at the UCSF Center for Advanced 
Technology Core for advice and support with snRNA sequencing.   
 
Author Contributions 

YL, YH, and MS designed the study. YL performed majority of the studies and data analyses. C.P.S. 
performed cell-cell-communication analysis. J.B. aided immunohistochemical studies and imaging. M.X. 
facilitated treatment dosing experiments. Y.Hao isolated cell nuclei and Y.Hao and A.A. prepared 
samples for snRNA-seq. E.D., Y.Y.C., and J.H. performed animal behavior tests. S.Y.Y. and A.Z. aided 
in cohort tissue collection. A.R., S.W., A.T, J.S, and I.L helped in developing and optimizing 
experimental procedures and conditions. T.O. and M.K. provided advice and guidance on the study. YH 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.12.09.627436doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.09.627436
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

and MS supervised the study. YL, YH, and MS wrote the manuscript. All authors have read and approved 
the manuscript.  
  

Declaration of interests 

Y.H. is a co-founder and scientific advisory board member of GABAeron Inc. All other authors declare 
no competing interests. 
 
Patent on this work was filed in 2024. U.S. Application Serial No. 63/603,372 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.12.09.627436doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.09.627436
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

References:  

 
1. Alzheimer’s Association 2024 Alzheimer’s Disease Facts and Figures. 

2. What Is Alzheimer’s Disease? National Institute on Aging 

https://www.nia.nih.gov/health/alzheimers-and-dementia/what-alzheimers-disease (2021). 

3. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 

2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. 

Lancet Public Health 7, e105–e125 (2022). 

4. Alzheimer’s Disease Fact Sheet. National Institute on Aging 

http://www.nia.nih.gov/health/alzheimers-disease-fact-sheet. 

5. Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia. 

6. Kim, C. K. et al. Alzheimer’s Disease: Key Insights from Two Decades of Clinical Trial Failures. J 

Alzheimers Dis 87, 83–100 (2022). 

7. How Is Alzheimer’s Disease Treated? National Institute on Aging 

http://www.nia.nih.gov/health/how-alzheimers-disease-treated. 

8. Valiukas, Z. et al. Immunotherapies for Alzheimer’s Disease—A Review. Vaccines (Basel) 10, 1527 

(2022). 

9. Golde, T. E. & Levey, A. I. Immunotherapies for Alzheimer’s disease. Science 382, 1242–1244 

(2023). 

10. Bloom, G. S. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA 

Neurol 71, 505–508 (2014). 

11. Guerreiro, R. J., Gustafson, D. R. & Hardy, J. The genetic architecture of Alzheimer’s disease: 

beyond APP, PSENs and APOE. Neurobiol Aging 33, 437–456 (2012). 

12. Toledano-Díaz, A., Álvarez, M. I. & Toledano, A. The relationships between neuroglial alterations 

and neuronal changes in Alzheimer’s disease, and the related controversies I: Gliopathogenesis and 

glioprotection. J Cent Nerv Syst Dis 14, 11795735221128703 (2022). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.12.09.627436doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.09.627436
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

13. Appleby, B. S., Nacopoulos, D., Milano, N., Zhong, K. & Cummings, J. L. A Review: Treatment of 

Alzheimer’s Disease Discovered in Repurposed Agents. DEM 35, 1–22 (2013). 

14. Cheung, C., Goh, Y. T., Zhang, J., Wu, C. & Guccione, E. Modeling cerebrovascular 

pathophysiology in amyloid-β metabolism using neural-crest-derived smooth muscle cells. Cell Rep 

9, 391–401 (2014). 

15. Choi, Y. et al. Clozapine Improves Memory Impairment and Reduces Aβ Level in the Tg-

APPswe/PS1dE9 Mouse Model of Alzheimer’s Disease. Mol Neurobiol 54, 450–460 (2017). 

16. Taubes, A. et al. Experimental and real-world evidence supporting the computational repurposing of 

bumetanide for APOE4-related Alzheimer’s disease. Nat Aging 1, 932–947 (2021). 

