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1. Materials and methods 31 

1.1 Sample preparation for single-cell RNA-seq  32 

One portion of tissue from twin female goats (n=2/group) was minced into 2-3 mm pieces and 33 

then incubated in a 37 °C water bath with multiple enzymes (1.0 mg/mL collagenase IV, 2.0 mg/mL 34 

dispase, and 50 U/mL DNase I) at 100 × rpm for 30 min. We added 10% FBS to stop the digestion 35 

process, followed by a filtration step using 70-μm and 30-μm Smart Strainer (Miltenyi Biotec, 36 

Bergisch Gladbach, Germany). Then the supernatant was discarded, and cells were collected (400 37 

× g for 7 min at 12 °C). To remove red blood cells, dead cells, and cellular debris from the dissociated 38 

cells, we used Red Blood Cell Lysis Buffer and the MACS Dead Cell Removal Kit (Miltenyi Biotec, 39 

Bergisch Gladbach, Germany) as per the manufacturer’s direction. After that, the total cell count 40 

and viability were checked using a hemocytometer (Thermo Fisher Scientific) and trypan blue 41 

(Thermo Fisher Scientific, Waltham, MA, USA), respectively. Finally, single-cell suspensions 42 

without cell debris and having greater than 90% viability were passed to the subsequent analysis. 43 

The appropriate volume was calculated for a target capture of 8000 cells, and then the cells were 44 

further diluted to a user guide concentration (700-1200 cells/μL) with 1× PBS with 0.04% BSA for 45 

10x Genomics sequencing. 46 

1.2 Single-cell RNA-seq library construction and sequencing  47 

Briefly, to obtain single-cell gel bead-in-emulsions (GEM), we loaded the cellular suspensions 48 

onto the latest 10x Chromium™ Single Cell 3′ Solution system. Then, we used the 10x Genomics 49 

3' Reagent Kits v3 and Agilent Bioanalyzer High Sensitivity chip to construct and check the quality 50 

of the scRNA-seq libraries, respectively. To reduce the batch effects of samples, we constructed the 51 

libraries using the exact versions of kits as per the manufacturer's protocols. The libraries were 52 

sequenced on the same Illumina NovaSeq 6000 sequencing system in a 150-bp paired-ended manner 53 



by LC-Bio Technology Co., Ltd. (Hangzhou, China) at a minimum depth of 20,000 reads per cell.  54 

1.3 Single-cell RNA-seq data analysis 55 

The Illumina bcl2fastq software (version 5.01) were applied to convert the sequencing results 56 

in to FASTQ files. Raw data were demultiplexed, barcode and mapped to the goat reference genome 57 

(https://www.ncbi.nlm.nih.gov/assembly/GCF_001704415.1/) using the Cell Ranger package 58 

(version 3.1.0). Primary alignment to the Cell Ranger showed 95% valid barcodes and 54.30% 59 

sequencing saturation. Feature-barcode raw digital gene expression matrix (UMI counts per gene 60 

per cell) was filtered and normalized by using the R package Seurat [1] (Version 3.1.1). Overall, 61 

genes detected in fewer than one cell were filtered out, and cells were excluded if they expressed 62 

fewer than 500 detected genes, UMI counts less than Inf, and the percent of mitochondrial-DNA 63 

derived gene expression below 25%. The Doublet Finder [2] package (version 2.0.3) was also 64 

employed to filter out doublets. scRNA-seq data that met quality control criteria were used for 65 

transcriptomic analysis.  66 

1.4 Uniform manifold approximation and projections (UMAP) analysis of single-cell RNA-seq 67 

datasets and identification of cell clusters 68 

Following the removal of the low-quality cells and doublets, the “LogNormalize” method in 69 

the Seurat package was used to normalize the expression of the data. Then the principal component 70 

analysis (PCA) was performed using the “RunPCA” function based on the normalized expression 71 

value. Using a Jackstraw substitution test algorithm, we select the top ten principal components (PC) 72 

from the PCA analysis results for subsequent unsupervised clustering and cluster analysis. The 73 

process of clustering cells was performed using the “FindClusters” function with an appropriate 74 

resolution Two-dimensional visualization was obtained with a UMAP[3].            75 



Differentially expressed genes (DEGs) or marker genes for each significant cluster were found 76 

using the Wilcoxon rank-sum test (default parameter is “bimod”: likelihood-ratio test) as 77 

implemented in the “FindAllMarkers” function (|log2 FC| ≥ 1 and adjusted P value ≤ 0.01). Only 78 

genes representing or expressing greater than 10% of the cells in a given cluster were considered. 79 

