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Abstract—In this supplementary material, we first provide the
detailed network architecture of the generative networks and the
discriminator in Section I-A. The details of implementations are
illustrated in Section I-B. We then introduce the datasets used
in our training and testing in Section II. Next, the analysis of
the influence of filter size, number of layers, and training patch
size is depicted in Section III. Finally, we provide more visual
comparisons with state-of-the-art SR algorithms in Section IV.

I. METHODS

A. Network Architecture

1) Generative Networks: Although more layers and larger
model size usually result in the performance gain, for real
application we designed a lightweight model to validate the
effectiveness of GAN-CIRCLE. The two generative networks
G and F are shown in Fig. 1. The network architecture
has been optimized for SR CT imaging. It consists of two
processing streams: the feature extraction network and the
reconstruction network.

In the feature extraction network, we concatenate 12 sets of
non-linear SR feature blocks composed of 3× 3 Convolution
(Conv) kernels, bias, Leaky ReLU, and a dropout layer. We
utilize Leaky ReLU to prevent the ‘dead ReLU’ problem
thanks to the nature of leaky rectified linear units (Leaky
ReLU): max(0,x) − αmax(0,−x). Applying the dropout
layer is to prevent overfitting. The number of filters is shown
in Table I. In practice, we avoid normalization which is not
suitable for SR, because we observe that it discards the range
flexibility of the features. Then, to capture both local and
the global image features, all outputs of the hidden layers
are concatenated before the reconstruction network through
skip connection. The skip connection helps prevent training
saturation and overfitting. Diverse features which represent
different details of the HRCT components can be constructed
in the end of feature extraction network.

In the reconstruction network, we stack two reconstruction
branches and integrate the information flows. Because all
the outputs from the feature extraction network are densely
connected, we propose a parallelized CNNs (Network in Net-
work) [1] which utilize shallow multilayer perceptron (MLP)
to perform a nonlinear projection in the spatial domain. There
are several benefits with the Network in Network strategy.
First, the 1 × 1 Conv layer can significantly reduce the
dimensionality of the filter space for faster computation with

less information loss [1]. Second, the 1 × 1 Conv layer can
increase the non-linearity of the network to learn a complex
mapping better at the finer levels. For up-sampling, we adopt
the transposed convolutional (up-sampling) layers [2] by a
scale of 2. The last Conv layer fuses all the feature maps,
resulting in an entire residual image containing mostly high-
frequency details. In the supervised setting, the up-sampled
image by the bicubic interpolation layer is combined (via
element-wise addition) with the residual image to produce a
HR output. In the unsupervised and semi-supervised settings,
no interpolation is involved across the skip connection.

It should be noted that the generator F shares the same
architecture as G in both the supervised and unsupervised sce-
narios. The default stride size is 1. However, for unsupervised
feature learning, the stride of the Conv layers is 2 in the 1st

feature blocks. Also, for supervised feature learning, the stride
of the Conv layers is 2 in the 1st and 2nd feature blocks of F .
We refer to the forward generative network G as G-Forward.

2) Discriminative Networks: As shown in Fig. 2, in ref-
erence to the recent successes with GANs [3], [4], D is
designed to have 4 stages of Conv, bias, instance norm [5] (IN)
and Leaky ReLU, followed by two fully-connected layers, of
which the first has 1024 units and the other has a single output.
In addition, inspired by [6] no sigmoid cross entropy layer is
applied by the end of D. We apply 4 × 4 filter size for the
Conv layers which had different numbers of filters, which are
64, 64, 128, 128, 256, 256, 512, 512 respectively.

B. Implementation Details

In the proposed GAN-CIRCLE, we initialized the weights
of the Conv layer based on [7]. We computed std in the manner
of
√
2/m where std is the standard deviation, m = f2s ×nf , fs

the filter size, and nf the number of filters. i.e., given fs = 3
and nf = 16, std = 0.118 and all bias were initialized to 0. In
the training process, we empirically set λ1, λ2, λ3 to 1, 0.5,
0.001. Dropout regularization [8] with p = 0.8 was applied
to each Conv layer. All the Conv and transposed Conv layers
were followed by Leaky ReLu with a slope α = 0.1. To make
the size of all feature maps the same as that of the input, we
padded zeros around the boundaries before the convolution.
We utilized the Adam optimizer [9] with β1 = 0.5, β2 = 0.9
to minimize the loss function of the proposed network. We set
the learning rate to 10−4 for all layers and then decreased by
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Fig. 1. Architecture of the SR generators. The generator is composed of feature extraction and reconstruction networks. The default stride is 1, except for the
1st feature blocks in which the stride for the conv layers is 2. Up-scaling is performed to embed the residual layer for supervised training, and no interpolation
method is used in the network for unsupervised feature learning.
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Fig. 2. A architecture of the discriminators. n stands for the number of convolutional kernels, and s stands for stride. i.e., n32s1 means the convolutional
layer of 32 kernels with stride 1.

TABLE I
NUMBER OF FILTERS ON EACH CONVOLUTION (CONV) LAYER OF THE GENERATIVE NETWORK.

