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The task of RNA design given a target structure aims to find a sequence that can fold into
that structure. It is a computationally hard problem where some version(s) have been proven
to be NP-hard. As a result, heuristic methods such as local search have been popular for
this task, but by only exploring a fixed number of candidates. They can not keep up with the
exponential growth of the design space, and often perform poorly on longer and harder-to-
design structures. We instead formulate these discrete problems as continuous optimization,
which starts with a distribution over all possible candidate sequences, and uses gradient
descent to improve the expectation of an objective function. We define novel distributions
based on coupled variables to rule out invalid sequences given the target structure and to
model the correlation between nucleotides. To make it universally applicable to any objective
function, we use sampling to approximate the expected objective function, to estimate the
gradient, and to select the final candidate. Compared to the state-of-the-art methods, our work
consistently outperforms them in key metrics such as Boltzmann probability, ensemble defect,
and energy gap, especially on long and hard-to-design puzzles in the Eterna100 benchmark.
Our code is available at: http://github.com/weiyutang1010/ncrna_design.
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Ribonucleic acid (RNA) is vital for fundamental cellular processes such as
transcription and translation, catalyzing reactions, and controlling gene expres-
sion (1–3). Its importance is also evidenced by COVID-19, an RNA virus, as
well as the last two Nobel Prizes in Physiology and Medicine for messenger RNA
vaccines (2023) and microRNAs (2024). The problem of RNA design aims to find
sequences that is capable of folding into a target structure (4–8). This process
enables the creation of artificial RNA molecules with specific function, such as
artificial ribozymes (9, 10), artificial miRNAs (11), artificial RNA aptamers (12),
and artificial riboswitches (13, 14).

Computationally, the RNA design problem is extremely challenging due to its
exponentially large search space, {A, C, G, U}n, which has the size of O(4n). Indeed,
it has been proved NP-hard at least for a simplified energy model (15). Therefore
probably the most popular approach for this problem uses heuristic methods such
as local search (4, 6), which starts with a single sequence and tries to optimize an
objective function by revising one or a few nucleotides in each step. However, such
methods are only capable of exploring a fixed number of candidate sequences, thus
not able to keep up with the exponential growth of the design space. As a result,
they tend to perform poorly on longer and harder-to-design structures.

We instead cast the RNA design problem as continuous optimization (16, 17).
The basic idea is to start with a distribution over all possible candidate sequences
and use gradient descent to gradually sharpen the distribution, with each step
changing all positions simultaneously in contrast to local search methods. In this
work, we first define novel sequence distributions for any given RNA structure using
coupled variables for paired and mismatch positions, which not only rules out invalid
sequences but also models the positional correlations explicitly. We then aim to
optimize the expectation of an arbitrary objective function over these distributions.
However, given the diversity of various objective functions in RNA design (such as
Boltzmann probability or ensemble defect), it is often computationally prohibitive
to compute the exact values of the expected objective function or its gradient over
the whole distribution of exponentially many sequences. Therefore, in contrast to
previous work, we use sampling to approximate the expected objective function
and its gradient. At the end, we return the best sample in terms of the objective
function among all samples collected, which yields high-quality designs.

When tested on the Eterna100 benchmark, our work consistently outperforms
the state-of-the-art RNA design methods (4, 6) in (almost) all metrics such as
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Boltzmann probability, ensemble defect, and free energy gap.
The advantage of our work is especially salient on longer and
harder-to-design structures, demonstrating the advantage of
this distributional approach that models the whole design
space over local search methods that performs local changes
on a single sequence.

1. RNA Design as Discrete Optimization

An RNA sequence x of length n is specified as a string of
base nucleotides x1x2 . . . xn, where xi ∈ N (N ∆= {A, C, G, U}
is the set of nucleotides) for i = 1, 2, ..., n. A pseudoknot-
free secondary structure for sequence x is a well-balanced
dot-bracket string y = y1y2 . . . yn where yi = “.” indicates
that xi is unpaired, and yi = “(” indicates that xi is paired
with some downstream xj and yi = “)” indicates that xi is
paired with some upstream xj . The set of unpaired indices
is denoted unpaired(y) and the set of paired indices pairs(y).
For example, if x = CCCAAAGGG and y = (((...))), we have
unpaired(y) = {4, 5, 6} and pairs(y) = {(1, 9), (2, 8), (3, 7)}.
We assume each base-pair is a Watson-Crick-Franklin or
wobble pair, i.e., ∀(i, j) ∈ pairs(y), xixj ∈ P where P ∆=
{CG, GC, AU, UA, GU, UG}.

1.A. RNA Folding. The ensemble of an RNA sequence x is
the set of all possible secondary structures of x, denoted as
Y(x). In thermodynamic RNA folding models, Gibbs free
energy change ∆G◦(x, y) is used to characterize the stability
of y ∈ Y(x). The lower the free energy ∆G◦(x, y), the more
stable the secondary structure y for x. The structure with
the minimum free energy is the most stable structure in the
ensemble, i.e., MFE structure,

MFE(x) ∆= argmin
y∈Y(x)

∆G◦(x, y). [1]

Note that for most methods for secondary structure predic-
tion, ties for argmin are broken arbitrarily when there are
multiple lowest free energy structures. This issue was often
neglected in the literature, but it deserves clarification here.
To be precise, we define

MFEs(x) ∆= {y | ∆G◦(x, y) = min
y′∈Y(x)

∆G◦(x, y′)} [2]

to be the set of MFE structures for x. When it is a singleton
set, we say x has a unique MFE (uMFE) structure.

The partition function sums the contribution of all
structures in an ensemble:

Q(x) ∆=
∑

y∈Y(x)

e−∆G◦(x,y)/RT , [3]

where R is the molar gas constant and T is the absolute
temperature. Accordingly, the equilibrium probability of a
sequence x folding into a structure y is defined as

p(y | x) = e−∆G◦(x,y)/RT

Q(x) . [4]

Fig. 1. RNA design criteria: (a) MFE vs. (b) Boltzmann probability. In (a), both
designs x+ and x− are MFE solutions for the target structure y⋆, but x− is not
a good design due to the competing structure y′ having similar free energy, which
results in low probability of y⋆ in the ensemble (b). By contrast, x+ is a better
design with sharper energy landscape (less competition), thus higher probability of
y⋆ (i.e., it is more likely to fold into y⋆).

1.B. RNA Design as Inverse Folding. Given a target struc-
ture y⋆, RNA design aims to find a suitable RNA sequence x
that can naturally and easily fold into y⋆, within the design
space X (y⋆) of all valid sequences for y⋆:

X (y⋆) ∆= {x ∈ N |y⋆| | ∀(i, j) ∈ pairs(y⋆), xixj ∈ P} [5]

But there are different ways to quantify how “naturally” or
“easily” x folds into y⋆, which we categorize into two broad
groups: (a) MFE-based and (b) ensemble-based criteria.

MFE criteria and uMFE criteria Sequence x is said to be an
MFE solution of y⋆ if y⋆ is one of the MFE structures of x:

y⋆ ∈ MFEs(x) [6]

Or equivalently, ∀y ̸= y⋆, ∆G◦(x, y) ≤ ∆G◦(x, y⋆). As a
stricter criteria, sequence x is said to be a uMFE solution of
y⋆ if y⋆ is the unique MFE structure of x, or equivalently:

∀y ̸= y⋆, ∆G◦(x, y) < ∆G◦(x, y⋆) [7]

To search for an MFE or uMFE solution, we can start from
a random sequence x and gradually update it to minimize
one of the following metrics:

• structural distance d(y⋆, MFE(x)), where d(·, ·) is a stan-
dard distance metric between two secondary structures,
returning the number of differently folded nucleotides:

d(y, y′) ∆= |y| − 2 · |pairs(y) ∩ pairs(y′)|
−|unpaired(y) ∩ unpaired(y′)|.

[8]
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• free energy gap ∆∆G◦(x, y⋆), which is the difference
between the free energies of y⋆ and MFE(x):

∆∆G◦(x, y⋆) ∆= ∆G◦(x, y⋆)−∆G◦(x, MFE(x))
= ∆G◦(x, y⋆)−min

y
∆G◦(x, y) ≥ 0 [9]

Clearly, when d(y⋆, MFE(x)) or ∆∆G◦(x, y⋆) reaches 0, we
have an MFE solution.

Ensemble-based criteria: Boltzmann probability and ensemble
defect However, the above two criteria only consider MFE
structures, and neglect the other competing structures. Even
if y⋆ is the unique MFE structure, there could still be many
highly competitive structures that are very close in energy to
y⋆; see design x− in Fig. 1(a) for an example. As a result,
the Boltzmann probability p(y⋆ | x) could still be arbitrarily
small due to competition, which means x is highly unlikely to
fold into y⋆ in equilibrium (see Fig. 1(b)). So a better criteria
is to look at the whole Boltzmann ensemble to minimize the
competition from alternative structures. We consider two
such metrics:

• conditional (i.e., Boltzmann) probability p(y⋆ | x). Since
each x has exponentially many possible structures in
the ensemble, this probability can be arbitrarily small.
So for numerical stability, we minimize the negative log
probability − log p(y⋆ | x) instead.

• ensemble defect ED (x, y⋆), which is the expected
structural distance between y⋆ and all structures in
the ensemble (18). This metric not only considers
competition, but also how (dis)similar the competing
structures are from y⋆; we want to penalize highly
competitive structures that are very different from y⋆.
The value of ensemble defect can be normalized to
between 0 and 1, known as normalized ensemble defect
(NED):

NED(x, y⋆) ∆= 1
|x| Ey∼p(·|x) d(y⋆, y)

= 1
|x|

∑
y∈Y(x)

p(y | x) · d(y⋆, y).
[10]

By plugging in Eq. 8 and some simplifications (18, 19),
we get

NED(x, y⋆)=1− 2
|x|

∑
(i,j)∈pairs(y⋆)

pij−
1
|x|

∑
j∈unpaired(y⋆)

qj ,

[11]
where pij is the base-pairing probability of nucleotides i
and j, while qj = 1−

∑
i
pij is the probability of j being

unpaired. NED(x, y⋆) can also be further decomposed
into the sum of positional defect (ϵi):

NED(x, y⋆) = 1
|x|

∑
1≤i≤|x|

ϵi(x, y⋆) [12]

where

ϵi =


1−qi if i ∈ unpaired(y⋆);
1−pij if (i, j) ∈ pairs(y⋆) for some j > i;
1−pji if (j, i) ∈ pairs(y⋆) for some j < i.