Manual annotation (a combination of marker genes identified from the literature, marker gene list, 80 

and gene ontology for cell types) was applied to assigned cell cluster identity. The Seurat function 81 

of FeaturePlot, VlnPlot, and DotPlot were employed to plot the expression of selected genes. We 82 

used heatmap.2 function from the gplots v3.6.1 R package with the default complete-linkage 83 

clustering algorithm to construct heat maps. 84 

1.5 Inference of differentiation trajectories 85 

Single-cell trajectories were constructed using the R package monocle [4] Version 2.4 with the 86 

default parameter settings and the partition-based graph abstraction (PAGA) [5] with an edge 87 

significance threshold of 0.6.  88 

1.6 Estimation of transcriptional noise 89 

Estimation of transcriptional noise was performed mainly based on previous work [6]. Here, 90 

we presented two measurements of transcriptional noise. Specifically, we first ensure that each cell 91 

cluster has at least 10 cells. In order to avoid the impact brought by different UMI counts, each cell 92 

was down-sampled to 100,000 UMIs so that all cells had an equal number of total UMI counts. 93 

Similarly, to account for differences in cell-type frequency, we subsampled cell numbers to maintain 94 

equal numbers of cells for the two groups. We then divided genes into 10 equally sized bins by mean 95 

expression, with the top and bottom bins excluded. The 10% of genes with the lowest coefficient of 96 

variation (CV) from each bin were kept. These genes were then used to calculate the Euclidean 97 



distance between each cell and its corresponding cell type mean. This Euclidean distance was used 98 

as one measure of transcriptional noise for each cell. The ratios of transcriptional noise between 99 

neonatal and adult goats for each cell type were subsequently calculated. We also calculated the 100 

average Euclidean distances for each goat. Alternatively, we used the 1–Spearman correlation 101 

coefficient as the second measure. Spearman's correlation coefficients were calculated using the 102 

subsampled gene expression matrices between each cell type and age group (neonatal and adult 103 

stages). We then used Wilcoxon’s rank sum test to statistically evaluate the relationship between 104 

transcriptional noise and age for each cell type. The Bonferroni–Hochberg method was used to 105 

correct the p values. 106 
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2. Supplementary Figures 108 

Figure. S1. Transcriptomic characteristics of the goat Pancreas. (A) Split views showed the 109 

biological duplicate effect on NG and AG groups. (B) UAMP clustering of 35,449 cells isolated 110 

from pancreas of neonatal (NG group) and adult goats (AG group). Cells are colored according to 111 

the cluster. Each dot represents a single cell. (C) Expression level of marker of acinar cell in different 112 

subsets. (D) Expression level of marker of ductal cell in different subsets.  113 

 114 

 115 

  116 



Figure. S2. Heterogeneity of AC cells reveal the differential metabolic responses. UAMP clustering 117 

of 3483 pancreatic AC cells isolated from NG and AG samples. Cells are colored based on the 118 

clusters (A) and samples (B), respectively. (C) Expression level of markers of acinar cell subtype in 119 

different subsets. (D) List of the significant GSEA terms. (E) Expression of representative candidate 120 

genes of acinar cell subtype along pseudotime. 121 
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Figure. S3. Cell-to-cell signaling networks and gene expression alterations of pancreatic endocrine 124 

cells of adult goats. Cell-to-cell signaling networks in neonatal goats (A) and adult goats (B). 125 

Networks depicting cell types as nodes and interactions as edges. Edge thickness is proportional to 126 

the number of interactions between the connecting types. (B) Heat map depicting the number of all 127 

possible interactions between the clusters analyzed in neonatal goats (C) and adult goats (D). 128 

Volcano map showing the number of DE genes between cells from AG and NG samples in β (E) 129 

and δ (F), with red and blue colors corresponding to up-and-downregulated genes in AG samples, 130 

respectively. Non-differential genes are shown in grey color. 131 

 132 
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Figure. S4. Western blot analysis of PNLIPRP2, CTRC, CPB1, PLA2G1B, Amylase and β-Actin in 134 

pancreatic tissue. Note: 1) the PVDF membrane was cut according to the size of the target protein. 135 

Then, the membranes were incubated with primary antibodies in TBST (including 5% BSA). The 136 

complete picture is provided here without cropping as it is. 2) The protein bands (40~10kDa) did 137 

not show color, so we labeled the protein size on the PVDF membrane based on the color on the 138 

membrane. 139 

 140 

 141 
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3. Supplementary Tables 143 

Table. S1. Overview of key genes from scRNA-seq data, divided by each cell 144 

compartment, that exhibit relatively high or specific expression in each cell types used 145 

for characterization annotation, related to Figure 1. 146 

Compartment Cell type Key genes Reference 

Islet endocrine cell types β INS Lawlor et al., 2017 [7], 

Li et al., 2016a [8] δ GCG 

ELC SST, PPY 

exocrine cell types AC CTRC, CLPS, CEL, CPB1 Whitcomb & Lowe, 

2007 [9] 

