<u>Title</u>

Identifying WHO global priority endemic pathogens for vaccine research and development (R&D) using multi-criteria decision analysis (MCDA): an objective of the Immunization Agenda 2030

Appendix

Contents
Interim reports, including detailed methods
Pathogens identified through literature review
Survey preparation
Pilot testing7
Pathogen scoring
Pathogen scores by region 10
Survey dissemination
Dissemination channels
Survey Invitation
Survey components
Survey introduction
PAPRIKA survey questions
Post-survey information
Survey participants
Survey results
Criteria weights
Pathogen ranks by region
Use Cases and Action Categories
Detailed methods for assessing predictors and cluster patterns in MCDA-generated criteria weights
Detailed results from assessing predictors and cluster patterns in MCDA-generated criteria weights
References

Tables

sTable 1	Pathogens considered for vaccine R&D prioritization	6
sTable 2	Pathogen scoring guide	8
sTable 3	Coding for data availability	10
sTable 4	Pathogen scores, African Region	11
sTable 5	Pathogen scores, Region of the Americas	12
sTable 6	Pathogen scores, Eastern Mediterranean Region	13
sTable 7	Pathogen scores, European Region	14
sTable 8	Pathogen scores, South-East Asian Region	15
sTable 9	Pathogen scores, Western Pacific Region	16
sTable 10	Regional and country representation in included survey responses	31
sTable 11	Characteristics of survey participants	32
sTable 12	Raw mean criteria weights	34
sTable 13	Pathogen total weights and ranks by region	35
sTable 14	Robustness testing results	37
sTable 15 U	Use cases and Action Categories for pathogens on the Global list	38

Figures

sFigure 1	Pilot testing results
sFigure 2	Survey dissemination
sFigure 3	Survey invitation: Example email to immunization stakeholders
sFigure 4	Survey invitation: Example email attachment
sFigure 5	Survey introduction
sFigure 6	Example Survey Question
sFigure 7	Calculating total weight for a pathogen
sFigure 8	Post-survey information (demo survey)
sFigure 9	Survey responses
sFigure 10	Adjusted mean difference in criteria weights by region, Criteria 1-4 (n=273) 43
sFigure 11	Adjusted mean difference in criteria weights by region, Criteria 5-8 (n=273) 44
sFigure 12 (n=273)	Adjusted mean difference in criteria weights by language of survey, Criteria 1-4
sFigure 13 (n=273)	Adjusted mean difference in criteria weights by language of survey, Criteria 5-8
-	Adjusted mean difference in criteria weights by participant characteristics: Years of (n=273)
	Adjusted mean difference in criteria weights by participant characteristics: Areas of d Annual deaths in children under 5 years (n=273)
-	Adjusted mean difference in criteria weights by participant characteristics: Areas of d Annual deaths in people 5 years and older $(n=273)$
	Adjusted mean difference in criteria weights by participant characteristics: Areas of d Years lived with disability (n=273)
-	Adjusted mean difference in criteria weights by participant characteristics: Areas of d Social and economic burden per case (n=273)
	Adjusted mean difference in criteria weights by participant characteristics: Areas of d Disruption due to outbreaks (n=273)
	Adjusted mean difference in criteria weights by participant characteristics: Areas of d Contribution to inequity (n=273)

sFigure 21 Adjusted mean difference in criteria weights by participant characteristics: Areas of expertise and Contribution to antimicrobial resistance (n=273)
sFigure 22 Adjusted mean difference in criteria weights by participant characteristics: Areas of expertise and Unmet needs for prevention and treatment (n=273)
sFigure 23 Adjusted mean difference in criteria weights by participant characteristics: Type of work organisation and Annual deaths in children under 5 years (n=273)
sFigure 24 Adjusted mean difference in criteria weights by participant characteristics: Type of work organisation and Annual deaths in people 5 years and older $(n=273)$
sFigure 25 Adjusted mean difference in criteria weights by participant characteristics: Type of work organisation and Years lived with disability (n=273)
sFigure 26 Adjusted mean difference in criteria weights by participant characteristics: Type of work organisation and Social and economic burden per case $(n=273)$
sFigure 27 Adjusted mean difference in criteria weights by participant characteristics: Type of work organisation and Disruption due to outbreaks (n=273)
sFigure 28 Adjusted mean difference in criteria weights by participant characteristics: Type of work organisation and Contribution to inequity (n=273)
sFigure 29 Adjusted mean difference in criteria weights by participant characteristics: Type of work organisation and Contribution to antimicrobial resistance $(n=273)$
sFigure 30 Adjusted mean difference in criteria weights by participant characteristics: Type of work organisation and Unmet needs for prevention and treatment (n=273)
sFigure 31 Adjusted mean difference in criteria weights by participant characteristics: Gavi eligibility of participants' country of work (n=273)
sFigure 32 Adjusted mean difference in criteria weights by participant characteristics: World Bank classification of participants' country of work (n=273)
sFigure 33 Criteria weights by cluster (2-cluster model) (n=273)
sFigure 34 Participant Factors associated with cluster membership, Years of experience and Areas of expertise
sFigure 35 Participant Factors associated with cluster membership, Type of work organization and Country of work

Interim reports, including detailed methods

Full descriptions of the method, including scoring process, pathogen scores, and data sources are given in the following reports:

- Vaccine R&D Priorities: Initial Landscaping and Proposed Methods, for PDVAC input. July 2022. Available at: <u>https://www.technet-21.org/en/resources/report/vaccine-r-d-priorities-initial-landscaping-and-proposed-methods-for-pdvac-input</u>
- Vaccine R&D Priorities: Survey Preparation and Launch, for PDVAC input. November 2022. Available at: <u>https://www.technet-21.org/en/resources/report/vaccine-r-d-priorities-survey-preparation-and-launch-for-pdvac-input-includes-pathogen-scoring</u>
- Vaccine R&D Priorities: Survey Progress and Preliminary Results, for SAGE input. February 2023. Available at: <u>https://www.technet-21.org/en/resources/report/vaccine-r-d-priorities-survey-progress-and-preliminary-results-for-sage-input-2</u>
- Vaccine R&D Priorities: Update on Pathogen Scope and Scoring. March 2024. Available at: <u>https://www.technet-21.org/en/resources/report/vaccine-r-d-priorities-update-on-pathogen-scope-and-scoring-march-2024</u>
- Vaccine R&D Priorities: Vaccine Use Cases and Action Categories, for PDVAC input. December 2023. Available at: <u>https://www.technet-21.org/en/resources/report/vaccine-r-d-priorities-vaccine-use-cases-and-action-categories-for-pdvac-input-december-2024</u>

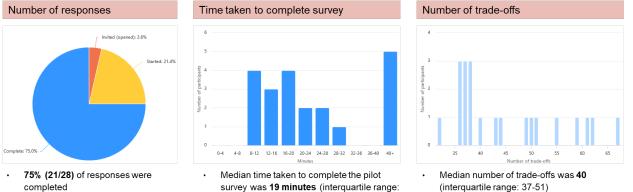
Pathogens identified through literature review

Potential pathogens for vaccine R&D are shown in sTable 1. In this list, antibiotic resistance was not considered separately: for example, *Neisseria gonorrhoeae* would include cephalosporin and fluoroquinolone-resistant strains as well as susceptible strains. When divergent product profiles apply to a single pathogen, such as seasonal and broadly protective influenza vaccines, or tuberculosis vaccines for adults and adolescents, rather than infants, they were captured separately. Finally, some entries are not pathogens but diseases: these reflect the nomenclature used in the source materials. Several screens were applied to focus the MCDA exercise on the most relevant pathogens. These screens, and the pathogens eliminated by each one, are also shown in sTable 1.