17. Gerring, Z. F., Gamazon, E. R., White, A. & Derks, E. M. Integrative Network-Based Analysis 

Reveals Gene Networks and Novel Drug Repositioning Candidates for Alzheimer Disease. 

Neurology Genetics 7, e622 (2021). 

18. Rodriguez, S. et al. Machine learning identifies candidates for drug repurposing in Alzheimer’s 

disease. Nat Commun 12, 1033 (2021). 

19. Endophenotype-based in silico network medicine discovery combined with insurance record data 

mining identifies sildenafil as a candidate drug for Alzheimer’s disease | Nature Aging. 

https://www.nature.com/articles/s43587-021-00138-z. 

20. Grabowska, M. E., Huang, A., Wen, Z., Li, B. & Wei, W.-Q. Drug repurposing for Alzheimer’s 

disease from 2012–2022—a 10-year literature review. Front Pharmacol 14, 1257700 (2023). 

21. Pajai, S., Potdar, J., Gopal, U. & Banait, T. A Review on the Use of Letrozole in Female and Male 

Infertility. Cureus 14, e31291. 

22. Fujita, K., Kubota, Y., Ishida, H. & Sasaki, Y. Irinotecan, a key chemotherapeutic drug for metastatic 

colorectal cancer. World J Gastroenterol 21, 12234–12248 (2015). 

23. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 

(2019). 

24. Lau, S.-F., Cao, H., Fu, A. K. Y. & Ip, N. Y. Single-nucleus transcriptome analysis reveals 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.12.09.627436doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.09.627436
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer’s disease. PNAS 

117, 25800–25809 (2020). 

25. Zhou, Y. et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and 

TREM2-independent cellular responses in Alzheimer’s disease. Nat Med 26, 131–142 (2020). 

26. Lamb, J. et al. The Connectivity Map: Using Gene-Expression Signatures to Connect Small 

Molecules, Genes, and Disease. Science 313, 1929–1935 (2006). 

27. Tau P301S (Line PS19) | ALZFORUM. https://www.alzforum.org/research-models/tau-p301s-line-

ps19. 

28. 5xFAD (B6SJL) | ALZFORUM. https://www.alzforum.org/research-models/5xfad-b6sjl. 

29. Mirra, S. S. et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. 

Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41, 479–486 

(1991). 

30. Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H. & Del Tredici, K. Staging of Alzheimer 

disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta 

Neuropathol 112, 389–404 (2006). 

31. H, M. et al. Single-cell atlas reveals correlates of high cognitive function, dementia, and resilience to 

Alzheimer’s disease pathology. Cell 186, (2023). 

32. Leung, L. et al. Apolipoprotein E4 Causes Age- and Sex-Dependent Impairments of Hilar 

GABAergic Interneurons and Learning and Memory Deficits in Mice. PLoS ONE 7, (2012). 

33. Najm, R., Jones, E. A. & Huang, Y. Apolipoprotein E4, inhibitory network dysfunction, and 

Alzheimer’s disease. Mol Neurodegeneration 14, 1–13 (2019). 

34. Blumenfeld, J., Yip, O., Kim, M. J. & Huang, Y. Cell type-specific roles of APOE4 in Alzheimer 

disease. Nat Rev Neurosci 25, 91–110 (2024). 

35. Knox, C. et al. DrugBank 6.0: the DrugBank Knowledgebase for 2024. Nucleic Acids Res 52, 

D1265–D1275 (2024). 

36. Lamb, H. M. & Adkins, J. C. Letrozole. A review of its use in postmenopausal women with advanced 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.12.09.627436doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.09.627436
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

breast cancer. Drugs 56, 1125–1140 (1998). 

37. Saul, A., Sprenger, F., Bayer, T. A. & Wirths, O. Accelerated tau pathology with synaptic and 

neuronal loss in a novel triple transgenic mouse model of Alzheimer’s disease. Neurobiology of 

Aging 34, 2564–2573 (2013). 