[13]

Now we can formulate the RNA design problem as
optimizing some objective function f(x, y⋆) over the design
space X (y⋆):

x⋆ = argmin
x∈X (y⋆)

f(x, y⋆) [14]

where the objective function can be one of these four:

f(x, y⋆) =


d(MFE(x), y⋆) structural distance
∆∆G◦(x, y⋆) free energy gap
− log p(y⋆ | x) conditional probability
NED(x, y⋆) ensemble defect

[15]

2. RNA Design as Continuous Optimization

However, it is well known that the above discrete optimization
formulation is hard to optimize. For any target structure,
the RNA design space is exponentially large:

|X (y⋆)| = 4|unpaired(y⋆)| · 6|pairs(y⋆)| [16]

But most commonly used local search methods (20–23)
considers only one (or a few) candidate sequence in each
step and only modifies one (or a few) nucleotides, which
seems highly inefficient in exploring the exponentially large
design space.

Can we instead modify all positions of the candidate
sequence in each step, or consider all candidate sequences
simultaneously and promote the better ones? Here we
replace the discrete representation of a single candidate
sequence by a probability distribution py⋆ (x) over all possible
sequences x in X (y⋆). Essentially, we propose the following
continuous relaxation of the optimization problem minimizing
the following objective function:

J ∆= Ex∼py⋆ (·) [f(x, y⋆)] =
∑

x∈X (y⋆)

py⋆ (x)f(x, y⋆) [17]

This new objective function is to find a distribution py⋆ (·)
of RNA candidates whose expectation of the objective function
f(x, y⋆) is minimized. If the probability mass concentrates on
only one sequence, then this new relaxed objective degenerates
to the original discrete objective.

The way of modeling the probability distribution py⋆ (·)
over the design space X (y⋆) could potentially affect the
complexity of the optimization and the convergence of the
final solution. We aim to find a method that can represent
the design space efficiently while being easy to manage.

2.A. Independent distributions (v0). The most obvious mod-
eling of py(x) is to use an independent distribution over
N = {A, C, G, U} for each position, so that the distribution over
sequences is simply the product of individual distributions:

p0
y(x) ∆=

∏
i

pi(xi) [18]

This is the same distribution in previous work (16). However,
this distribution is simplistic and overlooks the fact that
each base-pair (i, j) ∈ y requires xixj to be one of the 6
possible pairs in P, which is impossible with independent
variables (4 × 4 = 16 choices for xixj). As a result, the
domain of this p0

y(·) distribution is all possible sequences N |y|

(of size 4|y|) rather than the set X (y) of valid sequences (of

Tang et al. PNAS | December 13, 2024 | vol. XXX | no. XX | 3
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Fig. 2. Positions of mismatches and trimismatches in different types of loops.

size 4|unpaired(y)| · 6|pairs(y)|). In other words, for any input
structure y⋆ (except for the trivial case of fully-unpaired),
this naive distribution includes (exponentially many) invalid
sequences.

2.B. Coupled variables for pairs (v1). In order to model the
dependencies between paired positions, we separate the
positions into two groups: the set of unpaired indices, denoted
unpaired(y), and the set of paired indices, pairs(y). We now
factorize the joint distribution of the entire sequence as

p1
y(x) ∆=

∏
i∈unpaired(y)

pu
i (xi) ·

∏
(i,j)∈pairs(y)

pp
i,j(xixj)

where pu
i (·) is the local distribution (over N ) for unpaired

position i, and pp
i,j(·) is the local distribution (over 6 choices

in P) for paired positions (i, j). This is the first distribution
over the set of valid sequences X (y) for a given y.

As an example, consider Fig. 2(a). Here y⋆ =
(.(...)...), so unpaired(y⋆) = {2, 4, 5, 6, 8, 9, 10} and
pairs(y⋆) = {(1, 11), (3, 7)}. The probability distribution
of the design space is factorized as:

p1
y⋆ (x) = pu

2(x2) · pu
4(x4) · pu

5(x5) · pu
6(x6) · pu

8(x8)
· pu

9(x9) · pu
10(x10) · pp

1,11(x1x11) · pp
3,7(x3x7)

Therefore, for the particular design in Fig. 2(a),

p1
y⋆ (CAUAAGACAUG) = pu

2(A) · pu
4(A) · pu

5(A) · pu
6(G) · pu

8(C)
pu

9(A) · pu
10(U) · pp

1,11(CG) · pp
3,7(UA)

2.C. Coupled variables for terminal mismatches (v2 and v3).
The next two versions (v2 and v3) are refinements of the
above v1. First, we note that in the standard energy models
(Turner rules (24)), there are terminal mismatches lookup
tables. For example, for a hairpin loop defined by the pair
(i, j), the first and last nucleotide of the loop, xi+1 and xj−1,
are the terminal mismatch, and will be looked up together in
the energy table (such as x4 and x6 in Fig. 2(a)). Therefore,
it is better to make a coupled variable over N 2 (4× 4 = 16
choices) for each terminal mismatch position-pair:

p2
y(x) ∆=

∏
i∈unpaired(y)

pu
i (xi) ·

∏
(i,j)∈pairs(y)

pp
i,j(xixj) ·

∏
(i,j)∈mismatches(y)

pm
i,j(xixj)

Moreover, there is a special case that deserves our
attention. Let us consider the 1-by-3 internal loop in Fig. 2.

For such 1-by-x (x > 1) internal loops, there is exactly one
unpaired nucleotide on one of the two branches, and that
single unpaired nucleotide (x2 in our example) is included in
two mismatches (x2 and x8 on one side and x2 and x10 on
the other). Therefore, it is better to model all these three
nucleotides together in a coupled variable over N 3 (43 = 64
choices), which we call a “trimismatch”:

p3
y(x) ∆=

∏
i∈unpaired(y)

pu
i (xi) ·

∏
(i,j)∈pairs(y)

pp
i,j(xixj)

·
∏

(i,j)∈mismatches(y)

pm
i,j(xixj) ·

∏
(i,j,k)∈trimismatches(y)

ptm
i,j,k(xixjxk)

Note that, a 1-by-1 internal loop is a special case of mismatch
(see Fig. 2(b), nucleotides 10 and 16).

Now for the example structure y⋆ in Fig. 2(a), our final
joint distribution is:

p3
y⋆ (x) = pu

5(x5) · pu
9(x9) · pp

1,11(x1x11) · pp
3,7(x3x7)

· pm
4,6(x4x6) · ptm

2,8,10(x2x8x10)

And for the particular design in Fig. 2(a),

p3
y⋆ (CAUAAGACAUG) = pu

5(A) · pu
9(A) · pp

1,11(CG) · pp
3,7(UA)

· pm
4,6(AG) · ptm

2,8,10(ACU)

3. Sampling for Objective Evaluation, Gradient Estima-
tion, and Design Space Exploration

Given the complexity and variety of RNA design problem
settings, a method that can seamlessly switch between
various objective functions f(x, y⋆) is desirable. Even though
we factorize py⋆ (·) into many tractable local distributions,
without making any assumptions or requirements about
the structure of f(x, y⋆), the exact calculation of the
expectation J = Ex∼py⋆ (·) [f(x, y⋆)] is generally intractable.
Therefore, we employ gradient descent for optimization and
adopt random sampling for estimating the objective and its
gradients.

3.A. Sampling for Objective Evaluation. We approximate the
expectation by averaging over a set of samples S from the
distribution:

J = Ex∼py⋆ (·) [f(x, y⋆)] ≈ 1
|S|

∑
x∈S

f(x, y⋆)

where S = {x(l) ∼ py⋆ (·)}|S|
l=1

Theoretically, as |S| → ∞, this approximation will converge
to the true expectation.

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Tang et al.
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(a) initial uniform distribution (d) updated distribution (max-probability solution: GCCAACGGC)

pp
1,9 = pp

2,8 = pp
3,7 = {CG : 1/6, GC : 1/6, . . . , UG : 1/6}

pm
4,6 = {AA : 1/16, AC : 1/16, . . . , UU : 1/16}

pu
5 = {A : 1/4, C : 1/4, G : 1/4, U : 1/4}

pp
1,9 = {GC : 0.21, CG : 0.18, UG : 0.14, GU : 0.15, UA : 0.17, AU : 0.15}

pp
2,8 = {GC : 0.21, CG : 0.21, UG : 0.11, GU : 0.14, UA : 0.18, AU : 0.15}

pp
3,7 = {GC : 0.20, CG : 0.22, UG : 0.12, GU : 0.11, UA : 0.16, AU : 0.19}

pm
4,6 = {AA : 0.06, AC : 0.11, AG : 0.00, AU : 0.01, . . . , UU : 0.09}

pu
5 = {A : 0.27, C : 0.25, G : 0.25, U : 0.22}

(b) first set of samples (e) second set of samples (after update)

( ( ( . . . ) ) ) p(y⋆ | x) − log p(y⋆ | x)
1 U A U A A U G U G 0.002 6.50
2 C U G C G C U G G 0.001 6.71
3 A G C U C U G C U 0.302 1.20
4 G G G A A A C U C 0.043 3.15
5 G U G U U G U G U 0.000 12.98
6 U A A G U A U U A 0.001 6.82
7 U U U C G U A A G 0.000 7.96
8 C G G U U A C C G 0.111 2.20
9 U C U C C G A G A 0.041 3.19

10 A G U A C G G U U 0.000 11.52

( ( ( . . . ) ) ) p(y⋆ | x) − log p(y⋆ | x)
1 G C A U G A U G U 0.049 3.02
2 C U G A A A C A G 0.123 2.10
3 G U G A C U U G C 0.002 6.02
4 U G U C U G A U A 0.002 6.50
5 U C C G C U G G A 0.329 1.11
6 G G U G G G G U C 0.000 9.26
7 A C G G G C C G U 0.102 2.29
8 C G C U U G G C G 0.560 0.58
9 G U C A A C G A C 0.027 3.61
10 U A A C A C U U G 0.001 7.31

(c) initial objective value (f) updated objective value

J = Ex∼py⋆ (·) [− log p(y⋆ | x)]

≈
1
10

(6.50 + 6.71 + 1.20 + . . . + 11.52) ≈ 6.22

e−J ≈ e−6.22 = 0.002 (geom. mean of p(y⋆ | x) in S)

J = Ex∼py⋆ (·) [− log p(y⋆ | x)]

≈
1
10

(3.02 + 2.10 + 6.02 + . . . + 7.31) ≈ 4.18

e−J ≈ e−4.18 = 0.015 (geom. mean of p(y⋆ | x) in S)

(g) first 20 steps of optimization
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Fig. 3. Visualization of optimizing p(y⋆ | x) for target structure
y⋆ = (((...))) with |S| = 10 samples per step. (a)–(f) details
of the first two steps. (g): progress of optimization (top) and entropy
reduction (bottom) for the first 20 steps. The shaded samples in (g)
correspond to those in (b) and (e). We see in (g) that sampling tracks the
exact means and leads to steady progress with sharper distributions.