Include in MCDA exercise	Exclude, not considered a human pathogen or disease	Exclude, emerging infectious disease addressed by the R&D Blueprint	Exclude, has licensed vaccines for main target product profile(s)	Exclude, no candidate vaccines identified in clinical development	Exclude, vaccine R&D not prioritized by global strategies or advisory mechanisms, not suggested by regional stakeholders
Chikungunya virus	Bovine coronavirus	Crimean-Congo	Adenovirus	Acinetobacter baumannii	Borrelia burgdorferi
Chlamydia trachomatitis	Bovine respiratory	haemorrhagic fever	Bacillus anthracis	Ascaris lumbricoides	Campylobacter
Cytomegalovirus	disease	Lassa fever virus	Bordetella pertussis	Aspergilllus	Candida species
Dengue virus	Brucellosis	Marburg virus	Clostridium tetani	Burkholderia	Clostridium botulinum
Extra-intestinal pathogenic E coli	Chronic wasting disease	MERS-CoV	Corynebacterium diphtheriae	pseudomallei	Clostridium difficile
(ExPEC)	Coccidiosis	Nipah virus	Coxiella burnetii (Q fever)	Cryptococcus species	Coccidioides (Valley
Group A streptococcus	Contagious Bovine	Rift Valley Fever virus	Dengue virus (for dengue-immune	Cryptosporidium	fever/coccidioidomycosis)
(Streptococcus pyogenes, GAS)	Pleuropneumonia (CBPP)	SARS-CoV-1	individuals)	Dracunculus medinensis	Coxsackievirus Group B
Group B streptococcus	E coli (cattle infections)	SARS-CoV-2 (broadly	Ebola virus	Echinococcus granulosus	Epstein-Barr virus
(Streptococcus agalactiae, GBS)	Echinococcosis (type not	protective)	Enterovirus 71	Echinococcus	Equine encephalitis virus (Eastern,
Hepatitis C	specified)	Zika virus	Haemophilus influenzae type B	multilocularis	Venezuelan, and Western)
Herpes simplex types 1 and 2	Foot-and-mouth disease		Hepatitis A and B	Ehrlichiosis	Francisella tularensis
Human immunodeficiency virus 1	virus		Human papillomavirus	Enterococcus faecium	Haemophilus influenzae non-type B
(HIV-1)	Gallid alpha herpesvirus		Influenza virus (avian, pandemic, and	Haemophilus influenzae	Hanta viruses (including Hantaan and
Hookworm	2		seasonal)	type A	Puumala)
Influenza virus (broadly	Peste des petits ruminants		Japanese encephalitis	Helicobacter pylori	Henipavirus
protective vaccines)	Porcine epidemic		Junin virus	Hepatitis D virus	Hepatitis E virus
Intestinal pathogenic E coli	diarrhea virus		Measles virus	Human T-lymphotropic	Human metapneumovirus
(InPEC)	Porcine influenza A		Mumps virus	virus type 1	Human parainfluenza virus types 1, 2
Klebsiella pneumoniae	Staphylococcus aureus		Mycobacterium tuberculosis (BCG for	Lymphatic filariasis	and 3
Leishmania species	(dairy cattle)		infants)	Mycetoma	Leptospirosis
Mycobacterium leprae	Theileria parva		Neisseria meningitidis serogroups A, B,	Mycobacterium ulcerans	Listeria monocytogenes
Mycobacterium tuberculosis	Tick infestation (animals)		C, W, X, Y	Onchocerca volvulus	Monkeypox virus
(beyond infancy)			Polio virus	Pseudomonas aeruginosa	Mycobacterium avium subspecies
Neisseria gonorrhoeae			Rabies virus	Sarcoptes scabiei	paratuberculosis
Norovirus			Rotavirus	Streptococcus mutans	Parvovirus
Plasmodium falciparum			Rubella virus	Strongyloides stercoralis	Plasmodium vivax
Respiratory syncytial virus (RSV)			Salmonella Typhi	Toxoplasma gondii	Ross River Virus
Salmonella (non-typhoidal, NTS)			SARS-CoV-2	Treponema pallidum	Taenia solium
Salmonella Paratyphi			Smallpox virus	Treponema pallidum	West Nile Virus
Schistosomes			Streptococcus pneumoniae	subspecies pertenue	Yersinia pestis
Shigella species			Tick-borne encephalitis virus	Trichomonas vaginalis	*
Staphylococcus aureus			Varicella zoster virus	Trichuris trichiura	
1 -			Vibrio cholerae	Trypanosoma brucei	
			Yellow fever virus	Trypanosoma cruzi	

sTable 1 Pathogens considered for vaccine R&D prioritization

Survey preparation


Pilot testing

A pilot version of the survey was developed in July 2022 as described on page 32 of Vaccine R&D Priorities: Initial Landscaping and Proposed Methods, for PDVAC input. (Available at: https://www.technet-21.org/en/resources/report/vaccine-r-d-priorities-initial-landscaping-and-proposed-methods-for-pdvac-input)

The pilot survey was shared with PDVAC members in advance of the 18 July 2022 PDVAC meeting. Results of the pilot are shown in sFigure 1. Participant feedback shared during the meeting was incorporated in the final surveys.

sFigure 1 **Pilot testing results**

36 individuals were invited to participate in pilot and 28 of them (78%) opened the link to the pilot survey.

- 21% (6/28) of responses were started but not completed
- 3.6% (1/28) of responses opened but did not start the survey

Participant feedback

Explanation 🛇			
Was the purpose of the exercise sufficiently explaine	ed?		
Yes, well explained	14	77.8%	
The explanations should be improved	4	22.2%	
The exercise wasn't sufficiently explained at all	0	0.0%	
Not answered	3	14.3%	
		12	
Were the descriptions of criteria and their values cle	,		_
Were the descriptions of criteria and their values cle Yes, well described	14	77.8%	_
Description of criteria Were the descriptions of criteria and their values cle Yes, well described The descriptions should be improved	,		_
Were the descriptions of criteria and their values cle Yes, well described	14	77.8%	

•	Median time taken to complete the pilot
	survey was 19 minutes (interquartile range:
	13-32 minutes)

Overall, how did you find the exercise (please tick all that apply)?					
Interesting	13	68.4%			
Challenging	10	52.6%			
Confusing	4	21.1%			
Fun	2	10.5%	1 - C		
Time-consuming	4	21.1%			
Other positive	0	0.0%			
Other negative	0	0.0%			
Not answered	2	9.5%			

Overall, do you think that this approach could be scaled-up with a goal to prioritise pathogens for vaccine development? ©

Absolutely	6	31.6%	
Yes but with modifications	12	63.2%	
No	1	5.3%	1 - C
Not answered	2	9.5%	

Pathogen scoring

Pathogens were scored as described in the Methods section using a scoring guide (sTable 2).

sTable 2 Pathogen scoring guide

Thresholds for quantitative criteria (1-3) were set based on the highest burden in each region caused by a pathogen in the scope of this exercise (As recommended by PDVAC, HIV-1, *M tuberculosis*, and *P falciparum* were excluded from threshold-setting to improve discrimination at the lower levels).