38. Stancu, I.-C. et al. Tauopathy contributes to synaptic and cognitive deficits in a murine model for 

Alzheimer’s disease. The FASEB Journal 28, 2620–2631 (2014). 

39. Morris water maze: procedures for assessing spatial and related forms of learning and memory | 

Nature Protocols. https://www.nature.com/articles/nprot.2006.116. 

40. Peyton, M. E. Single-cell Approach to Repurposing of Drugs for Alzheimer’s Disease. (2023). 

41. Parolo, S., Mariotti, F., Bora, P., Carboni, L. & Domenici, E. Single-cell-led drug repurposing for 

Alzheimer’s disease. Sci Rep 13, 222 (2023). 

42. Dave, N., Gudelsky, G. A. & Desai, P. B. The pharmacokinetics of letrozole in brain and brain tumor 

in rats with orthotopically implanted C6 glioma, assessed using intracerebral microdialysis. Cancer 

Chemother Pharmacol 72, 349–357 (2013). 

43. Goldwirt, L., Beccaria, K., Carpentier, A., Farinotti, R. & Fernandez, C. Irinotecan and 

temozolomide brain distribution: a focus on ABCB1. Cancer Chemother Pharmacol 74, 185–193 

(2014). 

44. Branigan, G. L., Soto, M., Neumayer, L., Rodgers, K. & Brinton, R. D. Association Between 

Hormone-Modulating Breast Cancer Therapies and Incidence of Neurodegenerative Outcomes for 

Women With Breast Cancer. JAMA Network Open 3, e201541 (2020). 

45. Stenger, M. Use of Chemotherapy and Risk of Alzheimer’s Disease in Colorectal Cancer Survivors. 

https://ascopost.com/news/march-2021/use-of-chemotherapy-and-risk-of-alzheimer-s-disease-in-

colorectal-cancer-survivors/. 

46. Brier, M. R. et al. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease. Sci 

Transl Med 8, 338ra66 (2016). 

47. Sperling, R. A. et al. Amyloid and Tau Prediction of Cognitive and Functional Decline in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.12.09.627436doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.09.627436
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

Unimpaired Older Individuals: Longitudinal Data from the A4 and LEARN Studies. J Prev 

Alzheimers Dis 11, 802–813 (2024). 

48. Guo, L., Zhong, M. B., Zhang, L., Zhang, B. & Cai, D. Sex Differences in Alzheimer’s Disease: 

Insights From the Multiomics Landscape. Biol Psychiatry 91, 61–71 (2022). 

49. Sun, Y. et al. The behavioural and neuropathologic sexual dimorphism and absence of MIP-3α in tau 

P301S mouse model of Alzheimer’s disease. Journal of Neuroinflammation 17, 72 (2020). 

50. Sil, A. et al. Sex Differences in Behavior and Molecular Pathology in the 5XFAD Model. J 

Alzheimers Dis 85, 755–778 (2022). 

51. Integrative analysis in Seurat v5 • Seurat. https://satijalab.org/seurat/articles/seurat5_integration. 

52. Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun 12, 1088 

(2021). 

53. Mou, T., Deng, W., Gu, F., Pawitan, Y. & Vu, T. N. Reproducibility of Methods to Detect 

Differentially Expressed Genes from Single-Cell RNA Sequencing. Front. Genet. 10, (2020). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.12.09.627436doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.09.627436
http://creativecommons.org/licenses/by-nc-nd/4.0/


Graphic Abstract

a. Clinical Data Validation

b. In Vivo Validation

Human prefrontal cortex samples

UC-wide Electronic Medical Records
    > 10 million unique patients

1. Transcriptomic profiling of disease 2. Computational drug screening

PS19 x 5xFAD
(Tau P301S)   (AAP/PS1)

3. Assessing drug effect in 
human and AD mouse model

Cell-Type Precision Drug Repurposing
Identifies Promising Combination Therapy for Alzheimer’s Disease 