3.B. Sampling for Gradient Estimation. Next, we derive the
true gradient of J with respect to py⋆ (·) as:

∇py⋆J

=∇py⋆ Ex∼py⋆ (·) [f(x, y⋆)]

=∇py⋆

∑
x∈X (y⋆)

py⋆ (x)f(x, y⋆) (def. of expectation)

=
∑

x∈X (y⋆)

∇py⋆ py⋆ (x)f(x, y⋆) (linearity of ∇)

=
∑

x∈X (y⋆)

py⋆ (x)
∇py⋆ py⋆ (x)

py⋆ (x) f(x, y⋆)

=
∑

x∈X (y⋆)

py⋆ (x)∇py⋆ log py⋆ (x)f(x, y⋆)
(

(log f(x))′ = f ′(x)
f(x)

)
=Ex∼py⋆ (·)

[
∇py⋆ log py⋆ (x)f(x, y⋆)

]
(def. of expectation)

We again use sampling to estimate the above expectation
and derive the approximate gradient for step t:

∇py⋆J (t) ≈ 1
|S|

∑
x∈S

∇py⋆ log py⋆ (x)f(x, y⋆) [19]

S(t) ← {x(l) ∼ p
(t)
y⋆ (·)}N

l=1 [20]

We then use the approximate gradient to update the distri-
bution (see Sec. 4 for details):

p
(t+1)
y⋆ ← update

(
p

(t)
y⋆ ,∇py⋆J (t)

)
[21]

3.C. Sampling-based Design Space Exploration. At the end
of this continuous optimization, we still need to return a single
sequence from the distribution, i.e., an “integral solution”.
This can be done by “rounding” if the distribution is close to
one-hot, or more generally by taking the sequence with the
highest probability in the final distribution
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x⋆ = argmax
x

py⋆ (x) [22]

For example, for independent distributions (v0), since each
position is isolated, we simply take the best nucleotide for each
position: x⋆

i = argmaxa∈N pi(a). But for the coupled variable
distribution (v1), for each unpaired position i ∈ unpaired(y∗),
we take x⋆

i = argmaxa∈N pu
i (a) same as in v0, and for each

paired position-pair (i, j) ∈ pairs(y∗), we take the best pair
out of the six pair types: x⋆

i x⋆
j = argmaxab∈P pp

i,j(ab).
However, this max-probability sequence is not necessarily

the best sequence in terms of the objective function, since
the distribution is often not perfectly aligned with objective
function. Here we use an alternative approach that simply
takes the best sample in terms of the objective function out
of all samples collected in the optimization process:

x(t) = argmin
x∈S(t)

f(x, y⋆) [23]

x⋆ = argmin
t

x(t) [24]

This method, which we call “sampling-based candidate explo-
ration”, outperforms the max-probability solution, because
the samples offer much more diversity in the exploration of
the distribution than a single sequence.

4. Parameterization and Optimization

Now we turn to the question of how to parameterize the
factorized distribution py⋆ (·) as py⋆ (·; Θ). The first method
(Sec. 4.A) simply uses Θ as raw probabilities, but the
update of Θ needs to result in probabilities, leading to
a harder constrained optimization problem. The second
method (Sec. 4.B) models the distribution implicitly by
applying softmax on Θ, resulting in a simpler unconstrained
optimization problem.

4.A. Method 1: Direct Parameterization and Constrained
Optimization. The obvious way of parameterization is to use
explicit probabilities. For each unpaired position i, we use a
non-negative parameter vector θu

i
∆= (θu

i,A, θu
i,C, θu

i,G, θu
i,U) which

sums to 1 as the probability distribution over nucleotides:

∀a ∈ N , pu
i (a; θu

i ) ∆= θu
i,a.

Similarly for each paired position (i, j), we use a non-negative
parameter vector θp

i,j

∆= (θp
i,j,CG, θp

i,j,GC, . . . , θp
i,j,UG) which sums

to 1, and we have

∀ab ∈ P, pp
ij(ab; θp

i,j) ∆= θp
i,j,ab.

The cases for mismatches and trimismatches are also similar.
The whole parameter set Θ includes all parameter vectors:

Θ ={θu
i | i ∈ unpaired(y⋆)}
∪ {θp

i,j | (i, j) ∈ pairs(y⋆)}
∪ {θm

i,j | (i, j) ∈ mismatches(y⋆)}
∪ {θtm

i,j,k | (i, j, k) ∈ trimismatches(y⋆)}

[25]

where each θ ∈ Θ is a distribution, i.e.,

∀θa ∈ θ, θa ∈ [0, 1], and
∑

θa∈θ
θa = 1.

For example, for the structure y∗ in Fig. 2(a), we have its
parameters as Θ = {θu

5 , θu
9 , θp

1,11, θp
3,7, θm

4,6, θtm
2,8,10}.

Now we can parameterize the whole distribution as

p3
y(x; Θ) =

∏
i∈unpaired(y)

pu
i (xi; θu

i ) ·
∏

(i,j)∈pairs(y)

pp
i,j(xixj ; θp

i,j)

·
∏

(i,j)∈mismatches(y)

pm
i,j(xixj ; θm

i,j)

·
∏

(i,j,k)∈trimismatches(y)

ptm
i,j,k(xixjxk; θtm

i,j,k)

∆=
∏

i∈unpaired(y)

θu
i,xi
·

∏
(i,j)∈pairs(y)

θp
i,j,xixj

·

∏
(i,j)∈mismatches(y)

θm
i,j,xixj

·
∏

(i,j,k)∈trimismatches(y)

θtm
i,j,k,xixj xk

Now we adopt a parameterized version for our objective
function:

J (Θ) = Ex∼py⋆ (·;Θ) f(x, y⋆)
The optimization problem can then be formulated as a

constrained optimization

min
Θ

J (Θ)

s.t. each θ ∈ Θ is a distribution.
[26]

To solve this constrained optimization problem, we use
the Projected Gradient Descent (PGD) method (25). At each
step t, we first perform a gradient descent (with learning rate
α):

Θ̂← Θ− α∇ΘJ (Θ) [27]
where the gradient components are computed individually
for each parameter vector:

∇ΘJ (Θ) = {∂J (Θ)
∂θ

| θ ∈ Θ}

For example, for an unpaired position i, we have:

∂J (Θ)
∂θu

i

= (∂J (Θ)
∂θu

i,A
,

∂J (Θ)
∂θu

i,C
,

∂J (Θ)
∂θu

i,G
,

∂J (Θ)
∂θu

i,U
)

The first component can be estimated using Eq. 19 as follows:

∂J (Θ)
∂θu

i,A
≈ 1
|S|

∑
x∈S

∂ log py⋆ (x; Θ)
∂θu

i,A
f(x, y⋆) [28]

Expanding the term log py⋆ (x; Θ), the gradient can be
simplified (details provided in Sec. S1.A) as:

∂J (Θ)
∂θu

i,A
≈ 1
|S|

∑
x∈S

1[xi = A]f(x, y⋆)
θu

i,A
= 1
|S|

∑
x∈S

xi=A

f(x, y⋆)
θu

i,A

[29]
After the gradient update (Eq. 27), we then project Θ̂

back onto the set of valid distributions. For each θ̂ in Θ̂,
we project it back to the probability simplex by finding the
vector in the simplex that is closest (in ℓ2 norm) to θ̂:

Θ′ ←{proj(θ̂) | θ̂ ∈ Θ̂}

proj(θ̂) ∆= argmin
θ

∥θ̂ − θ∥2
2

s.t. θ is a distribution.
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4.B. Method 2: Softmax Parameterization and Unconstrained
Optimization. An alternative approach to the optimization
problem is to introduce a parametrization that naturally
enforces the required normalization for a valid distribution,
thus converting the problem into an unconstrained opti-
mization problem. This approach eliminates the need for
performing gradient projection at each step. A common
choice for achieving this normalization is the softmax function,
which inherently converts a set of real numbers into a valid
probability distribution.

Instead of using a parameter vector as a distribution ex-
plicitly, now we model a distribution implicitly using softmax
and our new parameter vector θu

i
∆= (θu

i,A, θu
i,C, θu

i,G, θu
i,U) no

longer sums to 1; instead we have:

∀a ∈ N , pu
i (a; θu

i ) ∆=
exp(θu

i,a)∑
a′ exp(θu

i,a′ )
[30]

where θu
i,a can be any real number. The softmax function

ensures that each pu
i (·; θu

i ) forms a valid distribution without
explicitly imposing this as a constraint. This definition can
be extended for other parameter vectors θp

i,j , θm
i,j , and θtm

i,j,k

as follows:

∀ab ∈ P, pp
i,j(ab; θp

i,j) ∆=
exp(θp

i,j,ab)∑
a′b′∈P exp(θp

i,j,a′b′ )

∀ab ∈ N 2, pm
i,j(ab; θm

i,j) ∆=
exp(θm

i,j,ab)∑
a′b′∈N 2 exp(θm

i,j,a′b′ )

∀abc ∈ N 3, ptm
i,j,k(abc; θtm

i,j,k) ∆=
exp(θtm

i,j,k,abc)∑
a′b′c′∈N 3 exp(θtm

i,j,k,a′b′c′ )

With this new parametrization, the optimization problem
becomes an unconstrained problem:

min
Θ

J (Θ) [31]

Since the constraints have been naturally embedded into
the problem formulation through the softmax function, we
can directly apply the vanilla gradient descent algorithm to
solve this optimization problem. The gradient can be updated
by:

Θ′ ← Θ− α∇ΘJ (Θ)

where α is the learning rate.
Due to the softmax parametrization, the specific form of

the gradient ∇θJ (Θ) differs from that in the constrained
optimization problem. Using the chain rule, we express it as:

∂ log py⋆ (x; Θ)
∂θu

i,A
=

∑
a∈N

∂ log py⋆ (x; Θ)
∂pu

i (a; θu
i )︸ ︷︷ ︸

same as Eq. 29

· ∂pu
i (a; θu

i )
∂θu

i,A︸ ︷︷ ︸
softmax; Eq. 33

[32]

where the first partial derivative on the right hand side
is identical to the case of direct parameterization above
(Sec. 4.A; Eq. 29), but the second partial derivative, which
used to be 1 in direct parameterization, is now the gradient
of the softmax function (see Fig. 4 and Sec. S1.B for details):

∂pu
i (a; θu

i )
∂θu

i,A
= pu

i (a; θu
i ) · (1[a = A]− pu

i (A; θu
i )) [33]

(a) direct parameterization (b) softmax parameterization

θu
i,A

θu
i,C

θu
i,G

θu
i,U

pu
i (A; θu

i )

pu
i (C; θu

i )

pu
i (G; θu

i )

pu
i (U; θu

i )

θu
i,A

θu
i,C

θu
i,G

θu
i,U

pu
i (A; θu

i )

pu
i (C; θu

i )

pu
i (G; θu

i )

pu
i (U; θu

i )

Fig. 4. Computational graph for direct vs. softmax parameterization.