Criteria / <i>Sub-criteria</i>	Very low	Low	Medium	High	Very high
1 Annual deaths in children under 5	Less than 20% of highest regional burden	20% - 40% of highest regional burden	40% - 60% of highest regional burden	60% - 80% of highest regional burden	Greater than 80% of highest regional burden
2 Annual deaths in people older than 5	Less than 20% of highest regional burden	20% - 40% of highest regional burden	40% - 60% of highest regional burden	60% - 80% of highest regional burden	Greater than 80% of highest regional burden
3 Years lived with disability (all ages)	Less than 20% of highest regional burden	20% - 40% of highest regional burden	40% - 60% of highest regional burden	60% - 80% of highest regional burden	Greater than 80% of highest regional burden
4 Social and economic burden per case	Very low burden on families and societies	Low burden on families and societies	Moderate burden on families and societies	High burden on families and societies	Very high burden on families and societies
4.1 Economic burden to families	Rarely leads to hospitalization or very low cost of treatment Little or no losses of productivity	Seldom requires hospitalization or low cost of treatment Minor losses of productivity	Sometimes requires hospitalization or moderate cost of treatment Some losses of productivity	<i>Often requires hospitalization or high cost of treatment Moderate losses of productivity</i>	Typically requires hospitalization or very high cost of treatment Serious losses of productivity
4.2 Social burden to families	Little or no impact on education or social well-being (e.g. due to stigma)	Minor impact on education or social well-being (e.g. due to stigma)	Some impact on education or social well-being (e.g. due to stigma)	Moderate impact on education or well-being (e.g. due to stigma)	Serious impact on education or social well-being (e.g. due to stigma)
5 Disruption due to outbreaks and epidemics	Little or no social disruption or impact on healthcare, trade or tourism	Slight social disruption or impact on healthcare, trade or tourism	Moderate social disruption or impact on healthcare, trade or tourism	High social disruption or impact on healthcare, trade or tourism, including due to preventive measures	Very high social disruption or impact on healthcare, trade and tourism, including due to preventive measures
6 Contribution to inequity	Affects all communities equally	Burden falls on socially and economically disadvantaged groups, including women, slightly more than other groups	Burden falls on socially and economically disadvantaged groups, including women, moderately more than other groups	Burden falls on socially and economically disadvantaged groups, including women, much more than other groups	Burden falls on socially and economically disadvantaged groups, including women, all or most of the time

Criteria / <i>Sub-criteria</i>	Very low	Low	Medium	High	Very high
7 Contribution to antimicrobial resistance (AMR)	Not resistant to first-line drugs and not associated with antimicrobial use	Little resistance to first-line drugs and little association with antimicrobial use	Some resistance to first-line drugs, associated with high antimicrobial use	Significant resistance to first- line drugs, associated with high antimicrobial use	A global resistance threat due to widespread resistance and association with high antimicrobial use
7.1 AMR Priority	The pathogen has not been highlighted as a priority for AMR	The pathogen has not been highlighted as a priority for AMR	The pathogen has been highlighted as a country priority for AMR	The pathogen has been highlighted as a regional priority for AMR	The pathogen has been highlighted as a high or critical global priority for AMR
7.2 Frequency of resistance	Very few isolates are resistant to first-line antimicrobial drugs	A low proportion of isolates is resistant to first-line antimicrobial drugs	A moderate proportion of isolates is resistant to first-line antimicrobial drugs	A high proportion of isolates is resistant to first-line antimicrobial drugs	A high proportion of global isolates is resistant to first-line antimicrobial drugs
7.3 Antibiotic use	Low antimicrobial use is associated with infection by the pathogen	Moderate or low antimicrobial use is associated with infection by the pathogen	High antimicrobial use is associated with infection by the pathogen	High antimicrobial use is associated with infection by the pathogen	High antimicrobial use is associated with infection by the pathogen
8 Unmet needs for prevention and treatment	The alternatives for prevention or treatment meet the needs of most people	The alternatives for prevention or treatment meet the needs of many people	The alternatives for prevention or treatment meet the needs of some people	The alternatives for prevention or treatment meet the needs of few people	There are no effective alternatives for prevention or treatment

Pathogen scores by region

Pathogens were scored in the context of each region as described in the Methods section. For transparency, scores were coded for data availability as shown in sTable 3. Scores as of April 2024 are shown in sTable 4 to sTable 9.

	Criteria	Coding
Quantitative	Annual deaths in children under 5	A. Scored using burden data from GBD 2019
scoring	Annual deaths in people 5 and older	B. Scored using burden data from other studies
	Annual years lived with disability (all ages)	C. Systematic data not found, scored as discussed in Vaccine R&D Priorities: Survey Preparation and Launch, for PDVAC input. November 2022. Available at: <u>https://www.technet- 21.org/en/resources/report/vaccine-r-d-priorities-survey- preparation-and-launch-for-pdvac-input-includes-pathogen- scoring</u>
Qualitative	Social and economic burden per case	A. Scored based on data from regional sources
scoring	Disruption due to outbreaks	B. Score inferred based on data for other regions or other pathogens
	Contribution to inequity	in the same region
	Contribution to antimicrobial resistance	
	Unmet needs for prevention & treatment	

sTable 3 Coding for data availability

sTable 4 Pathogen scores, African Region

	1 Annual deaths in children under 5	2 Annual deaths in people 5 and older	3 Annual years lived with disability (all ages)	4 Social and economic burden per case	5 Disruption due to outbreaks		7 Contribution to antimicrobial resistance	prevention &
Chikungunya virus	Very low (B)	Very low (B)	Very low (B)	Medium (A)	Medium (A)	Medium (A)	Very Low (A)	Very high (A)
Chlamydia trachomatis	Very low (A)	Very low (A)	Very low (A)	Very high (A)	Very low (B)	High (A)	Low (A)	High (A)
Cytomegalovirus	Very low (C)	Low (C)	Medium (C)	High (B)	Very low (B)	Medium (A)	Very low (B)	Very high (B)
Dengue virus	Very low (A)	Very low (A)	Very low (A)	Medium (B)	Medium (A)	Medium (B)	Medium (B)	High (A)
Extra-intestinal pathogenic E coli	Medium (A)	High (A)	Very low (A)	Medium (B)	Low (B)	Medium (A)	Very high (A)	Medium (A)
Group A streptococcus	Very low (A)	Low (A)	Medium (A)	High (A)	Very low (B)	High (B)	High (B)	High (A)
Group B streptococcus	High (A)	Low (A)	Very low (A)	High (A)	Low (B)	Medium (A)	Low (A)	Very high (A)
Hepatitis C virus	Very low (A)	Medium (A)	Very low (A)	Very high (A)	Low (B)	Very high (A)	Low (B)	High (A)
Herpes simplex types 1 and 2	Very low (C)	Very low (C)	Very low (A)	Very high (A)	Very low (B)	Very high (A)	Low (A)	High (A)
Hookworm	Very low (C)	Very low (C)	Medium (A)	Low (A)	Very low (B)	Very high (A)	Low (A)	Low (A)
HIV-1	Low (A)	Very high (A)	Very high (A)	Very high (A)	High (A)	Very high (A)	Very high (A)	High (A)
Influenza	Very low (A)	Low (A)	Very low (A)	Low (B)	Very high (A)	Medium (B)	Medium (B)	High (A)
Intestinal pathogenic E coli	Very low (A)	Very low (A)	Very low (A)	Medium (A)	Medium (B)	Medium (A)	Very high (A)	Medium (A)
Klebsiella pneumoniae	Very high (A)	Very high (A)	Very low (A)	High (B)	Low (A)	Low (B)	Very high (A)	High (A)
Leishmania	Very low (A)	Very low (A)	Very low (A)	Very high (B)	High (A)	Very high (A)	Medium (A)	Medium (A)
Mycobacterium leprae (leprosy)	Very low (C)	Very low (C)	Very low (A)	Very high (A)	Very low (A)	Very high (B)	Low (A)	High (A)
Mycobacterium tuberculosis	Low (B)	Very high (B)	Very high (A)	Very high (A)	Very high (A)	Very high (A)	Very high (A)	High (A)
Neisseria gonorrhoeae	Very low (A)	Very low (A)	Very low (A)	Medium (B)	Low (B)	High (A)	Very high (A)	Medium (A)
Non-typhoidal Salmonella	High (A)	Low (A)	Very low (A)	High (A)	Medium (B)	Very high (A)	High (A)	High (A)
Norovirus	Low (A)	Low (A)	Very low (A)	Medium (A)	High (A)	Medium (A)	Low (B)	High (A)
Plasmodium falciparum (malaria)	Very high (C)	Very high (C)	Very high (C)	High (A)	High (A)	Very high (A)	High (A)	High (A)
Respiratory syncytial virus	High (A)	Low (A)	Very low (A)	Medium (B)	High (A)	Medium (B)	High (B)	Medium (A)
Salmonella Paratyphi	Very low (A)	Very low (A)	Very low (A)	Low (B)	Low (A)	High (B)	Low (B)	Medium (B)
Schistosomes	Very low (A)	Very low (A)	Very high (A)	Medium (A)	Low (A)	Very high (A)	Low (A)	High (A)
Shigella species	High (A)	Low (A)	Low (A)	High (A)	Medium (A)	High (B)	High (B)	High (A)
Staphylococcus aureus	High (A)	Very high (A)	Very low (A)	High (B)	Low (B)	Medium (B)	Very high (A)	High (A)