Cell-Type-Specific 
Disease 

Signatures

Cell-type-specific gene expression profiles

Drug Expression Profiles

Excitatory neurons
Inhibitory neurons

Microglia
Astrocytes

Oligodendrocytes 
OPC

Up and down regulated genes

controlAD

Mathys et al 2019
Zhou et al 2020
Lau et al. 2020

Integration

vs

Selection of Combination drug candidate

vs

UCSF

UCD

UCLA UCR
UCI
UCSD

Mic

tric
hosta

tin A

vorinosta
t

verteporfin

digoxig
enin

15−d
elta prosta

glandin J2

corbadrine

prenyla
mine

irin
otecan

ExNeu

L
Mic

OPC 

AstI

Cell Type Drug

1. 
2.
3. +

L
I

L I

Validation
Validation
Validation

InNeu

Created with BioRender.com

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.12.09.627436doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.09.627436
http://creativecommons.org/licenses/by-nc-nd/4.0/


Oli Ex.Neu

In.Neu
Mic

Ast
Opc

Glioma
Focal adhesion
Protein digestion and absorption
Gap junction
AGE−RAGE signaling pathway in diabetic complications
Mineral absorption
ECM−receptor interaction
Oxidative phosphorylation
Chemical carcinogenesis − reactive oxygen species
Prion disease
Diabetic cardiomyopathy
Thermogenesis
Gastric acid secretion
Circadian entrainment
Cardiac muscle contraction
Retrograde endocannabinoid signaling
Antigen processing and presentation
Lipid and atherosclerosis
Staphylococcus aureus infection
Osteoclast differentiation
Transcriptional misregulation in cancer
Legionellosis
Phagosome
Pertussis
Tuberculosis
Leishmaniasis
cAMP signaling pathway
Non−alcoholic fatty liver disease
Calcium signaling pathway
Proximal tubule bicarbonate reclamation
Nicotine addiction
Insulin secretion
Dopaminergic synapse
Synaptic vesicle cycle
Amphetamine addiction
Estrogen signaling pathway
Phosphatidylinositol signaling system
Salivary secretion
Long−term potentiation
Salmonella infection

g

Publicly-available sn-RNA datasets:
§ Mathys et al 2019: 24 AD, 24 controls 
§ Zhou et al 2020: 11 AD, 11 controls
§ Lau et al. 2020: 12 AD, 9 controls

Harmonized and standardized dataset:
§ 37 AD (15 females and 22 males)
§ 29 controls (13 females and 16 males)

a

b

d

c

e

Before integration After integration

After integrationAfter integration

f

Scores

Braak IV-VI I-III I  à  VI

CERAD ≤ 2 ≥ 3 4 à  1

burden

j Cell type abundance

Cell-cell communications

AD Enriched KEGG pathways across cell types

h

LFC

AD L+I

F3
Apoe
Slc1a2
Sparcl1
Fth1
Grm7
Ddit4
Ptn
Cst3
Cachd1
Tubb2a
Mgat4c
Slc4a4
Stxbp6
Snap25
Bsg
Nrgn
Fbxl7
Phactr1
Tubb4b
Nkain4
Serpine2
Scrg1
Kalrn
Eya1
Mdh1
Cd9
Itm2c
Syt1
Bex2
Scg2
Ryr3
Bst2
Sncb
Rbms3
Ndufa4
Uchl1
Erc2
Calm3
Ywhag
Nell2
Ywhah
Cox4i1
Olfm1
Clu
Glul
Brinp3
Rgs12
Sgcd
Cep126
Kdm5d
Synpo2
St6gal1
Trpm3
Kcnj3
Mt1
Fam13a
Rin2
Prkg1
Grip1
Itpkb
Arhgap42
Samd4
Hdac9
Sgcz
Rnf220
Pcdh7
Psd2
Rgcc
Adra1a
Col4a5
Plch1
Pdgfrb
Hgf
Rgs6
Hsph1
Id3
Bcan
Prrx1
Plce1
Maf
Plekha5
Unc5d
Kcnd2
Slc39a12
Flrt2
Vav3
Slc7a11
mt−Nd1
mt−Nd2