 DC KRT8, KRT19, SOX9 Lawlor et al., 2017 [7], 

Li et al., 2016a [8], 

Prévot et al., 2012 [10] 

Nonpancreatic cell types EC PECAM1, VWF Segerstolpe et al., 2016 

[11] 

activated 

PSCs 

PDGFRA, COL1A2 Tang et al., 2022 [12], 

Baron et al., 2016 [13] 

B MS4A1, CD19, CD79A Adams et al., 2009 [14] 

T CD3E, CD3D Tang et al., 2022 [12], 

de Saint et al., 2004 [15] 

macrophages C1QA, C1QB, C1QC Tang et al., 2022 [12], 

Li et al., 2023[16] 

granulocytes S100A9, S100A8 Scott et al., 2020 [17] 

 147 
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Table. S2. List of specific and highly expressed pancreatic digestive enzymes-related genes identified in acinar cells of goats. 149 

Item Description Gene transcript Proportion of AC transcripts 

Digestive zymogen     

LOC102176156 chymotrypsinogen B 1652 2010/10000 

LOC102174148 chymotrypsinogen A 217 

LOC102173875 chymotrypsinogen B 128 

ZG16 zymogen granule protein 16 10 

CYM prochymosin 3 

Protease     

PRSS2 protease, serine 2 365 957/10000 

LOC1021783207 carboxypeptidase A1 243 

CTRC Chymotrypsin C 90 

CELA1 chymotrypsin like elastase family member 1 75 

CPB1 carboxypeptidase B1 68 



LOC102179184 cationic trypsin 55 

LOC102174414 chymotrypsin-like elastase family member 2A 50 

LOC102178719 cationic trypsin 8 

PRSS23 protease, serine 23 1 

CPM carboxypeptidase M 1 

Lipase     

CLPS colipase 327 526/10000 

CEL carboxyl ester lipase 114 

PLA2G1B phospholipase A2 group 1B 33 

PNLIPRP2 pancreatic lipase related protein 2 30 

PNLIP pancreatic lipase 23 

Amylase     

LOC102169350 alpha-amylase 2B 15 15/10000 

 150 
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Table. S3. Nutrient contents of milk in the NG group. 152 

 153 

Milk feed composition, % Content 

Total Solids 23.50 

Protein 15.67 

Fat 4.15 

Lactose 3.48 

Urea, mg/dL 28.70 

 154 
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Table. S4. Nutrient contents of solid feed in the AG group. 156 

 157 

TMR feed composition, % Content 

Ricestraw 70 

Soybeans 15 

Corn 8.2 

CaCO3 2.9 

CaH2PO4 0.1 

Fat 0.3 

Nacl 1 

Premix 0.5 

TMR nutritional level  

DM (%) 96.2 

ASH (%) 12.71 

CP (%) 10.8 

NDF (%) 49.8 

ADF (%) 28.4 

Starch (%) 11.5 

Energy (MJ/Kg) 16.8 

Note: Premix (per kilogram) contains 6.9 g Fe, 4.4 g Cu, 1.1 g Co, 11.2 g I, 11.0 g Mn, 158 

4.6 g Zn, 0.3 g Se, 104.2 g Mg, 10,000,000 IU vitamin A, 16,000,000 IU vitamin D, 159 

12,000 IU vitamin E, 400 g NaHCO3, and 400.9 g carrier.  160 

 161 
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Table. S5. Overview of antibody information in this study. 163 

 164 

Application Antibody name Company Batch Dilution 

IHC Amylase Santa sc-46657 1: 1000 

CPB1 abcam ab153716 1: 1000 

PNLIPRP2 Proteintech 26218-1-AP 1: 400 

CCKAR Proteintech 16550-1-AP 1: 200 

CCKBR Proteintech 16549-1-AP 1: 50 

VIPR1 Proteintech 14878-1-AP 1: 200 

VIPR2 Bioss bs-0197R 1: 400 

SCTR Proteintech 14172-1-AP 1: 400 

Secondary antibody Sparkjade EF0002 1: 200 

WB PNLIPRP2 Proteintech 26218-1-AP 1: 1000 

CTRC Bioss bs-13948R 1: 1000 

CPB1 Abcam ab153716 1: 1000 

PLA2G1B Proteintech 66397-1-IG 1: 500 

Amylase Santa sc-46657 1: 1000 

β-actin Bioss bs-0061R 1: 1000 

IF CPA1 Proteintech 15836-1-AP 1: 100 

CCKBR Proteintech 16549-1-AP 1: 100 

CCK Proteintech 13074-2-AP 1: 400 

Secondary antibody YEASEN 33107ES60 1: 200 

 165 
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