sTable 5 Pathogen scores, Region of the Americas

	1 Annual deaths in children under 5	2 Annual deaths in people 5 and older	3 Annual years lived with disability (all ages)	4 Social and economic burden per case	5 Disruption due to outbreaks		7 Contribution to antimicrobial resistance	prevention &
Chikungunya virus	Very low (B)	Very low (B)	Low (B)	Medium (A)	High (A)	Medium (A)	Very low (B)	Very high (A)
Chlamydia trachomatis	Very low (A)	Very low (A)	Very low (A)	Very high (A)	Very low (A)	High (A)	Low (A)	High (A)
Cytomegalovirus	Low (C)	Low (C)	Medium (C)	High (A)	Very low (B)	Medium (A)	Very low (B)	Very high (B)
Dengue virus	Very low (A)	Very low (A)	Very low (A)	Medium (A)	Very high (A)	Medium (A)	Medium (B)	High (A)
Extra-intestinal pathogenic E coli	High (A)	High (A)	Very low (A)	Medium (A)	Low (A)	Medium (A)	Very high (A)	Medium (A)
Group A streptococcus	Low (A)	Low (A)	Very high (A)	Medium (A)	Very low (A)	Medium (A)	High (B)	Medium (A)
Group B streptococcus	Medium (A)	Very low (A)	Very low (A)	High (A)	Low (A)	Medium (A)	Low (A)	High (A)
Hepatitis C virus	Very low (A)	Medium (A)	Very low (A)	Very high (A)	Low (A)	Very high (A)	Low (A)	High (A)
Herpes simplex types 1 and 2	Low (C)	Very low (C)	Very low (A)	High (A)	Very low (B)	High (A)	Low (A)	High (A)
Hookworm	Very low (C)	Very low (C)	Very low (A)	Low (A)	Very low (B)	Very high (A)	Low (B)	Low (A)
HIV-1	Low (A)	Low (A)	Very high (A)	Very high (A)	High (A)	Very high (A)	Very high (A)	High (A)
Influenza	Low (A)	Low (A)	Very low (A)	Low (A)	Very high (A)	Medium (A)	Medium (A)	High (A)
Intestinal pathogenic E coli	Very low (A)	Very low (A)	Very low (A)	Medium (A)	Medium (B)	Medium (B)	Very high (A)	Medium (A)
Klebsiella pneumoniae	Very high (A)	Medium (A)	Very low (A)	High (A)	Low (A)	Low (B)	Very high (A)	High (A)
Leishmania	Very low (A)	Very low (A)	Very low (A)	Very high (A)	Medium (A)	Very high (A)	Medium (A)	Medium (A)
Mycobacterium leprae (leprosy)	Very low (C)	Very low (C)	Very low (A)	Very high (A)	Very low (A)	Very high (A)	Medium (A)	High (A)
Mycobacterium tuberculosis	Very low (B)	Very low (B)	Low (A)	Very high (A)	High (A)	Very high (A)	Very high (A)	High (A)
Neisseria gonorrhoeae	Very low (A)	Very low (A)	Very low (A)	Medium (A)	Low (A)	High (A)	Very high (A)	Medium (A)
Non-typhoidal Salmonella	Very low (A)	Very low (A)	Very low (A)	Low (B)	Low (A)	High (B)	High (A)	Medium (A)
Norovirus	Very low (A)	Very low (A)	Low (A)	Medium (A)	High (A)	Medium (A)	Low (B)	High (A)
Plasmodium falciparum (malaria)	Very low (C)	Very low (C)	Very low (C)	High (A)	Medium (A)	Very high (A)	High (A)	Medium (A)
Respiratory syncytial virus	Medium (A)	Low (A)	Very low (A)	Medium (A)	High (A)	Medium (A)	Medium (A)	Medium (A)
Salmonella Paratyphi	Very low (A)	Very low (A)	Very low (A)	Low (B)	Low (A)	High (B)	Low (B)	Low (B)
Schistosomes	Very low (A)	Very low (A)	Low (A)	Low (A)	Low (A)	High (A)	Low (B)	Medium (A)
Shigella species	Very low (A)	Very low (A)	Low (A)	High (A)	Medium (A)	High (A)	High (A)	High (A)
Staphylococcus aureus	Very high (A)	Very high (A)	Very low (A)	High (A)	Low (A)	Medium (B)	Very high (A)	High (A)

sTable 6 Pathogen scores, Eastern Mediterranean Region

	1 Annual deaths in children under 5	2 Annual deaths in people 5 and older	3 Annual years lived with disability (all ages)	4 Social and economic burden per case	5 Disruption due to outbreaks		7 Contribution to antimicrobial resistance	prevention &
Chikungunya virus	Very low (B)	Very low (B)	Very low (B)	Medium (A)	Low (A)	Medium (A)	Very low (B)	Very high (A)
Chlamydia trachomatis	Very low (A)	Very low (A)	Very low (A)	Very high (A)	Very low (B)	High (A)	Low (A)	High (A)
Cytomegalovirus	Very low (C)	Low (C)	Medium (C)	High (B)	Very low (B)	Medium (A)	Very low (B)	Very high (B)
Dengue virus	Very low (A)	Very low (A)	Very low (A)	Medium (A)	Medium (A)	Medium (A)	Medium (B)	High (A)
Extra-intestinal pathogenic E coli	High (A)	High (A)	Very low (A)	Medium (A)	Low (B)	Medium (A)	Very high (A)	Medium (A)
Group A streptococcus	Very low (A)	Medium (A)	Very high (A)	Medium (A)	Very low (B)	Medium (B)	High (B)	Medium (A)
Group B streptococcus	High (A)	Very low (A)	Very low (A)	High (B)	Low (B)	Medium (B)	Very low (B)	High (A)
Hepatitis C virus	Very low (A)	Very high (A)	Very low (A)	Very high (A)	Low (B)	Very high (A)	Low (B)	High (A)
Herpes simplex types 1 and 2	Very low (C)	Very low (C)	Very low (A)	Medium (B)	Very low (B)	Medium (A)	Low (A)	High (A)
Hookworm	Very low (C)	Very low (C)	Low (A)	Low (B)	Very low (B)	Very high (A)	Low (B)	Low (A)
HIV-1	Very low (A)	Low (A)	Very low (A)	Very high (A)	High (A)	Very high (A)	Very high (A)	High (A)
Influenza	Very low (A)	Very low (A)	Very low (A)	Low (B)	Very high (A)	Medium (B)	Medium (B)	High (A)
Intestinal pathogenic E coli	Very low (A)	Very low (A)	Very low (A)	Medium (A)	Medium (B)	Medium (B)	Very high (A)	Medium (A)
Klebsiella pneumoniae	Very high (A)	Medium (A)	Very low (A)	High (B)	Low (A)	Low (B)	Very high (A)	High (A)
Leishmania	Very low (A)	Very low (A)	Very high (A)	Very high (A)	High (A)	Very high (A)	Medium (A)	Medium (A)
Mycobacterium leprae (leprosy)	Very low (C)	Very low (C)	Very low (A)	Very high (B)	Very low (A)	Very high (B)	Low (A)	High (A)
Mycobacterium tuberculosis	Low (B)	Very high (B)	Very high (A)	Very high (A)	High (A)	Very high (A)	Very high (A)	High (A)
Neisseria gonorrhoeae	Very low (A)	Very low (A)	Very low (A)	Medium (B)	Low (B)	High (B)	Very high (A)	Medium (A)
Non-typhoidal Salmonella	Very low (A)	Very low (A)	Very low (A)	Low (B)	Low (B)	High (B)	High (B)	Medium (A)
Norovirus	Low (A)	Very low (A)	Low (A)	Medium (A)	High (A)	Medium (A)	Low (B)	High (A)
Plasmodium falciparum (malaria)	Very low (C)	Very low (C)	Low (C)	High (A)	Low (A)	High (B)	Medium (A)	Medium (A)
Respiratory syncytial virus	Low (A)	Very low (A)	Very low (A)	Medium (A)	High (A)	Medium (B)	Low (B)	Medium (A)
Salmonella Paratyphi	Very low (A)	Very low (A)	Very low (A)	Low (A)	Low (A)	High (B)	High (A)	Medium (A)
Schistosomes	Very low (A)	Very low (A)	Low (A)	Low (A)	Low (B)	High (A)	Low (A)	Medium (A)
Shigella species	Low (A)	Very low (A)	Medium (A)	Medium (A)	Medium (B)	High (B)	High (B)	High (A)
Staphylococcus aureus	High (A)	High (A)	Very low (A)	High (B)	Low (A)	Medium (B)	Very high (A)	High (A)