Feature extraction network Reconstruction network
1 2 3 4 5 6 7 8 9 10 11 12 A1 B1 B2 C1 C2 Output

G/F 64 54 48 43 39 35 31 28 25 22 18 16 24 8 8 32 16 1

a factor of 2 for every 50 epochs and terminated the training
after 100 epochs. All experiments were conducted using the
TensorFlow library on a NVIDA TITAN XP GPU.

C. Parameter Setting

Tuning the hypermeters is a significant way to un-
derstand the model performance. In this study, we
have performed a grid search on the hyperparame-
ters λ1, λ2, λ3, which are selected from the set
{0, 0.01, 0.05, 0.1, 0.5, 1.0, 10, 20,∞}. First, we selected the
parameter λ1 ∈ {0, 0.01, 0.05, 0.1, 0.5, 1.0, 10, 20,∞} when
λ2 = 0, λ3 = 0. Note that the hyperparameter λ1 = ∞
(λ1 = 0) denotes as the SR model was only optimized with
respect to the cycle-consistency loss (the adversarial loss). In
this scheme, we investigated the performance of the SR model
on the validation dataset. The results demonstrate that the

parameter λ1 = 1 achieved the highest PSNR value. Then,
the hyperparameter λ2 was chosen based on the performance
on the validation set, and then the retrained model was used
for computing the corresponding PSNR values when λ3 = 0.
Next, we investigate the performance on the validation set with
different hyperparameter λ3 values. It was observed that the
λ1 = 1, λ2 = 0.5, λ3 = 0.01 achived the best PSNR values.
Also, it was also observed that the cycle consistency loss,
identity loss, and joint sparsifying transform loss can improve
the average PSNR values. We have reported the average PSNR
values using GAN-CIRCLE in main context Fig. 9d.

II. DATASETS

A. Data Preprocessing
We perform image pre-processing for all CT images through

the following workflow. The original CT images were first
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Fig. 3. Convergence curve with respect to the epochs in the training stage.

scaled from the CT Hounsfield Value (HU) to the unit in-
terval [0,1], and treated as the ground-truth HRCT images.
In addition, we followed the convention in [10], [11] to
generate LR images by adding noise to the original images
and then lowering the spatial resolution by a factor of 2. For
convenience in training our proposed network, we up-sampled
the LR image via proximal interpolation to ensure that x and
y are of the same size.

Since the amount of training data plays a significant role
in training neural networks [12], we extracted overlapping
patches from LRCT and HRCT images instead of directly
feeding the entire CT images to the training pipeline. The
overlapped patches were obtained with a predefined sliding
size. This strategy preserves local anatomical details, and boost
the number of samples. We randomly cropped HRCT images
into patches of 64×64, along with their corresponding LRCT
patches of size 32×32 at the same center point for supervised
learning. With the unsupervised learning methods, the size of
the HRCT and LRCT patches are 64 × 64 in batches of size
64.

III. ADDITIONAL ANALYSIS

In this section, we draw the convergence of the proposed
network. Note that the test data were randomly selected from
the Tibia dataset (average values from 150 images). Finally,
we provide more visualization examples on cadaver spine CT
data.

A. Network Convergence

Training GANs is not easy, suffering from instability and
model collapse problems, which were theoretically inves-
tigated in [6], [13]. To facilitate the convergence of the
GAN training process, we adopted WGAN-GP [13] and the
cycle-consistent loss. As depicted by the convergence curve
in Fig. 3, the proposed network converged stably, where
LWGANG

denotes the first term of the adversarial loss termed

as the generator loss, and LDG
refers to Eq. 5 termed as the

discriminator loss. It can be seen that the cycle-consistent loss
smoothly converged. These data indicate the stability of the
overall training process.

IV. MORE QUALITATIVE COMPARISONS

In this section, we provide more visual comparisons of the
difference images on Tibia and Abdominal datasets and on
cadaver spine examples.

A. More examples under the GAN-CIRCLE framework

We first obtained 6 LRCT and HRCT image pairs using
cadaver spines on the SIEMENS CT scanner. The parameters
are as follows: X-ray source circular scanning, 120 kVp, 680
mAs, and the HRCT and LRCT images were reconstructed
using the filtered backprojection algorithm (FBP) with dif-
ferent kernels: HRCT image size 512 × 512, 962 slices at
0.1172 × 0.1172 mm2 pixel size, and the LRCT image size
256× 256, 481 slices at 0.2344× 0.2344 mm2 pixel size.

1) Examples on simulated Cadaver spine dataset: We
followed the previous data preprocessing method to obtain
matched HRCT and LRCT images pairs. More simulated
visual examples are shown in Fig. 4.

2) Examples on real Cadaver spine dataset: Since the real
data are unmatched, we accordingly evaluated our proposed
GAN-CIRCLEs and GAN-CIRCLEu networks for 1X reso-
lution improvement. In this section, we provide more visual
examples in Fig. 5.
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Fig. 4. Visual comparsion of SRCT Cases from the simulated Cadaver Spine dataset. The display window is [-120, 920] HU. The restored bony structures
are shown in the red and yellow boxes. (Zoomed for visual clarity).
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Fig. 5. Visual comparsion of SRCT Cases from the real Cadaver Spine dataset. The display window is [-120, 920] HU. The restored bony structures are
shown in the red and yellow boxes. (Zoomed for visual clarity).