So the gradient for the softmax parameterization is:

∂ log py⋆ (x; Θ)
∂θu

i,A

≈
∑
a∈N

1
|S|

∑
x∈S
xi=a

f(x, y⋆)
θu

i,a

·[pu
i (a; θu

i )·(1[a = A]− pu
i (A; θu

i ))]

We run the gradient decent step until the changes in
the value of the objective function J (Θ) become sufficiently
small (see Sec. 6), indicating that the solution has converged.
Algorithm 1 outlines the procedure of both constraint and
unconstraint optimization approach.

Algorithm 1 Sampling-based RNA Design
function Design(y⋆, f , projection=False) ▷ f : objective

x⋆ ← random_init(y⋆) ▷ current best design
Θ← init_params(y⋆)
while not converged do

sample sequences, S, from distribution py⋆ (·; Θ)
x ← argminx′∈S f(x′, y⋆) ▷ best sample in S
if f(x, y⋆) < f(x⋆, y⋆) then ▷ smaller means better

x⋆ ← x
estimate objective J (Θ) using S
estimate gradient ∇ΘJ (Θ) using S
Θ← Θ− α∇ΘJ (Θ)
if projection then ▷ projected gradient descent

Θ← {proj(θ) | θ ∈ Θ} ▷ project onto simplex
return x⋆

5. Related Work

Although Matthies et al. (16) also used continuous optimiza-
tion for RNA design, our approach is vastly different from
and substantially outperforms theirs in both scalability and
design quality (by all metrics).

• First, their sequence distribution is a simple product
of independent distributions for each position (same
as our distribution v0 in Sec. 2.A) which is ill-suited
for the RNA design problem for two reasons: (a)
that distribution includes exponentially many illegal
sequences for any input structure due to pair violations
and (b) that distribution does not explicitly model the
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covariance between paired positions. Instead, we use
coupled variables for paired and mismatch positions (our
distributions v1, v2, and v3 in Secs. 2.B–2.C), which
rules out invalid sequences and explicitly models the
dependencies between correlated positions.

• Second, our sampling framework can work with arbitrary
objective functions while their work is specifically de-
signed for one such function, the Boltzmann probability.

• Third, our unbiased sampling yields an unbiased ap-
proximation to the expectation of an arbitrary objective
function over the distribution of sequences. For example,
for the case of Boltzmann probability, our sampling
results in an unbiased approximation of the expected
Boltzmann probability, which converges to the true
expectation as the sample size increases:

1
|S|

∑
x∈S

p(y⋆ | x) ≈ Ex[p(y⋆ | x)] [34]

By contrast, they optimize a different objective (in red
below) that deviates from the true expectation of Boltz-
mann probability with a bias (E[X/Y ] ̸= E[X]/E[Y ]):

Ex[e−∆G◦(x,y⋆)/RT ]
Ex[Q(x)] ̸=Ex

[
e−∆G◦(x,y⋆)/RT

Q(x)

]
∆= Ex[p(y⋆ | x)]

[35]

• Fourth, our sampling-based approach is much more
efficient: it scales to the longest structures in the
Eterna100 benchmark (400 nt) while their work only
scaled to structures up to 50 nt long.

• Last, our results substantially outperform theirs in all
metrics (see Table S1).

6. Evaluation Results on Eterna100 Dataset

The Eterna100 dataset (26) is a widely used benchmark for
evaluating RNA design programs. It contains 100 secondary
structures (i.e., “puzzles”) of up to 400 nucleotides, varying
in design difficulty from simple hairpins to intricate multiloop
structures. We evaluated this work against three baselines
using this dataset: SAMFEO (4), NEMO (6), and Matthies et
al. (16). To compare their performance, we used the following
metrics:

1. Average p(y⋆ | x) across all puzzles;

2. Geometric mean of p(y⋆ | x) across all puzzles except
those 18 that are proven to be undesignable (in the
sense that there is no uMFE solution) by our previous
work (27, 28); these puzzles have extremely low p(y⋆ | x)
which bias the geometric mean towards 0;

3. Average NED(x, y⋆) across all puzzles;

4. Average d(MFE(x), y⋆) across all puzzles;

5. Average ∆∆G◦(x, y⋆) across all puzzles;

6. Number of puzzles in which an MFE solution is found;

7. Number of puzzles in which a uMFE solution is found.

Sampling-based Continuous Optimization (This Work) By de-
fault, our method samples 2500 sequences at each step. The
number of steps is adaptive to each puzzle, specifically the
run stops after 50 steps in which the objective function does
not improved and the total number of steps is limited to
2000. Our main program is implemented in C++ and utilizes
OpenMP for parallelization.

The default initial learning rate is set to 0.01, which
works well for all puzzles under the softmax parameteri-
zation. However, we observe that the direct parameterization
(projection) requires smaller learning rates as puzzle lengths
increases; otherwise, the objective value does not improve.
Therefore, we apply adaptive learning rate decay for the
projection method. Additionally, we implement momentum-
based optimizers: Adam (29) for softmax and Nesterov
accelerate gradient (30) for projection.

We adopt three types of initialization:
• Uniform: Each parameter is set to uniform distribution.

• Targeted: Assigns 100% A for unpaired, 50% CG
and GC for base pairs, and uniform distribution for
mismatches and trimismatches.

• ϵ-Targeted: A combination of targeted and uniform
distribution defined by ϵ · targeted + (1− ϵ) · uniform.

For the projection method, we use both uniform and targeted
initializations. For the softmax method, we use uniform and
ϵ-targeted initializations with ϵ = 0.75. The final solutions
are selected from the best out of both initializations.

We use our previous work, LinearPartition (19), to
compute the partition function and base-pairing probability in
linear time with beam pruning. We use beam size b = 250 for
optimizing p(y⋆ | x), and b = 100 for optimizing NED(x, y⋆).
It is only when optimizing for p(y⋆ | x), we use a larger beam
size because LinearPartition tends to underapproximate the
partition function, resulting in p(y⋆ | x) > 1. For optimizing
d(MFE(x), y⋆) and ∆∆G◦(x, y⋆), we fold the sequences using
LinearFold (31) with b = 100.

At each step, we record the best sample among the
2,500 samples. After completing all steps, we reevaluate
the recorded samples using ViennaRNA 2.0 (32), selecting
the best sequence for each metric. The values reported in
this paper are thus, unaffected by the approximation error
from beam search.

Baseline 1: SAMFEO SAMFEO is an iterative approach that
selects a few nucleotides to mutate by (a) sampling positions
based on positional defects and (b) utilizing structural
information (4). Similar to our work, SAMFEO is a general
approach that can work with any objective function f(x, y⋆).
In their paper, they optimize for two ensemble objectives:
1− p(y⋆ | x) and NED(x, y⋆). SAMFEO is run five times on
each puzzle under their default settings with 5000 steps, and
we report the best solution obtained from these five runs.

Baseline 2: NEMO NEMO uses Nested Monte Carlo Search
with domain-specific knowledge to solve puzzles (6). It
maximizes a scoring function defined by:

score(x, y⋆) = K(1 + ∆∆G◦(x, y⋆))−sign(K) [36]

where
K = 1− BPD(MFE(x), y⋆)

2|pairs(y⋆)|
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(a) Main results

Methods Objective p(y⋆ | x)(↑) NED(x, y⋆) d(MFE(x), y⋆) ∆∆G◦(x, y⋆) # of # of
arith. geom.† (↓) (↓) (↓) MFE (↑) uMFE (↑)

NEMO composite (Eq. (36)) 0.271 0.083 0.098 1.93 1.31 79 77

SAMFEO 1 − p(y⋆ | x) 0.581 0.167 0.043 4.57 2.48 77 74
NED(x, y⋆) 0.512 0.033 0.037 3.92 2.95 72 66

This Work (projection) Ex[− log p(y⋆ | x)] 0.589 0.104 0.048 6.98 2.74 75 71

This Work (softmax) Ex[− log p(y⋆ | x)] 0.593 0.502 0.036 2.10 0.78 79 76
Ex[NED(x, y⋆)] 0.541 0.015 0.041 5.48 5.07 63 62
Ex[d(MFE(x), y⋆)] 0.504 0.022 0.045 4.88 4.50 67 67
Ex[∆∆G◦(x, y⋆)] 0.538 0.377 0.047 2.88 1.14 78 72

(b) Geometric mean† of p(y⋆ | x)(↑), grouped by length (c) Average NED(x, y⋆)(↓), grouped by length (d) uMFE Solved
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Fig. 5. (a) Results of various RNA Design methods on the Eterna100 dataset. Bold: best value. Underline: second best value. Italic: the byproduct is obtained by evaluating
the final solution. This work and SAMFEO take the best solution across the entire optimization trajectory. †: geometric mean without 18 undesignable puzzles. (b) – (c)
Comparison between this work and SAMFEO for p(y⋆ | x), grouped by puzzle lengths. Each group contains 10 puzzles, except for the geometric means, which exclude
undesignable puzzles. (d) Puzzles solved by this work, SAMFEO, and NEMO under the uMFE criterion. (e) – (f) p(y⋆ | x) of solutions designed by this work vs. SAMFEO in
both original and log scale. Figure S2 provides similar grouped-by-length and individual plots for other metrics. Starred puzzles: #71⋆, #73⋆, #76⋆, #78⋆, #79⋆, #91⋆, #97⋆,
and #99⋆ are hyperlinked to their visualizations.

and BPD(y, y′) is the base pairing distances,

BPD(y, y′) = |pairs(y) ∪ pairs(y′)| − |pairs(y) ∩ pairs(y′)|.

We ran NEMO five times with the parameters of ViennaRNA
2.5.1 and take the best solutions out of the five runs.

Baseline 3: Matthies et al. (16) Matthies et al. (16) reported
the p(y⋆ | x) of puzzles up to a length of 50 (18 puzzles)
using an 80 GB NVIDIA A100 GPU in their paper. We
were able to run their code up to a length of 104 nucleotides
(the shortest 51 puzzles) using 80GB NVIDIA H100 GPU
under their default settings. However, extending to longer
puzzles is not feasible due to GPU memory limit. We compare

with their system in Table S1 and Fig. S1, where our results
substantially outperform theirs in all metrics.