sTable 7 Pathogen scores, European Region

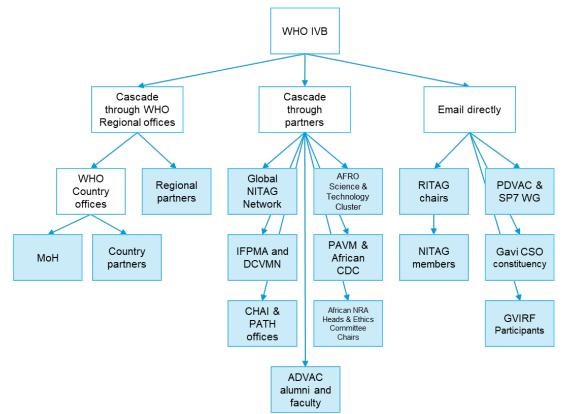
	1 Annual deaths in children under 5	2 Annual deaths in people 5 and older	3 Annual years lived with disability (all ages)	4 Social and economic burden per case	5 Disruption due to outbreaks		7 Contribution to antimicrobial resistance	prevention &
Chikungunya virus	Very low (B)	Very low (B)	Very low (B)	Medium (A)	Medium (A)	Medium (A)	Very low (B)	Very high (A)
Chlamydia trachomatis	Very low (A)	Very low (A)	Very low (A)	Very high (A)	Very low (A)	High (A)	Low (A)	High (A)
Cytomegalovirus	Medium (C)	Low (C)	Medium (C)	High (A)	Very low (B)	Medium (A)	Very low (B)	Very high (A)
Dengue virus	Very low (A)	Very low (A)	Very low (A)	Very low (B)	Low (A)	Medium (B)	Very low (B)	Medium (A)
Extra-intestinal pathogenic E coli	Medium (A)	Very high (A)	Low (A)	Medium (A)	Low (B)	Medium (A)	Very high (A)	Medium (A)
Group A streptococcus	Low (A)	Low (A)	Very high (A)	Medium (A)	Very low (A)	Medium (B)	High (B)	Medium (A)
Group B streptococcus	Low (A)	Very low (A)	Very low (A)	High (A)	Low (B)	Medium (A)	Low (A)	High (A)
Hepatitis C virus	Very low (A)	Low (A)	Low (A)	Very high (A)	Very low (A)	Very high (A)	Low (A)	High (A)
Herpes simplex types 1 and 2	Very low (C)	Very low (C)	Low (A)	Medium (A)	Very low (B)	Medium (A)	Low (A)	High (A)
Hookworm	Very low (C)	Very low (C)	Very low (A)	Low (B)	Very low (B)	Very high (A)	Low (B)	Low (A)
HIV-1	Very low (A)	Very low (A)	Very high (A)	Very high (A)	High (A)	Very high (A)	Very high (A)	High (A)
Influenza	Low (A)	Very low (A)	Very low (A)	Low (A)	Very high (A)	Medium (B)	Medium (B)	High (A)
Intestinal pathogenic E coli	Very low (A)	Very low (A)	Very low (A)	Medium (A)	Medium (B)	Medium (B)	Very high (A)	Medium (A)
Klebsiella pneumoniae	High (A)	Medium (A)	Very low (A)	High (B)	Low (A)	Low (B)	Very high (A)	High (A)
Leishmania	Very low (A)	Very low (A)	Very low (A)	Very high (A)	Very low (B)	High (A)	Very low (A)	Medium (A)
Mycobacterium leprae (leprosy)	Very low (C)	Very low (C)	Very low (A)	Very high (A)	Very low (A)	Very high (A)	Very low (B)	High (A)
Mycobacterium tuberculosis	Low (B)	Very low (B)	Very high (A)	Very high (A)	High (A)	Very high (A)	Very high (A)	High (A)
Neisseria gonorrhoeae	Very low (A)	Very low (A)	Very low (A)	Medium (B)	Low (B)	High (A)	Very high (A)	Medium (A)
Non-typhoidal Salmonella	Very low (A)	Very low (A)	Very low (A)	Low (B)	Low (B)	High (B)	High (B)	Medium (A)
Norovirus	Very low (A)	Very low (A)	High (A)	Low (A)	High (A)	Medium (A)	Low (B)	High (A)
Plasmodium falciparum (malaria)	Very low (C)	Very low (C)	Very low (C)	Low (B)	Very low (A)	Very Low (B)	Very low (A)	Very low (B)
Respiratory syncytial virus	Very high (A)	Very low (A)	Very low (A)	Medium (A)	High (A)	Medium (B)	Medium (A)	Medium (A)
Salmonella Paratyphi	Very low (A)	Very low (A)	Very low (A)	Low (B)	Low (A)	High (B)	Low (B)	Low (B)
Schistosomes	Very low (A)	Very low (A)	Very low (A)	Very low (B)	Low (A)	Very low (B)	Very low (B)	Very low (A)
Shigella species	Very low (A)	Very low (A)	Low (A)	Medium (A)	Medium (A)	High (B)	High (B)	High (A)
Staphylococcus aureus	Very high (A)	Very high (A)	Very low (A)	High (A)	Low (A)	Medium (B)	Very high (A)	High (A)