−0.4

−0.2

0

0.2

0.41

0

-1

Expressions of most up 
and downregulated DEG 

across cell types

i

Mic
Ast

Opc
Oli Ex.Neu

In.Neu

MT−ND3
MT−CYB
MT−ATP6
MT−CO3
MT−ND4
MT−ND2
MT−CO2
MT−ND1
FTH1
XIST
TMSB4X
TSPAN7
TUBA1B
TUBB2A
NRGN
VSNL1
TMSB10
SPARCL1
SNAP25
FTL
TMEM163
GLUL
PDK4
DDIT4
NAMPT
VEGFA
AGBL4
GADD45B
GAPDH
FOS
HSPA1A
HSP90AA1
HSPA1B
MAF
VCAN
HSPH1
SLC7A11
IL17RB
NEAT1
HDAC9
CPM
XACT
KCNIP1
DIRC3
ZNF804A
RGS12
MTRNR2L12
DHFR
LRP1B
SGCZ
IGFBP5
ATRNL1
HPSE2
USP9Y
LINC01322
MTRNR2L1
LRRC4C
SYN3
HRH3
PLD5
FKBP5
APOLD1
CHI3L1
APOE
CADPS
TUBB2B
JUNB
MIR4300HG
ATP1B2
ATP1B1
STMN1
ARPP19
BEX2
VGF
AC105402.3
PDE10A
RELN
DPP10
SLC1A2
ZFP36
MTRNR2L8
PLXDC2
PARD3B
CD9
HLA−B
CTNNA2
GLDN
TXNIP
RNASE1
RGS4
NEFL
SNCG
RPH3A
RAB3A
SOD1
CALM1
PEBP1
BEX4
BEX1
COX4I1
MARCKSL1
CERCAM
HBB
HBA2

Ex.N
eu

 - U
p

Ex.N
eu

 - D
own

In.N
eu

 - U
p

In.N
eu

- D
own

Mic 
- U

p

Mic-
 D

own

Ast 
- U

p

Ast 
- D

own

Oli -
 U

p

Oli- 
Down

Opc -
 U

p

Opc -
 D

own
0

100

200

300

91

148

38

102 97

195

143

224

87

179

79

143

31 31
6 13

50 64 66
106

30
50

29
48

N
um

be
r o

f g
en

es

Cell-type-stratified analysis - DEG counts
(AD vs controls, abs(logFC) > 0.1, padj <0.05 )

total count

unique to one cell type

control AD
0.0

0.1

0.2

0.3

ab
un

da
nc

e 
pe

r 
sa

m
pl

e 
(%

) Inhibitory Neurons

p = 0.0318

Fig.1 Single nucleus transcriptomic profiling reveals both shared and cell-type-specific 
gene expression signatures in human AD samples.
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Figure 1 Single nucleus transcriptomic profiling reveals both shared and cell-type-specific gene 

expression signatures in human AD samples. a. Data sources (publicly-available) and cohort summary, 

including sample filtering criteria and case-control standardization strategies. b. UMAP plot of merged samples 

from three independent studies. Study-associated variations are apparent without integration. c-e. UMAP plots 

of harmonized dataset using Seurat CCA integration algorithm, with study variation eliminated, and labeled by 

study (c), cell type identity (d), and case-control identification (e).  f. Scattered bar plot of cell type abundance 

percentage (values are mean + SEM) for inhibitory neurons, comparing AD and controls (unpaired two-sided t-

test). g. Projection plots for cell type to cell type communication measured by expression of receptor and 

ligand pairs and represented as arrows connecting two cell types. Red connections indicate increased 

communication and blue indicate decreased communications comparing AD vs controls. Arrows points to the 

directions from sender to receiver of the communication. h. Bar plot of differentially expressed gene (DEG) 

counts of AD versus controls in the six major brain cell types and separated into up and down regulated 

subgroups. Counts of DEGs unique to one cell type were superimposed on the total counts. i. DEG heatmap 