Main Results The main results of RNA Design methods on
the Eterna100 dataset are shown in Figure 5(a). Our best
method uses the softmax parametererization while optimizing
for p(y⋆ | x), which performed the best on the whole dataset
in categories including the arithmetic mean of p(y⋆ | x),
geometric mean of p(y⋆ | x) without undesignable puzzles (27,
28), NED(x, y⋆), ∆∆G◦(x, y⋆), and the number of MFE
solved. It also performs the second best on the other two
metrics, d(MFE(x), y⋆) and the number of uMFE solved.
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(a)
#73 (370 nt) p(y⋆ | x) NED(x, y⋆) d(MFE(x), y⋆) ∆∆G◦(x, y⋆) is MFE is uMFE

(↑) (↓) (↓) (↓)
This Work 0.005 0.055 0 0.0 kcal/mol Yes Yes
SAMFEO 3 ×10−27 0.417 138 33.2 kcal/mol No No

0.0 0.05 0.1 0.50.2 1.0

nucleotide positional defect

0.80.0 0.4 0.80.6 1.0

correct base-pair probability

0.2 0.01 0.4 0.80.6 1.0

incorrect base-pair probability

0.2

(b) Target Structure y⋆ and MFE Structure (This Work) (c) MFE Structure (SAMFEO)

     

 

     

 

 

 

 

 

  
 

 

 
 

  

 

 

 

 

 
 

 

 
 

 
 

 

 

 

 

 
 

 

 

 
 

 
 

 
 

 

 

 

 

 

  

 

 

 

 
 

 

 

 

 

 

 

  

 

 

 

 
 
 
 
 
 

 

 
 

 
 

 

 

 
 
 
 
 
 

 

 

 
 

 
 

 

 

 

 
 

 

 

 

 

 
 

 
 

 
 

 

 

 

  

 

 

 

 

 

 

 
 

 

 

 

  

 

 

 

 

 

 
 
 
 
 

 

 

 
 

 

 

 

 

 
 
 
 
 

 

 
 

 

 

 

 

  
 

 

 
 

  

 

 

 

 

 

     

 

     

  

     

 

     

 

 

 

 

 

  
 

 

 
 

  

 

 

 

 

 
 

 

 
 
 
 
 

 

 

 

 
 

 

 

 
 
 
 
 
 

 

 

 

 

 

  

 

 

 

 
 

 

 
 
 
 

 

  

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 

 

 
 

 
 

 
 

 

 

 
 
 
 
 

 

 

 
 

 

 

 

 

 
 
 
 
 

 

 

 

 

  

 

 

 

 

 

 

 
 

 

 

 

  

 

 

 

 

 

 
 

 
 

 
 

 

 
 

 

 

 

 

 
 

 
 

 

 

 
 

 

 

 

 

   
 

 
 

  

 

 

 

 

 

     

 

     

 

  

  

  

  
  

  

  

  

  

   

   

   

   

   

   

   

   

      

   

   

   

   

   

   

   

   

   
   

   

   

   

   

   

   

   

    

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 
 

 
 

 

 

 

 
  

 
 

  
 

 
 

 

 

 

 

 

 

  

 

 

 

 
 

 

 

 

 

 

 

  

 

 

 

 
 
 
 
 
 

  

 

 

 
  

 
 
 
 
 
 

 

 

 
 

 
 

  

 
 

  
 

 

 

 
 

 
 

 
 

 
 

  
 

 

 
  

 

 

  
  

 
  

 

 

 
 
 
 
 
 
 
 
 

  
 

 

 

  

 
 
 
 
 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 
 
 
 
 

 

 

 

 
 

  
 
 
 
 
 
 

  
 
 

 

 
  

 
 

  

 

  
 

 

 

 
  

 
 

  
 

 
 

 

 

 

 

 
 

  
 

 
 

 
 

 

 

 

 
 
 
 
 

 
  

 

 

 

  

 
 
 
 
 
 
 
 

  
 

 

 
 
 

 

 
 

 
 

 

 
  

 

 

 
 

 
 

 
 

 
 

 
  

 

 

 

 
 

 
 

 

 

 
 

 
 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

  

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

      

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

(d) Base-Pairing Probabilities (This Work) (e) Base-Pairing Probabilities (SAMFEO)

5' 3'
1 37047 93 139 185 231 277 323

5' 3'
1 37047 93 139 185 231 277 323

Fig. 6. Comparison of the best p(y⋆ | x) solutions designed by this work vs. SAMFEO for Puzzle 73 (“Snowflake 4”). (b) – (c) MFE structures of the solutions from this work
and SAMFEO. Base-pairs are colored as follows: blue for correct pairs, red for incorrect pairs, with the intensity indicating pairing probability. Nucleotide colors range from blue
to red, indicating positional defect. (d) – (e) Base-pairing probabilities of this work and SAMFEO. Orange represents missing correct pairs (i.e. correct pairs with a pairing
probability below 0.1).

This work (softmax) achieves arithmetic mean p(y⋆ | x)
of 0.594, outperforming SAMFEO by 0.013. In terms of the
geometric mean of p(y⋆ | x) without undesignable puzzles,
our method performs better than other baselines by a wider
margin. We obtained geometric mean of 0.512, surpassing
the second-place method, SAMFEO, by 0.345. This indicates
that our method is much more effective at designing solutions
for longer and harder-to-design puzzles with lower p(y⋆ | x)
values.

To our surprise, optimizing for p(y⋆ | x) yields excellent
solutions for other metrics indirectly. Many of these metric are
better optimized by optimizing p(y* | x) than when optimizing
the metric directly. For example, this work (softmax)
optimizing for p(y⋆ | x) achieves average NED(x, y⋆) of 0.035,
beating both of the approaches (this work and SAMFEO)
optimizing for NED(x, y⋆) by 0.005 and 0.001 respectively.

Additionally, our method solved 79 puzzles under the MFE
criterion and 76 under the uMFE criterion, matching NEMO’s
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performance under the MFE criterion and solving just one
fewer puzzle under the uMFE criterion. However, some of
NEMO’s advantage may stem from heuristic rules specifically
tailored for the ViennaRNA energy model. Previous work
(4) showed that the vanilla version of NEMO solves only 76
puzzles under the MFE criterion and 75 under the uMFE
criterion.

Our method uses both uniform and ϵ-targeted initializa-
tions with ϵ = 0.75, and take the best solution from both runs.
For p(y⋆ | x), there are 14 puzzles for which the best solution
comes from using the uniform initialization. For examples,
the p(y⋆ | x) for puzzle #74 (380 nt) improved from 0.202 to
0.457 and puzzle #77 (105 nt) improved from 0.334 to 0.400.

Although this work (projection) achieves a higher arith-
metic mean of p(y⋆ | x) than SAMFEO, its geometric mean
of p(y⋆ | x) without undesignable puzzles is lower than
SAMFEO (0.029 vs. .167). This suggests that the projection
method performs poorly on hard to design puzzles, which is
due to the difficulty in setting the appropriate learning rate
for each puzzle.

This work vs. SAMFEO (grouped by puzzle lengths) Figure 5(b)
and (c) compare the performance of this work (softmax)
against SAMFEO across different puzzle length groups, using
the geometric mean of p(y⋆ | x) (without undesignable
puzzles) and the average NED(x, y⋆). While both methods
perform similarly for shorter puzzles across both metrics,
our method demonstrates advantages in the four longest
length groups (116–192, 200–316, 337–387 and 389–400).
Our geometric mean against SAMFEO in the longest four
groups are 0.70 vs. 0.60, 0.34 vs. 0.27, 0.15 vs. 0.00 and 0.22
vs. 0.02, differing from 0.07 to 0.20. Similarly, our method
outperform SAMFEO in terms of NED(x, y⋆), with margins
between 0.006 to 0.033 (0.019 vs. 0.025, 0.02 vs. 0.05, 0.05
vs. 0.08, and 0.02 vs. 0.05).

Figure S2(a), (b), and (c) further examine the arithmetic
mean of p(y⋆ | x), the average ∆∆G◦(x, y⋆), and the average
d(MFE(x), y⋆). Our method outperforms SAMFEO in all
four longest groups for the arithmetic mean of p(y⋆ | x) (0.76
vs. 0.74, 0.53 vs. 0.5, 0.39 vs. 0.38, 0.35 vs. 0.32). In terms
of ∆∆G◦(x, y⋆) and the average of d(MFE(x), y⋆), the major
improvements occur in the three or four longest groups. For
∆∆G◦(x, y⋆), our method surpasses SAMFEO in the longest
three groups (2.23 vs. 0.47, 13.07 vs. 2.92, and 7.40 vs. 2.46).
For d(MFE(x), y⋆), our method also outperforms SAMFEO
in the longest four groups (0.00 vs. 1.20, 2.20 vs. 7.50, 6.70
vs. 22.70, and 4.30 vs. 11.40)

uMFE analysis The Venn digram in Figure 5(d) illustrates
puzzles that are solved under the uMFE criterion by this work,
SAMFEO, and NEMO. Out of the 100 puzzles, there are 79
solved puzzles and 18 puzzles proven to be undesignable (27,
28). The remaining 3 puzzles (#68, #97, #100) have yet to be
solved or proven undesignable.

Our method solved 76 puzzles under the uMFE criterion,
one fewer than NEMO. However, we solved an additional
puzzle (#89) that was not solved by either SAMFEO or
NEMO. Although NEMO solved the most puzzles in the
uMFE sense, their solution quality is often substantially
worse than ours in terms of p(y⋆ | x) and NED(x, y⋆).
See Figure S3 for detailed visualizations of puzzles #71 and
#79. The examples show that NEMO’s uMFE solutions have

worse positional defects overall and a lower p(y⋆ | x) due to
competition from alternative structures.

This work vs. SAMFEO (individual puzzle) The scatterplot
in Figure 5(e) compares this work with SAMFEO across
individual puzzles in terms of p(y⋆ | x). The two methods
perform similarly on most puzzles, with our method showing
substantial improvements in a few cases. For example, our
method improved puzzle #74 from 0.325 to 0.457, and puzzle
#38 from 0.569 to 0.736.

The scatterplot in Figure 5 (f) uses a log scale for p(y⋆ | x),
focusing on puzzles longer than 280nt. In this plot, there are
nine puzzles (annotated in the figure) which our solution
outperforms SAMFEO’s by a factor larger than 10 fold.
Most of these puzzles are undesignable and have much lower
values of p(y⋆ | x). Figure S2(d) compares the solutions by
NED(x, y⋆), showing similar improvements for puzzles longer
than 280nt.