sTable 8 Pathogen scores, South-East Asian Region

	1 Annual deaths in children under 5	2 Annual deaths in people 5 and older	3 Annual years lived with disability (all ages)	4 Social and economic burden per case	5 Disruption due to outbreaks		7 Contribution to antimicrobial resistance	prevention &
Chikungunya virus	Very low (B)	Very low (B)	Very low (B)	Medium (A)	High (A)	Medium (A)	Very low (B)	Very high (A)
Chlamydia trachomatis	Very low (A)	Very low (A)	Very low (A)	Very high (A)	Very low (B)	High (A)	Low (A)	High (A)
Cytomegalovirus	Very low (C)	Low (C)	Medium (C)	High (B)	Very low (B)	Medium (A)	Very low (B)	Very high (B)
Dengue virus	Very low (A)	Very low (A)	Medium (A)	Medium (A)	Very high (A)	Medium (A)	Medium (A)	High (A)
Extra-intestinal pathogenic E coli	High (A)	Very high (A)	Very low (A)	Medium (B)	Low (B)	Medium (A)	Very high (A)	Medium (A)
Group A streptococcus	Very low (A)	Very high (A)	Very high (A)	High (A)	Very low (A)	High (B)	High (B)	High (A)
Group B streptococcus	High (A)	Low (A)	Very low (A)	High (B)	Low (B)	Medium (B)	Very low (A)	Very high (A)
Hepatitis C virus	Very low (A)	High (A)	Very low (A)	Very high (A)	Low (B)	Very high (A)	Low (A)	High (A)
Herpes simplex types 1 and 2	Very low (C)	Very low (C)	Very low (A)	High (A)	Very low (B)	High (A)	Low (A)	High (A)
Hookworm	Very low (C)	Very low (C)	Low (A)	Low (A)	Very low (B)	Very high (A)	Low (B)	Low (A)
HIV-1	Very low (A)	Low (A)	High (A)	Very high (A)	High (A)	Very high (A)	Very high (A)	High (A)
Influenza	Very low (A)	Low (A)	Very low (A)	Low (A)	Very high (A)	Medium (B)	High (B)	High (A)
Intestinal pathogenic E coli	Very low (A)	Very low (A)	Very low (A)	Medium (A)	Medium (B)	Medium (B)	Very high (A)	Medium (A)
Klebsiella pneumoniae	Very high (A)	Very high (A)	Very low (A)	High (A)	Low (A)	Low (B)	Very high (A)	High (A)
Leishmania	Very low (A)	Very low (A)	Very low (A)	Very high (A)	High (A)	Very high (A)	Medium (A)	Medium (A)
Mycobacterium leprae (leprosy)	Very low (C)	Very low (C)	Very low (A)	Very high (A)	Very low (A)	Very high (A)	Medium (A)	High (A)
Mycobacterium tuberculosis	Very high (B)	Very high (B)	Very high (A)	Very high (A)	Very high (A)	Very high (A)	Very high (A)	High (A)
Neisseria gonorrhoeae	Very low (A)	Very low (A)	Very low (A)	Medium (B)	Low (B)	High (A)	Very high (A)	Medium (A)
Non-typhoidal Salmonella	Very low (A)	Very low (A)	Very low (A)	Low (B)	Very low (A)	High (B)	High (B)	Medium (A)
Norovirus	Very low (A)	Low (A)	Very low (A)	Medium (A)	High (A)	Medium (A)	Low (B)	High (A)
Plasmodium falciparum (malaria)	Low (C)	Very low (C)	Low (C)	High (A)	Medium (A)	High (B)	High (A)	Medium (A)
Respiratory syncytial virus	High (A)	Low (A)	Very low (A)	Medium (A)	High (A)	Medium (B)	High (B)	Medium (A)
Salmonella Paratyphi	Very low (A)	Very low (A)	Very low (A)	Low (A)	Low (A)	High (A)	High (A)	Medium (A)
Schistosomes	Very low (A)	Very low (A)	Very low (A)	Low (B)	Low (B)	High (A)	Low (B)	Medium (A)
Shigella species	Very low (A)	Very low (A)	Low (A)	High (A)	Medium (A)	High (B)	Very high (A)	High (A)
Staphylococcus aureus	High (A)	Very high (A)	Very low (A)	High (B)	Very low (A)	Medium (B)	Very high (A)	High (A)

sTable 9 Pathogen scores, Western Pacific Region

	1 Annual deaths in children under 5	2 Annual deaths in people 5 and older	3 Annual years lived with disability (all ages)	4 Social and economic burden per case	5 Disruption due to outbreaks		7 Contribution to antimicrobial resistance	prevention &
Chikungunya virus	Very low (B)	Very low (B)	Very low (B)	Medium (A)	High (A)	Medium (A)	Very low (B)	High (A)
Chlamydia trachomatis	Very low (A)	Very low (A)	Very low (A)	Medium (A)	Very low (B)	Medium (A)	Low (A)	High (A)
Cytomegalovirus	Medium (C)	Low (C)	Medium (C)	High (A)	Very low (B)	Medium (A)	Very low (B)	Very high (B)
Dengue virus	Very low (A)	Very low (A)	Low (A)	Medium (A)	Very high (A)	Medium (A)	Medium (B)	High (A)
Extra-intestinal pathogenic E coli	High (A)	Medium (A)	Very low (A)	Medium (B)	Low (A)	Medium (A)	Very high (A)	Medium (A)
Group A streptococcus	Low (A)	Medium (A)	Very high (A)	High (A)	Very low (A)	High (A)	High (B)	High (A)
Group B streptococcus	High (A)	Very low (A)	Very low (A)	High (B)	Low (B)	Medium (B)	Low (A)	High (A)
Hepatitis C virus	Very low (A)	Medium (A)	Very low (A)	Very high (A)	Low (A)	Very high (A)	Low (A)	High (A)
Herpes simplex types 1 and 2	Low (C)	Very low (C)	Very low (A)	High (A)	Very low (B)	High (A)	Low (A)	High (A)
Hookworm	Very low (C)	Very low (C)	Low (A)	Low (A)	Very low (B)	Very high (A)	Low (B)	Low (A)
HIV-1	Low (A)	Very low (A)	Medium (A)	Very high (A)	High (A)	Very high (A)	Very high (A)	High (A)
Influenza	Medium (A)	Low (A)	Very low (A)	Low (A)	Very high (A)	Medium (B)	High (B)	High (A)
Intestinal pathogenic E coli	Very low (A)	Very low (A)	Very low (A)	Medium (A)	Medium (B)	Medium (B)	Very high (A)	Medium (A)
Klebsiella pneumoniae	Very high (A)	Medium (A)	Very low (A)	High (A)	Low (A)	Low (B)	Very high (A)	High (A)
Leishmania	Very low (B)	Very low (B)	Very low (A)	Very high (A)	Very low (B)	High (A)	Very low (A)	Medium (A)
Mycobacterium leprae (leprosy)	Very low (C)	Very low (C)	Very low (A)	Very high (A)	Very low (A)	Very high (B)	Medium (A)	High (A)
Mycobacterium tuberculosis	Very high (B)	Medium (B)	Very high (A)	Very high (A)	High (A)	Very high (A)	Very high (A)	High (A)
Neisseria gonorrhoeae	Very low (A)	Very low (A)	Very low (A)	Medium (B)	Low (A)	High (A)	Very high (A)	Medium (A)
Non-typhoidal Salmonella	Very low (A)	Very low (A)	Very low (A)	Low (B)	Low (B)	High (B)	High (B)	Medium (A)
Norovirus	Very low (A)	Very low (A)	Low (A)	Medium (A)	High (A)	Medium (A)	Low (B)	High (A)
Plasmodium falciparum (malaria)	Very low (C)	Very low (C)	Very low (C)	High (A)	Low (A)	High (B)	Medium (A)	Medium (A)
Respiratory syncytial virus	Very high (A)	Very low (A)	Very low (A)	Medium (A)	High (A)	Medium (B)	High (A)	Medium (A)
Salmonella Paratyphi	Very low (A)	Very low (A)	Very low (A)	Low (B)	Low (A)	High (A)	Medium (A)	Low (B)
Schistosomes	Very low (A)	Very low (A)	Very low (A)	Low (B)	Low (B)	High (A)	Low (A)	Medium (A)
Shigella species	Very low (A)	Very low (A)	Very low (A)	High (A)	Medium (B)	High (B)	High (B)	High (A)
Staphylococcus aureus	Very high (A)	Very high (A)	Very low (A)	High (A)	Low (A)	High (A)	Very high (A)	High (A)


Survey dissemination

Dissemination channels

Surveys were disseminated as described in the Methods section. Dissemination channels are shown in sFigure 2.

sFigure 2 Survey dissemination

Abbreviations: ADVAC, Advanced Course of Vaccinology; AFRO, WHO African Regional Office; CDC, Center for Disease Control; CHAI, Clinton Health Access Initiative; CSO, Civil Society Organisation; DCVMN, Developing Country Vaccine Manufacturers Network; GVIRF, Global Vaccines and Immunology Reasearch Forum; IFPMA, International Federation of Pharmaceutical Manufacturer's Associations; MoH, Ministry of Health; NITAG, National Immunisation Technical Advisory Group; NRA, National regulatory authority; PAVM, Partnership for African Vaccine Manufacturing; PDVAC, WHO Product Development for Vaccines Advisory Group; RITAG, Regional Immunisation Technical Advisory Group; SP7 WG, Immunisation Agenda 2030 Strategic Priority 7 Working Group; WHO, World Health Organization; WHO-IVB, WHO Immunization, Vaccines and Biologicals department

Survey Invitation

Emails inviting immunization stakeholders to participate in the survey and the attached invitation and survey links shown in sFigure 3 and sFigure 4.