showing overlaps of top DEGs (highest absolute log fold changes) in each cell type, DEGs with opposite 

regulatory patterns in AD across cell types are bolded. j. Heatmap showing AD enriched KEGG pathways 

across cell types. Few functional pathways are shared by all six cell types. Oligodendrocytes cluster with 

excitatory and inhibitory neurons, suggesting more similarity among these cell types, while microglia cluster 

with astrocytes and OPCs. 
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Figure 2. Computational drug repurposing pipeline predicts drug candidates reversing cell-type-

specific transcriptomic signature profiles of AD. a, Schematic showing computational drug repurposing 

workflow. b, Input DEG counts (filtered list by mapping AD vs control DEGs to existing gene probes in the 

CMap database) per cell type for the computational drug repurposing pipeline. c, Disease-drug network 

depicting the connections between the six cell types and drug candidates that significantly reverse disease 

profiles within the respective cell types. Drug names in red denote drug candidates validated in humans 

using electronic medical records (EMR). d. Heatmap showing drug candidates that significantly reverse AD 

profiles in more than one cell type. Black frames label drugs validated in humans using the EMR, and red 

asteroids label drugs selected for validation in vivo using a mouse model of AD. e, AD prevalence 

assessment in drug-exposed individuals, only drugs with significant reduced AD risks are shown. f, 
Schematic illustration demonstrating the rationale of prioritizing letrozole and irinotecan as potential 

combination therapy for further validation in a mouse model of AD. g, Heatmaps of each cell-type-specific 

AD transcriptomic signature profiles, rank ordered genes from the most upregulated to the most 

downregulated and color coded by log fold changes, in comparisons with the gene probe ranks by letrozole 

or irinotecan treatments, colored by corresponding fold change ranks in the CMap.
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Figure 3. Combination treatment with letrozole and irinotecan rescues AD-like memory 

impairments in aged 5xFAD/PS19 mice with both Ab and tau pathologies. a. The schematic of 

treatment cohort design and experimental timeline (Created with BioRender.com). . Four treatment groups 

(n=20 per group, both sexes), including treatment with vehicle, letrozole (1mg/kg), irinotecan (10mg/kg) or 

combination of both drugs every other day via i.p. injection. b. Escape latency during hidden platform 

training days 1–6 did not differ statistically between groups. One-way repeated-measures ANOVA test was 

applied to compare vehicle group with treatment groups. c,d. Memory probes of percent time spent in target 

quadrant versus average of other quadrants demonstrated a significant preference of the target quadrant 

solely by mice with combination treatment at 24 hour (c) and 72 hour (d) after removing the hidden platform. 

e,f. Memory probes measuring number of platform-location crossings in the target quadrant versus average 

of the other quadrants. Significantly more crossings in the target quadrant where the platform used to be 

only observed in the combination treatment group at 24 hour (e) and 72 hour (d) after the platform was 

removed. c-f. Ordinary one-way ANOVA test was performed between target and other quadrants for each 

group, and p-value adjusted with Bonferroni multiple-comparisons testing. All graphs plot mean values + 

SEM. 
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Fig. 4. AD pathologies are significantly reduced in 9-month-old 5xFAD/PS19 mice after drug 
treatments, with the strongest rescue in the combination treatment group.
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Figure 4. AD pathologies are significantly reduced in 9-month-old 5xFAD/PS19 mice after drug 

treatments, with the strongest rescue in the combination treatment group. a. Representative images of the 

ventral hippocampus from 9-month-old 5xFAD/PS19 mice with Sudan Black staining to enhance hippocampal 

visualization (scale bar, 2mm). b. Quantification of hippocampal volume in 9-month-old 5xFAD/PS19 mice across 

treatment groups. c. Representative images of hippocampus from 9-month-old 5xFAD/PS19 mice with 

immunostaining of phosphorylated tau (p-tau) using AT8 monoclonal antibody (scale bar, 500mm). d. 