Visualized Examples Figures 6–7 and S4–S6 provide detailed
comparisons between this work and SAMFEO for puzzles #73,
#78, #76, #91, and #99, respectively. In all these examples,
our method consistently outperforms SAMFEO across all
metrics and is able to find the uMFE (or very close to uMFE)
solutions.

For puzzles #73 and #76 (Figs. 6 and S4), our method
achieves better p(y⋆ | x) than SAMFEO by a substantial
factor (0.005 vs. 3 × 10−27 and 0.046 vs. 7 × 10−8). Fur-
thermore, our solutions meet the uMFE criterion, whereas
theirs do not satisfy either the MFE or uMFE criteria. In the
base-pairing probabilities plots, we observe many incorrect
and missing pairs from SAMFEO’s MFE structure, along
with many positions with high positional defects.

Puzzles #78 (Fig. 7) and #91 (Fig. S5) are undesignable.
Our solutions have structural distance of 4 for puzzle #78
and 8 for puzzle #91. In both cases, the structural distances
are due to missing pairs in our MFE structures, all of which
belong to undesignable motifs. Therefore, we believe our MFE
structures are the closest possible solutions to the target
structures. In contrast, SAMFEO’s MFE structures are
very different from the target structure, and the base-pairing
probabilities plots show that their solution has very weak base-
pairing probabilities becayse of competition from alternative
structures.

Puzzle #99 (Fig. S6) is also undesignable. Our MFE
solution has a structural distance of 20, compared to
SAMFEO’s MFE solution, which has a distance of 80. In
our solution, one pair is missing from the undesignable motif,
along with a few pairs from other bulge loops. Most of the
missing pairs in the bulges form a 2 × 2 internal loop instead.
Although these bulges are not undesignable motifs, they may
still be undesignable in the context of the entire structure.

Time Analysis Figure S7 (b) shows the total number of steps
to solve each puzzle based on the stopping criteria: 50 steps
since the the objective function improved and a maximum of
2000 steps. Generally, as the puzzle length increases, it takes
more steps to find the best solution. However, for puzzles
between 100nt to 192nt, most puzzles terminated earlier than
others, suggesting that these puzzles are easier to design.

Figure S7 (c) shows the time taken to solve each puzzle
when ran on a server with 28 physical cores. The whole
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(a)
#78 (284 nt) p(y⋆ | x) NED(x, y⋆) d(MFE(x), y⋆) ∆∆G◦(x, y⋆) is MFE is uMFE p(ỹ | x)

(↑) (↓) (↓) (↓) (↑)
This Work 0.001 0.123 4 2.6 kcal/mol No No 0.058
SAMFEO 9 ×10−25 0.452 140 29.2 kcal/mol No No 2 ×10−20

0.0 0.05 0.1 0.50.2 1.0

nucleotide positional defect

0.80.0 0.4 0.80.6 1.0

correct base-pair probability

0.2 0.01 0.4 0.80.6 1.0

incorrect base-pair probability

0.2

(b) Target Structure y⋆ (c) MFE Structure (This Work) (d) MFE Structure (SAMFEO)
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(e) Base-Pairing Probabilities (This Work) (f) Base-Pairing Probabilities (SAMFEO)

5' 3'
1 28436 71 106 141 176 211 246

1
2

5' 3'
1 28436 71 106 141 176 211 246

Fig. 7. Comparison of the best p(y⋆ | x) solution designed by this work vs. SAMFEO for Puzzle 78 (“Mat - Lot 2-2 B”). (b) Target structure: pink-filled regions highlight
loops that belong to an undesignable motif, while orange base pairs represent the missing pairs in Sampling’s MFE structure. (c) – (d) MFE structures of the best p(y⋆ | x)
solutions from this work and SAMFEO. (e) – (f) Base-pairing probabilities plots. Base-pairs are colored as follows: blue for correct pairs, red for incorrect pairs, with the intensity
indicating pairing probability. Orange represents missing correct pairs (i.e. correct pairs with a pairing probability below 0.1). Nucleotide colors range from blue to red, indicating
positional defect. ỹ refers to the target structure with the (orange) base pairs from undesignable motifs removed (i.e. pairs 1 and 2 are removed).

evaluation on the Eterna100 dataset takes about 10 days,
with the longest puzzle taking up to 20 hours.

The primary time bottleneck in our method is computing
the objective function f(x, y⋆) for all 2500 samples. For

example, computing p(y⋆ | x) takes up to more than 99%
of total time due to cubic time complexity. However, this
issue is mitigated to some extent by using beam search
from LinearPartition. Additionally, computing the objective
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function for each sample is parallelizable. With 28 physical
cores, we observed a 27.4× speedup for the longest puzzles
with 400 nucleotides, reducing the time from 1233 seconds to
45 seconds per step.

Other speedup options include using a smaller sample
size, but it tends to result in longer convergence times
and greater difficulty in finding a better solution. Speed
improvements can also be achieved by caching the f(x, y⋆)
of each sample, which avoids redundant computations for
repeated samples. This approach is effective when the puzzle
is short and targeted initialization is used, which tends to
produce more repeated samples. For example, puzzle #36
with 151 nucleotides obtained a 1.95× speedup from caching,
reducing the time from 4.2 seconds to 2.15 seconds per step.

Learning Curves Figure S8 presents the learning curves for
puzzles #97 and #98. At each step, the plots illustrate p(y⋆ |
x) for the best sample and the integral solution, along with
the arithmetic and geometric means of p(y⋆ | x) computed
from 2500 samples. Overall, the learning curves show that
the values for the best sample, as well as the arithmetic
and geometric means of p(y⋆ | x), consistently increase and
converge toward the end of the process. The entropy decreases
over time, while the boxplot narrows, indicating that the
distribution becomes more concentrated as the optimization
progresses. Notably, the best sample converges more quickly
and reaches a higher p(y⋆ | x) than the integral solution. In
our findings, the highest quality solutions are consistently
derived from the best sample rather than the integral solution.

Ablation Studies We run two additional experiments with
targeted initializations to assess the effectiveness of coupling
variables on mismatches and trimismatches. First, we ablated
the coupling variables for trimismatches. Then, we ablated
the coupling variables for both mismatches and trimismatches.
The results of these ablation studies are presented in Table S3.

As more coupling variables are removed, the results
deteriorate across all metrics. The arithmetic mean of
p(y⋆ | x) decreased from 0.589 to 0.578 after ablating
trimismatches and further declines to 0.566 when mismatches
are also ablated. Similarly, the average NED(x, y⋆) increases
from 0.035 to 0.039 and then to 0.042. This pattern continues
across other metrics, suggesting that the coupled variables
approach is useful.

7. Conclusions and Future Work

We described a general framework for sampling-based con-
tinuous optimization with coupled-variable distributions that
is applicable to optimizing any objective function for RNA
design. Our method consistently outperformed other state-of-
the-art methods across nearly all metrics, such as Boltzmann
probability and ensemble defect, particularly on the long and
hard-to-design puzzles in the Eterna100 benchmark.

In the future, our work can be improved in ways such as:

1. Our method evaluates the objective for each sample,
which takes up the majority of runtime. Currently we
cache full sequences (unique samples), but to speed up
even further, we can cache subsequences shared among
the samples. We can also use importance sampling (33)
to reduce the number of samples in each step.

2. Our sequence distributions are products of independent
distributions of coupled variables, which are both expres-
sive and easy to sample from. But we can also consider
more complex distributions using discriminative models
(34) and neural models (35), although sampling would
be more difficult.

3. We can extend this framework to protein design which
should in principle work for arbitrary objective functions.
The challenge is scalability due to much slower objective
evaluation using protein folding engines (36, 37).
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Supporting Information

Sampling-based Continuous Optimization with Coupled Variables for RNA Design

Wei Yu Tang, Ning Dai, Tianshuo Zhou, David H. Mathews, and Liang Huang

S1. Derivation of Gradient

S1.A. Direct Parameterization. In the example of direct parameterization (Sec. 4.A), our objective is to compute the gradient of the objective
function with respect to the parameter associated with an unpaired position i and nucleotide A. As noted in Eq. 28, this gradient can be
approximated as follows:

∂J (Θ)
∂θu

i,A
≈

1
|S|

∑
x∈S

∂ log py⋆ (x; Θ)
∂θu

i,A
f(x, y⋆)

Here, log py⋆ (x; Θ) can be expressed as:

log py⋆ (x; Θ) = log

 ∏
i∈unpaired(y)

θu
i,xi

·
∏

(i,j)∈pairs(y)

θp
i,j,xixj

·
∏

(i,j)∈mismatches(y)

θm
i,j,xixj

·
∏

(i,j,k)∈trimismatches(y)

θtm
i,j,k,xixj xk


=

∑
i∈unpaired(y)

log(θu
i,xi

) +
∑

(i,j)∈pairs(y)

log(θp
i,j,xixj

) +
∑

(i,j)∈mismatches(y)

log(θm
i,j,xixj

) +
∑

(i,j,k)∈trimismatches(y)

log(θtm
i,j,k,xixj xk

)

Since we are interested in the gradient with respect to a particular position i and nucleotide A, the other terms are constants. This
simplifies the equation to:

∂ log py⋆ (x; Θ)
∂θu

i,A
=

∂

∂θu
i,A

(log θu
i,xi

) =
1

θu
i,xi

1[xi = A]

Finally, the gradient approximation can be expressed as:
∂J (Θ)
∂θu

i,A
≈

1
|S|

∑
x∈S

1[xi = A]
f(x, y⋆)

θu
i,A

=
1

|S|

∑
x∈S

xi=A

f(x, y⋆)
θu

i,A

We can also extend the gradient to other cases, including pairs, mismatches, and trimismatches. The gradients are listed below:
∂J (Θ)
∂θp

i,j,ab

≈
1

|S|

∑
x∈S
xi=a
xj =b

f(x, y⋆)
θp

i,j,ab

,
∂J (Θ)
∂θm

i,j,ab

≈
1

|S|

∑
x∈S
xi=a
xj =b

f(x, y⋆)
θm

i,j,ab

,
∂J (Θ)

∂θtm
i,j,k,abc

≈
1

|S|

∑
x∈S
xi=a
xj =b
xk=c

f(x, y⋆)
θtm

i,j,k,abc

S1.B. Softmax Parameterization. In Section 4.B, we introduce the softmax parameterization as an alternative approach to solving the
optimization problem. The probability of a nucleotide a ∈ N at an unpaired position i is defined in Eq. 30 as:

pu
i (a; θu

i ) ∆=
exp(θu

i,a)
Z

, where Z =
∑

a′∈N

exp(θu
i,a′ )

To compute the gradient of the objective function under the softmax parameterization (Eq. 32), we need to derive the derivative of the
softmax function. Suppose that we are interested in the derivative of pu

i (a; θu
i ) with respect to the parameter θu

i,A. For the case where
a = A, applying the quotient rule yields:

∂pu
i (A; θu

i )
∂θu

i,A
=

exp(θu
i,A)S − exp(θu

i,A) exp(θu
i,A)

Z2 =
exp(θu

i,A)
Z

·
Z − exp(θu

i,A)
Z

= pu
i (A; θu

i ) · (1 − pu
i (A; θu

i ))

Similarly, for the case where a ̸= A, the derivative is given by:

∂pu
i (a; θu

i )
∂θu

i,A
=

0 − exp(θu
i,A) exp(θu

i,a)
Z2 = −

exp(θu
i,A)

Z
·

exp(θu
i,a)

Z
= −pu

i (A; θu
i )pu

i (a; θu
i ) = pu

i (a; θu
i )(0 − pu

i (A; θu
i ))

Combining these results, we can express the derivative of the softmax function with respect to θu
i,A as:

∂pu
i (a; θu

i )
∂θu

i,A
= pu

i (a; θu
i ) · (1[a = A] − pu

i (A; θu
i ))

For other cases, such as pairs, mismatches, and trimismatches, the derivatives of the softmax function are provided below:

∂pp
i,j(ab; θp

i,j)
∂θu

i,j,a′b′
= pp

i,j(ab; θp
i,j) · (1[ab = a′b′] − pp

i,j(a′b′; θp
i,j)),

∂pm
i,j(ab; θm

i,j)
∂θu

i,j,a′b′
= pm

i,j(ab; θm
i,j) · (1[ab = a′b′] − pm

i,j(a′b′; θm
i,j)),

∂ptm
i,j,k(abc; θtm

i,j,k)
∂θu

i,j,k,a′b′c′
= ptm

i,j,k(abc; θtm
i,j,k) · (1[abc = a′b′c′] − ptm

i,j,k(a′b′c′; θtm
i,j,k))
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Table S1. Results of different RNA Design methods on the shortest structures in Eterna100 (up to 50 and 104 nucleotides, respectively).

Methods Objective p(y⋆ | x)(↑) NED(x, y⋆) d(MFE(x), y⋆) ∆∆G◦(x, y⋆) # of # of
mean geom.† (↓) (↓) (↓) MFE (↑) uMFE (↑)

Le
ng

th
≤

50 Matthies et al. (16) −log
[

Ex[e−∆G◦(x,y)/RT ]
Ex[Q(x)]

]
0.545 0.088 0.120 3.72 1.12 11 11

SAMFEO 1 − p(y⋆ | x) 0.712 0.314 0.046 0.56 0.49 16 16

This Work (projection) Ex[− log p(y⋆ | x)] 0.715 0.317 0.049 0.78 0.50 15 14

This Work (softmax) Ex[− log p(y⋆ | x)] 0.716 0.317 0.048 0.83 0.52 15 15

Le
ng

th
≤

10
4 Matthies et al. (16) −log

[
Ex[e−∆G◦(x,y)/RT ]

Ex[Q(x)]

]
0.447 0.135 0.110 6.08 1.38 27 27

SAMFEO 1 − p(y⋆ | x) 0.675 0.699 0.038 1.08 0.37 42 40

This Work (projection) Ex[− log p(y⋆ | x)] 0.681 0.722 0.040 1.35 0.33 42 39

This Work (softmax) Ex[− log p(y⋆ | x)] 0.680 0.717 0.041 1.43 0.34 41 40

(a) p(y⋆ | x)(↑) of puzzles up to 104 nucleotides.

20 40 60 80 100
Puzzle Length

0.0

0.2

0.4

0.6

0.8

1.0

p(
y
?
|x

)

This Work

Matthies et al.

Fig. S1. p(y⋆ | x) of solutions designed by this work vs. Matthies et al. (16) on the 51 shortest structures in Eterna100 (up to 104 nucleotides).

Table S2. Comparison of solutions designed by this work vs. SAMFEO on some long and hard-to-design Eterna100 puzzles.

Puzzle Method p(y⋆ | x) NED(x, y⋆) d(MFE(x), y⋆) ∆∆G◦(x, y⋆) is MFE is uMFE
(↑) (↓) (↓) (↓)

#73 (370 nt) This Work 0.005 0.055 0 0.0 kcal/mol Yes Yes
Figure 6 SAMFEO 3 × 10−27 0.417 138 33.2 kcal/mol No No
#76 (393 nt) This Work 0.035 0.054 0 0.0 kcal/mol Yes Yes
Figure S4 SAMFEO 7 × 10−8 0.239 26 4.2 kcal/mol No No
#78 (284 nt) This Work 0.001 0.123 4 2.6 kcal/mol No No
Figure 7 SAMFEO 9 × 10−25 0.452 140 29.2 kcal/mol No No
#91 (392 nt) This Work 0.0001 0.034 8 3.4 kcal/mol No No
Figure S5 SAMFEO 2 × 10−20 0.128 52 25.2 kcal/mol No No
#99 (364 nt) This Work 8 × 10−11 0.111 20 9.8 kcal/mol No No
Figure S6 SAMFEO 3 × 10−28 0.197 80 34.4 kcal/mol No No

Table S3. Ablation studies. Results of this work (softmax) optimizing for p(y⋆ | x) without mismatch and trimismatch. Targeted initialization
only. †: geometric mean without 18 undesignable puzzles.

Methods Distribution p(y⋆ | x)(↑) NED(x, y⋆) d(MFE(x), y⋆) ∆∆G◦(x, y⋆) # of # of
mean geom.† (↓) (↓) (↓) MFE (↑) uMFE (↑)

This Work v3: default 0.589 0.502 0.035 2.96 0.81 78 75

v2: base-pair & mismatch 0.578 0.467 0.039 3.19 0.94 75 72

v1: only base-pair 0.566 0.422 0.042 3.93 0.97 75 70
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(a) Arithmetic mean of p(y⋆ | x)(↑), grouped by length (b) Average ∆∆G◦(x, y⋆)(↓), grouped by length
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(c) Average d(MFE(x), y⋆)(↓), grouped by length (d) NED(x, y⋆)(↓) of individual puzzles
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Fig. S2. (a) – (c) Average of metrics when puzzles are grouped by length, with each group consisting of 10 puzzles. (d) NED(x, y⋆) of solutions designed by this work
vs. SAMFEO. Figure 5 displays similar grouped-by-length plots and scatterplots for other metrics.
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(a)
#71 (88 nt) p(y⋆ | x) NED(x, y⋆) d(MFE(x), y⋆) ∆∆G◦(x, y⋆) is MFE is uMFE

(↑) (↓) (↓) (↓)
This Work 0.211 0.059 4 0.4 kcal/mol No No

NEMO 0.051 0.180 0 0.0 kcal/mol Yes Yes

0.0 0.05 0.1 0.50.2 1.0

nucleotide positional defect

0.80.0 0.4 0.80.6 1.0

correct base-pair probability

0.2 0.01 0.4 0.80.6 1.0

incorrect base-pair probability

0.2

(b) Target Structure y⋆ and MFE Structure (NEMO) (c) MFE Structure ŷ1 (This Work)
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(d) Base Pairing Probabilities (NEMO) (e) Base Pairing Probabilities (This Work)

5' 3'1 8812 23 34 45 56 67 78

1
2

5' 3'1 8812 23 34 45 56 67 78

1
2

(f)
#79 (101 nt) p(y⋆ | x) NED(x, y⋆) d(MFE(x), y⋆) ∆∆G◦(x, y⋆) is MFE is uMFE

(↑) (↓) (↓) (↓)
This Work 0.272 0.041 4 0.0 kcal/mol Yes No

NEMO 0.092 0.113 0 0.0 kcal/mol Yes Yes

(g) Target Structure y⋆ and MFE Structure (NEMO) (h) MFE Structure ŷ2 (This Work)
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(i) Base Pairing Probabilities (NEMO) (j) Base Pairing Probabilities (This Work)

5' 3'1 10113 25 37 49 61 73 85

1
2

5' 3'1 10113 25 37 49 61 73 85

1
2

Fig. S3. Puzzles #71, #79 are solved by NEMO (but not by this work) under the UMFE criterion. MFE Structures: Base pairs are colored blue for correct pairs and red for
incorrect pairs, with color intensity indicating pairing probability. Nucleotides are colored using a blue-to-red gradient to represent positional defects. Orange dashed lines
in our MFE structure indicate the missing pairs from target structure. The dashed box highlights regions where NEMO’s solution shows poor positional defects and many
base-pairing competitions due to alternative structures. For puzzle #79, although our design is not a uMFE solution, it is still an MFE solution, meaning that ŷ2 ∈ MFEs(x)
and ∆G◦(x, y⋆) = ∆G◦(x, ŷ2).
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(a)
#76 (393 nt) p(y⋆ | x) NED(x, y⋆) d(MFE(x), y⋆) ∆∆G◦(x, y⋆) is MFE is uMFE

(↑) (↓) (↓) (↓)
This Work 0.035 0.054 0 0.0 kcal/mol Yes Yes
SAMFEO 7 × 10−8 0.239 26 4.2 kcal/mol No No

0.0 0.05 0.1 0.50.2 1.0

nucleotide positional defect

0.80.0 0.4 0.80.6 1.0

correct base-pair probability

0.2 0.01 0.4 0.80.6 1.0

incorrect base-pair probability

0.2
(b) Target Structure y⋆ and MFE Structure (This Work) (c) MFE Structure (SAMFEO)

 

 

 

  
  

 

   

 

 

 

 

 
 

 

  

 

  
 
 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

  

 

 

 

 

 
 

 

 

 

 

 

  

 

 

 

 
 

 

 
 

 
 
 
 

 
 

 

 

 
 

 
 

 

 
 
 

 
 

 
 

 

  

 
 
 

  

 
 
 
 

 

 
 

 
 

  

 
 

 

  

 

 
 
 
 

 
 

 

 
 

 

  

 

 
 
 

 
 

 
 

 
 

 
 
 

 

 

 

  

 

 

 

 

 
 
 

 

 

 

 

  

 

 

 

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 
 

  

 

  

 
 
 

 

 

 

 

   

 

  
  

 

 

 

 
 

 

 

 

 

  
  

 

   

 

 

 

 

 
 
 

  

 

  
 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

 

 

 

 

  

 

 

 

 

 
 
 

 

 

 

 

  

 

 

 

 
 
 

 
 

 
 

 
 

 
 

 

 

  

 
 

 

 
 

 

 
 
 

 

 

  

 
 

 

  

 
 

 
 

 

 
 
 
 

  

 
 
 

  

 

 
 

 
 

 
 
 

 
 
 

  

 

 
 

 

 
 
 

 

 
 