sFigure 3 Survey invitation: Example email to immunization stakeholders

From: IA2030-SP7 <IA2030-SP7@who.int>

Sent: Friday, December 23, 2022 7:26 AM

Cc: SPARROW JONES, Erin Grace <sparrowe@who.int>; GIERSING, Birgitte <giersingb@who.int>; HASSO-AGOPSOWICZ, Mateusz <hassoagopsowiczm@who.int>; Angela Hwang <angela@ahwang.net> **Subject:** Please complete and share this survey - Regional and Country Priorities for new vaccine research and development

Dear colleague,

The World Health Organization (WHO) is currently identifying **Regional and Country Priorities for new vaccine research and development**. Unlike global priority-setting projects, this project seeks to understand what is most important to people working at regional and country levels. It seeks to capture diverse perspectives, including from *Ministry of Health officials, policy makers, technical advisory groups, health care professionals, regulators, experts in public health and infectious diseases, pharmaceutical companies, and funders.*

The first step of this process is a "Preferences Survey", which identifies which criteria for prioritization are most important to each person. As key stakeholders in immunization, we are kindly requesting you to complete this survey. The survey is available in versions for each WHO region and in a global version. Please decide whether you would like to respond as a regional stakeholder or as a global stakeholder and choose the appropriate survey from the table below. (If you need to find your WHO region, please see the attached memo.) The survey will take 30 – 45 minutes to complete.

In addition to completing the survey, **please share this invitation with other stakeholders** in public health and immunization. Results from this survey will be presented to WHO's Strategic Advisory Group on Immunization (SAGE) in March 2023, so please complete and forward this survey **as soon as possible**.

WHO Region	Language	Link
African	English	https://bit.ly/AFRO_EN
	French	https://bit.ly/AFRO_FR
	Portuguese	https://bit.ly/AFRO_PT
Americas	English	https://bit.ly/AMRO_EN
	Portuguese	https://bit.ly/AMRO_PT
	Spanish	https://bit.ly/AMRO_ES
Eastern	Arabic	https://bit.ly/EMRO_AR
Mediterranean	English	https://bit.ly/EMRO_EN
	French	https://bit.ly/EMRO_FR
Europe	English	https://bit.ly/EURO_EN
	French	https://bit.ly/EURO_FR
	Portuguese	https://bit.ly/EURO_PT

WHO Region	Language	Link
	Spanish	https://bit.ly/EURO_ES
	Russian	https://bit.ly/EURO_RU
South-East	English	https://bit.ly/SEARO_EN
Asian	Portuguese	https://bit.ly/SEARO_PT
Western	Chinese	https://bit.ly/WPRO_ZH
Pacific	English	https://bit.ly/WPRO_EN
	French	https://bit.ly/WPRO_FR

The next step of the prioritization process will be regional consultations in 2023 to deliberate and align on the final priority list. Additional information and emerging results from this project are being posted to <u>TechNet-21</u>.

If you have any questions or suggestions about this project, please email <u>IA2030-SP7@who.int</u> and Angela Hwang (<u>angela@ahwang.net</u>).

Thank you and warm regards,

Gitte

Birgitte Giersing, PhD

Team Lead Vaccine Platforms & Prioritization Vaccine Product and Delivery Research (PDR) Unit Department of Immunization, Vaccines & Biologicals (IVB) Universal Health Coverage/Lifecourse Division World Health Organization, Geneva, Switzerland *Mobile: +41 79 764 1655*

Websites: Immunization, Vaccines and Biologicals; World Health Organization Immunization Agenda 2030; COVAX Country Readiness and Delivery

sFigure 4

Survey invitation: Example email attachment

20, AVENUE APPIA - CH-1211 GENEVA 27 - SWITZERLAND - TEL CENTRAL +41 22 791 2111 - FAX CENTRAL +41 22 791 3111 - WWW.WHO.INT

Tel. direct:	
Fax direct:	
E-mail :	IA2030-SP7@who.int
In reply please refer to:	
Your reference:	

22 November 2022

Regional priorities for vaccine development

Dear Colleagues,

This letter serves as a request for assistance in defining regional priorities for vaccine research and development. Under <u>Immunization Agenda 2030</u>, the World Health Organization (WHO) is responsible for assembling a "short list" of pathogens that should be prioritized for new vaccine development.

To aid in identifying these priorities, WHO is conducting a survey to understand what is most important from a regional and country perspective. The survey is meant to capture diverse perspectives and will take 30 - 45 minutes to complete.

As an expert in public health, your perspectives are important to this work. Please see the table on the **next page to access the survey for your region**. If you would like to complete the survey from a global perspective, please go to <u>https://bit.ly/GLOBAL_EN</u> instead.

Additional information about this project may be found at <u>www.technet-21.org/en/topics/regional-and-country-priorities</u>.

Should you have any questions or suggestions, please contact us by email at IA2030-SP7@who.int.

Yours sincerely,

Latherine Ohin

Dr Kate O'Brien Director, Immunization, Vaccines and Biologicals, Universal Health Coverage and Life Course

• 世界卫生组织 Оrganisation mondiale de la Santé • Всемирная организация здравоохранения • Organización Mundial de la Salud

Africa	English: https://bit.ly/AFRO_EN	Algeria Angola Benin	Eritrea Eswatini Ethiopia Gabon	Namibia Niger Nigeria
Afrique África	Français: https://bit.ly/AFRO_FR Português:	Botswana Burkina Faso Burundi Cabo Verde	Gambia, The Ghana Guinea Guinea-Bissau	Rwanda São Tomé and Principe Senegal
	https://bit.ly/AFRO_PT	Cameroon Central African Republic Chad Comoros Congo, Dem. Rep. Congo, Rep. Côte d'Ivoire Equatorial Guinea	Kenya Lesotho Liberia Madagascar Malawi Mali Mauritania Mauritania Mauritius Mozambique	Seychelles Sierra Leone South Africa South Sudan Tanzania Togo Uganda Zambia Zimbabwe
Americas	English: https://bit.ly/AMRO_EN	Antigua and Barbuda Argentina	Dominica Dominican Republic	Panama Paraguay Peru St. Kitts and
Américas	Español: https://bit.ly/AMRO_ES	Bahamas, The Barbados Belize	Ecuador El Salvador Grenada	Nevis St. Lucia St. Vincent and
Américas	Português: https://bit.ly/AMRO_PT	Bolivia Brazil Canada Chile Colombia Costa Rica Cuba	Guatemala Guyana Haiti Honduras Jamaica Mexico Nicaragua	the Grenadines Suriname Trinidad and Tobago United States Uruguay Venezuela
شرق المتوسط Eastern	ا العربية https://bit.ly/EMRO_AR	Afghanistan Bahrain Djibouti	Kuwait Lebanon Libya	Sudan Syrian Arab Republic
Mediterranean	English: https://bit.ly/EMRO_EN	Egypt, Arab Rep. Iran,	Morocco Oman Pakistan Qatar	Tunisia United Arab Emirates
Méditerranée orientale	Français: https://bit.ly/EMRO_FR	Islamic Rep. Iraq Jordan	Saudi Arabia Somalia	Yemen, Rep.
Europe	English: https://bit.ly/EURO_EN	Albania Andorra Armenia	Hungary Iceland Ireland	Poland Portugal Romania
L'Europe	Français: https://bit.ly/EURO_FR	Austria Azerbaijan Belarus	Greece Israel Italy	Russian Federation San Marino
Europa	Español: https://bit.ly/EURO_ES	Belgium Bosnia and Herzegovina	Kazakhstan Kyrgyz Republic Latvia	Serbia Slovak Republic Slovenia
Europa	Português: https://bit.ly/EURO_PT	Bulgaria Croatia Cyprus	Lithuania Luxembourg Malta	Spain Sweden Switzerland
Европа	Русский: https://bit.ly/EURO_RU	Czech Republic Denmark Estonia Finland France Georgia Germany	Moldova Monaco Montenegro Netherlands North Macedonia Norway	Tajikistan Turkey Turkmenistan Ukraine United Kingdom Uzbekistan