Quantification of AT8-positive p-tau percent coverage area in 9-month-old 5xFAD/PS19 mice across treatment 

groups. e. Representative images of Thio-S staining in the hippocampus from 9-month-old 5xFAD/PS19 mice 

(scale bar, 500mm). f. Quantification of Thio-S-positive percent coverage area and plaque counts in the 

hippocampus of 9-month-old 5xFAD/PS19 mice across treatment groups. g.  Representative images of microglia 

immunostaining with anti-Iba1 in the hippocampus of 9-month-old 5xFAD/PS19 mice (scale bar, 500mm). h. 

Quantification of the percent Iba1 coverage area in the hippocampus of 9-month-old 5xFAD/PS19 mice across 

treatment groups. i.  Representative images of astrocyte immunostaining with anti-GFAP in the hippocampus of 

9-month-old 5xFAD/PS19 mice (scale bar, 500mm). j. Quantification of percent GFAP coverage area in 

hippocampus of 9-month-old 5xFAD/PS19 mice . k.  Representative images of CA1 neurons with neuronal 

marker NeuN immunostaining (scale bar, 100mm). l. Quantification of the thickness of the CA1 neuronal cell 

layer of 9-month-old 5xFAD/PS19 mice across treatment groups. b, d, f, h, j, l. Ordinary one-way ANOVA were 

applied between all treatment groups and vehicle control group, p-values were adjusted by Dunnett’s multiple 

comparison test. All graphs plot mean values + SEM. 
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Figure 5. Single-nucleus RNA-sequencing (snRNA-seq) analysis in 9-month-old 5xFAD/PS19 mice 

across treatment groups. a. UMAP plot of all 31 distinct cell clusters in hippocampus of mice from 

combination-treatment and vehicle-treatment groups. b. Projection plots for cell type to cell type 

communication measured by expression of receptor and ligand pairs and represented as arrows connecting 

two cell types. Red connections indicate increased communication and blue indicate decreased 

communications comparing L+I-treated versus vehicle-treated groups. Arrows points to the directions from 

sender to receiver of the communication. c. UMAP plots labeled by hippocampal specific cell types and split 

by treatments to highlight difference in distribution density for neuronal subtypes between treatments. d. 

Scattered bar plots of cell type abundance (percentage) for CA1 and CA3 pyramidal neurons (unpaired two-

sided t-test), comparing L+I-treated and vehicle-treated mice (n=8 per group, including both sexes, values are 

mean + SEM). e. Differentially expressed gene (DEG) counts of L+I-treated versus vehicle-treated mice in six 

major brain cell types. Counts of DEGs per cell type do not correlate with cell counts. f. Top combination 

treatment-enriched Gene Ontology (GO) terms across six cell types. g. Heatmap illustration of enriched 

KEGG pathways across six cell types. Some treatment-enriched pathways overlap with AD signature 

pathways from integrated human snRNA-seq analysis (see Fig. 1) and were labeled in red. 
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Fig. 6. Combination-treatment with letrozole and irinotecan reverses cell-type-specific transcriptomic 
signatures of AD
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Figure 6. Combination-treatment with letrozole and irinotecan reverses cell-type-specific transcriptomic 

signatures of AD. a. Comparison of cell-type-specific transcriptomic signature profiles of AD in humans with 

gene expression changes in combination treatment versus vehicle treatment groups of mice. Only treatment-

reversed genes from AD profiles are included (abs (LFC) >0.01 in L+I-treated versus vehicle-treated mice), and 

those with FDR-adjusted p value < 0.05 are labeled in red. Heatmap colors indicate directions and magnitude of 

gene expression changes, with downregulations in blue and upregulations in red. b. Gene set enrichment 

analysis on treatment-reversed genes, which reached statistical significance, in excitatory and inhibitory 

neurons revealed reversal of multiple AD relevant functional pathways. c. Gene set enrichment analysis on 

treatment-reversed genes, which reached statistical significance, in astrocytes, microglia, or oligodendrocyte 

and OPCs demonstrated reversal of glial cell specific AD gene signatures and functional pathways.
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