 
 

 

 

 

 

  

 

 

 

 

 
 

 

 

 

 

 

  

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 
 
  

 

  

 
 

 

 

 

 

 

   

 

  
  

 

 

  

  

  

  

    

  

  

  

  

   
   

   

   

   

   

   

   

   

      

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 

 

 

  

 
 

 

   

 

 

 

 

 
 

 

  

 

  
 
 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

  

 

 

 

 

 
 

 

 

 

 

 

  

 

 

 

 
 

 

 
 

 
 
 
 

 
 

 

 

 
 

 
 

 

 
 
 

 
 

 
 

 

  

 
 
 

  
 
 
 
 

 

 
 

 
 

  
 

 
 

  

 

  
 
 

 
 

 

  

 

 

 
 

 

 

 

   
  

 

 
 

   

 

 
  

 

 

 

 
 
 

 

 

 

 

  

 

 

 

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 
 

  

 

  

 
 
 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 
 
 

  

 

  
 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

 

 

 

 

  

 

 

 

 

 
 
 

 

 

 

 
   

 
 
 
 
 

 
 

 
 

 
 

 

 

 

 

 
   

 
 

 
 

 
 
 

 

 

  

 
 

 
  

 
 

 
 

 

 
 
 
 

  
 
 
 

  

 

 
 

 
 

 
 
 

 
 
 

  

 

 
 

 

 
 
 

 

 
 

 
 

 

 

 

 

  

 

 

 

 

 
 

 

 

 

 

 

  

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 
 
  

 

  

 
 

 

 

 

 

 

   

 

  
  

 

 

  

  

  

  

  
  

  

  

  

  

      

   

   

   

   

   

   

   

   

   

   

   

   

   
   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

(d) Base-Pairing Probabilities (This Work) (e) Base-Pairing Probabilities (SAMFEO)

5' 3'
1 39350 99 148 197 246 295 344

5' 3'
1 39350 99 148 197 246 295 344

Fig. S4. Comparison of the best p(y⋆ | x) solutions designed by this work vs. SAMFEO for Puzzle 76 (“Snowflake 3”). (b) – (c) MFE structures of the solutions from this work
and SAMFEO. Base-pairs are colored as follows: blue for correct pairs, red for incorrect pairs, with the intensity indicating pairing probability. Nucleotide colors range from blue
to red, indicating positional defect. (d) – (e) Base-pairing probabilities of this work and SAMFEO. Orange represents missing correct pairs (i.e. correct pairs with a pairing
probability below 0.1).
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(a)
#91 (392 nt) p(y⋆ | x) NED(x, y⋆) d(MFE(x), y⋆) ∆∆G◦(x, y⋆) is MFE is uMFE p(ỹ | x)

(↑) (↓) (↓) (↓) (↑)
This Work 0.0001 0.034 8 3.4 kcal/mol No No 0.037
SAMFEO 2 × 10−20 0.128 52 25.2 kcal/mol No No 8 × 10−13

0.0 0.05 0.1 0.50.2 1.0

nucleotide positional defect

0.80.0 0.4 0.80.6 1.0

correct base-pair probability

0.2 0.01 0.4 0.80.6 1.0

incorrect base-pair probability

0.2
(b) Target Structure y⋆ (c) MFE Structure (This Work) (d) MFE Structure (SAMFEO)
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(d) Base-Pairing Probabilities (This Work) (e) Base-Pairing Probabilities (SAMFEO)

5' 3'
1 39250 99 148 197 246 295 344

1
2

34
5' 3'

1 39250 99 148 197 246 295 344

Fig. S5. Comparison of the best p(y⋆ | x) solution designed by this work vs. SAMFEO for Puzzle 91 (“Thunderbolt”). (b) Target structure: pink-filled regions highlight loops
that belong to an undesignable motif, while orange base pairs represent the missing pairs in Sampling’s MFE structure. (c) – (d) MFE structures of the best p(y⋆ | x) solutions
from this work and SAMFEO. (e) – (f) Base-pairing probabilities plots. Base-pairs are colored as follows: blue for correct pairs, red for incorrect pairs, with the intensity indicating
pairing probability. Orange represents missing correct pairs (i.e. correct pairs with a pairing probability below 0.1). Nucleotide colors range from blue to red, indicating positional
defect. ỹ refers to the target structure with the (orange) base pairs from undesignable motifs removed (i.e. pairs 1, 2, 3 and 4 are removed).
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(a)
#99 (364 nt) p(y⋆ | x) NED(x, y⋆) d(MFE(x), y⋆) ∆∆G◦(x, y⋆) is MFE is uMFE p(ỹ | x)

(↑) (↓) (↓) (↓) (↑)
This Work 8 × 10−11 0.111 20 9.8 kcal/mol No No 2 × 10−10

SAMFEO 3 × 10−28 0.197 80 34.4 kcal/mol No No 4 × 10−26

0.0 0.05 0.1 0.50.2 1.0

nucleotide positional defect

0.80.0 0.4 0.80.6 1.0

correct base-pair probability

0.2 0.01 0.4 0.80.6 1.0

incorrect base-pair probability

0.2

(b) Target Structure y⋆ (c) MFE Structure (This Work) (d) MFE Structure (SAMFEO)

1

 

 

 

 

 

 

    

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

    

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 
 

 
  

  
    

 

 

 

 

     
 

 

      

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

  
 

 

 

  

  

 

 

 

 

 
 

    

 

 

 

 

 

 

    

  

 

        

 

 
       

  

 

 

 

 

  

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

      

 
 

     

 

 

 

 

    

 
 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    

 

 

 

 

 

 

 

 

 

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

8

2

3

4

5

6

7

9

10
102

1

3

3

4

5

6

7

8

9

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
  

 

 
 
 
 

 

 

 

 

 
 

 
 

 
 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

  

  

 

  

  

 

 

 

 

 
 

 
 
 
 

 

 

 

 

 

 

    

  

 

        

 

 
       

  

 

 

 

 

  

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

      

 
 

     

 

 

 

 

    

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 
 
 
 
 
 

 
 

     

 
 

 

 

  

 

 

 
 

   

 

 

 

 
 

 
 

 

 
 

 
 
 
 
 
 

 

 
 

 
 

 
 

 
 

 
 
 
 
 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 
 
 
 

 

 

 

 

 

 

    

  

 

        

 

 
       

  

 

 

 

 

  

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

      

 
 

     

 

 

 

 
 

 

 

 

 
  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
 

 

 
 

 

 

 
 

 
    

 
 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   
   

   

(d) Base-Pairing Probabilities (This Work) (e) Base-Pairing Probabilities (SAMFEO)

5' 3'
1 36446 91 136 181 226 271 316

1 8
5' 3'

1 36446 91 136 181 226 271 316

Fig. S6. Comparison of the best p(y⋆ | x) solution designed by this work vs. SAMFEO for Puzzle 99 (“Shooting Star”). (b) Target structure: pink-filled regions highlight
loops that belong to an undesignable motif, while orange base pairs represent the missing pairs in Sampling’s MFE structure. (c) – (d) MFE structures of the best p(y⋆ | x)
solutions from this work and SAMFEO. (e) – (f) Base-pairing probabilities plots. Base-pairs are colored as follows: blue for correct pairs, red for incorrect pairs, with the intensity
indicating pairing probability. Orange represents missing correct pairs (i.e. correct pairs with a pairing probability below 0.1). Nucleotide colors range from blue to red, indicating
positional defect. ỹ refers to the target structure with the (orange) base pairs from undesignable motifs removed (i.e. pair 1 is removed).

Tang et al. PNAS | December 13, 2024 | vol. XXX | no. XX | 7



(a) Results at different cutoff step (b) Number of steps for each puzzle (sorted by length →)
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Fig. S7. (a) Metrics of the puzzles over different step cutoffs (up to 2000 steps). (b) Number of steps taken to solve each puzzle with the stopping criteria: 50 steps in which the
objective function does not improved and the total number of steps is limited to 2000. (c) Total time taken to solve each puzzle, ran on a server with 28 physical cores.
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(a) Puzzle #97 (400 nt) (b) Puzzle #98 (202 nt)
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(c) MFE Structure ŷ1 (This Work) for Puzzle #97 (d) MFE Structure ŷ2 (This Work) for Puzzle #98

 

 

 

 

 
 

  

 
 

 
 

 

 

  

 

 
 

 
 

  

 

 

  

 

 
 
 
 
  

 
 
 
 

    

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 
  

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 
 
 
 

 

 

 

 

 
 
 
 

 
 

 

 

  
 

 

 

 

 
 
 

   
  

 

   

 
 

 

    

 
 
 

 
 

 

 

 

  
 
 

 
 

 

 

 
  

 
 

 

 

 

 
 

 
  

  

 

  
  

 
 

   
 

 

 
 

   

 

 

 

 

 

   
 

 

 

  

 

 
  

 

 

 
 

 

 
 

  

 
 
  

 

 
 

 

 
 

 

 

 

 

 
 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 
 
  

 

 

  

 

 
 

 
 

 

 

 
 

 

 

 

 
 

 

 

       
 

 

        

 

 

 

 
 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

    

 

 
  

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 
  

 

 
 

 

 

 

 

  
 

 

 
 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

  
 
 
 
 

 

 

 

 
 

    

    

  

  

  

  

  

   

   

   

   

   

   

   

   
   

   

   

   

   

   

   
   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   
 

 
 

 
 

 

     

 
 

    

 
 

 
 

 
 

  

 

 
 
 
 

 

 

 

 

 

 

 

  

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 
 

 

  

 
 
 
 

 
 

    
 
 

     

 
 
 

 
 

   
 

 

 

 
 
 

     

 
 

    

 
 

 
 
 
 

  

 

 
 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

  

 

 

 

 

 

 

 

 
 
 
 

 

  

 
 

 
 

 
 

    
 

 

     

 
 

 
 

 
 

 

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

Fig. S8. (a) – (b) Learning curves of puzzles #97 and #98. Each step illustrates the p(y⋆ | x) for both the best sample and the integral solution with the arithmetic and
geometric means of p(y⋆ | x) across all samples. The boxplots depict the distribution of p(y⋆ | x) across all samples every 200 step, showing the interquartile range and the
median of the samples. The barplots correspond to the entropy of the distribution every 200 step. (c) – (d) The MFE structures of the best p(y⋆ | x) solution from our method.
Puzzle #97 is “unknown” in the sense that it does not have a known uMFE solution and has not yet been proven to be undesignable. The MFE structure of puzzle #97, ŷ1, is
missing a base pair from the target structure, denoted by the orange dashed line. For this puzzle, p(y⋆ | x) = 0.078 and p(ŷ1 | x) = 0.337.
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