世界卫生组织 • منظمة الصحة العالمية

Organisation mondiale de la Santé • Всемирная организация здравоохранения • Organización Mundial de la Salud

Page 3

South-East Asia Sudeste Asiático	English: https://bit.ly/SEARO_EN Português: https://bit.ly/SEARO_PT	Bangladesh Bhutan India Indonesia	Korea, Dem. People's Rep. Maldives Myanmar	Nepal Sri Lanka Thailand Timor-Leste
Western Pacific Pacifique occidental 西太平洋地区	English: https://bit.ly/WPRO_EN Français: https://bit.ly/WPRO_FR 中文: https://survey.1000minds.c om/16166/WHO_VAC_WP RO_ZH	Australia Brunei Darussalam Cambodia China Cook Islands Fiji Japan Kiribati Korea, Rep.	Lao PDR Malaysia Marshall Islands Micronesia, Fed. Sts. Mongolia Nauru New Zealand Niue Palau	Papua New Guinea Philippines Samoa Singapore Solomon Islands Tonga Tuvalu Vanuatu Vietnam

Survey components

Survey introduction

Each survey started with the introductory text and biographical questions shown in sFigure 5.

sFigure 5 Survey introduction

1000 minds

Regional priorities for vaccine development

In this survey, you will help to define priorities for vaccine development in the WHO European region. These priorities will inform vaccine research and development, and be used to monitor progress in the Immunization Agenda 2030 Research & Innovation strategy.

In this survey, you will be presented with pairs of imaginary pathogens, and asked which one you would prioritise for vaccine development. Each question will involve tradeoffs between two criteria that are commonly used to set priorities.

Here's an example question:

Annual deaths in children under 5	Annual deaths in children under 5
Medium (3,000-4,500 deaths per year).	Very high (more than 6,100 per year.)
Disruption due to outbreaks	Disruption due to outbreaks
Medium social disruption or impact on healthcare, trade or tourism	Very low or no social disruption or impact on healthcare, trade or tourism
Prioritise	Prioritise

1000 **minds**

When thinking about your answer, please consider just what is important for the European region. Assume that the pathogens are the same in every way except for the information given. If you need more information about the criteria, click the "Info" button at the bottom of the page.

Click on the pathogen you think is more important. If both are equally important, click, "They are equal". The survey should take around 30 minutes to complete, and your individual results will be shown after you are done.

If you have comments about the survey, enter them using the "Comment" button at the bottom of each page, or at the end of the survey. For more information on the survey, please see link.

Your participation is voluntary. By clicking on "start survey", you are showing you consent to taking part in the survey. Your responses will be taken as your personal views, and not reflecting the position of any organisations with which you are employed or affiliated. Reports of survey results will not include any personal identifiers such as names or email addresses.

Thank you very much.

Your name *

Your email address *

What country do you work in? *

~

What kind of organisation do you work for? (select all that apply) *

- Academic institution
- Funding agency
- Government
- Healthcare provider
- □ Non-governmental organisation
- D Pharmaceutical industry
- Regulatory agency
- United Nations agency
- 🗌 Other

What are your main areas of expertise? (select all that apply) *

- Disease epidemiology
- Economics and health financing
- □ Healthcare
- Health policy
- Regulatory affairs
- □ Vaccine research and development
- □ Other

How long have you been working in a health-related area? *

- O Up to 10 years
- O 11 20 years
- O 21 30 years
- O More than 30 years

Next

PAPRIKA survey questions

In the PAPRIKA method, the survey participant choses between hypothetical alternatives described in terms of two criteria at a time. (sFigure 6) Additional questions are posed until the participants preferences are fully captured. PAPRIKA minimises the number of questions using adaptive choice-based conjoint analysis, so each participant responds to a personalized sequence of questions.

Which pathogen would you	Progress: 29
Which pathogen would you	
developm	i prioritise for vaccine ent?
Think just about the African region. Assume that the p	pathogens are the same in all other ways.
Deaths in children under 5 years old D	eaths in children under 5 years old
Medium (140,000 to 210,000 deaths per year)	Very low (less than 70,000 deaths per year)
Contribution to inequity C	ontribution to inequity
Very low (affects socially and economically	Medium (affects socially and economically
privileged groups, including men, all or most of	disadvantaged groups, including women,
the time)	somewhat more often than other groups)
Prioritise	Prioritise

sFigure 6 Example Survey Question

The software then applies mathematical techniques based on linear programming to the participant's choices to calculate the relative importance, or weight, of each level of each criterion. In reporting weights, the total weight of Very high scores is set to 100%, and the weight of all Very low scores is set to 0%. To streamline surveys, weights for Low and High scores are interpolated from weights for Very high, Medium, and Very low scores.

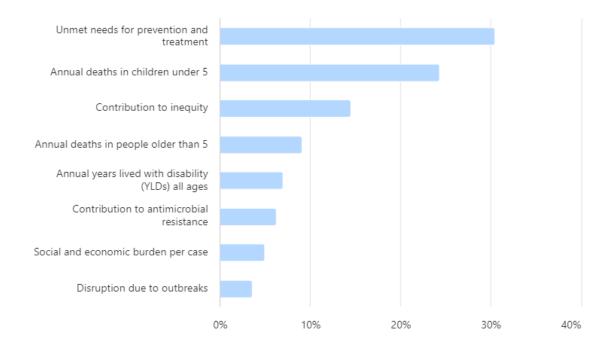
sFigure 7 illustrates how total weight is calculated for each pathogen in each region. A participant's total weight for a pathogen is calculated by summing the weights that correspond to the pathogen's scores in their region. Within each region, individual total weights for each pathogen are averaged to give a regional total weight for the pathogen. This regional total weight is then used to rank the pathogens within the region.

sFigure 7 Calculating total weight for a pathogen

	Criteria								
Step 1. Score pathogens Pathogens			2 Annual deaths in people 5 and older	3 Annual years lived with disability (all ages)	4 Social and economic burden per case	5 Disruption due to outbreaks	6 Contributi on to inequity	7 Contributi on to antimicrob ial resistance	8 Unmet needs for prevention & treatment
Mycobacterium tuberculosis (TB)*		Low	Very high	Very high	Very high	High	Very high	Very high	High
Staphylococcus aureus		High	High	Very low	High	Low	Medium	Very high	High
Klebsiella pneumoniae		Very high	Medium	Very low	High	Low	Low	Very high	High
Human immunodeficiency virus 1 (HI	V-1)	Verylow	Low	Very low	Verv high	High	Verv high	Verv high	High
					Crit	eria			
Step 2. Surveys give weight of								7	
each criteria/score combination		1 Annual	2 Annual	3 Annual years lived	4 Social and	5	6	Contributio n to	8 Unmet needs for
cuch chichay score combination		deaths in	deaths in	with	economic	-	-	antimicrobi	
		children	people 5	disability	burden per	due to	n to	al	&
	Score	under 5	and older	(all ages)	case	outbreaks	inequity	resistance	treatment
	Very high	0.150	0.119	0.128	0.106	0.132	0.117	0.144	0.105
	High	0.113	0.092	0.098	0.077	0.094	0.089	0.103	0.078
	Medium	0.76	0.064	0.069	0.051	0.060	0.061	0.065	0.052
	Low	0.039	0.034	0.037	0.026	0.029	0.031	0.032	0.027
	Very low	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Step 3. Sum weights corresponding to pathogen scores		0.039 Myco	0.119 bacterium t	0.128 uberculosis	0.106 (TB) 0.8	0.094	0.117	0.144	0.078

Post-survey information

Each survey concluded by presenting the participant's results and asking face validity questions shown in sFigure 8.


sFigure 8 Post-survey information (demo survey)

1000 **minds**

Almost done!

Based on your choices, these are your personal priorities for vaccine development in this region. For more information on how these results are calculated, please see link.

As part of Immunization Agenda 2030 Research & Innovation strategy, your results will be combined with data from other stakeholders to identify regional and global priorities for vaccine development.

1	Mycobacterium tuberculosis (TB)	*
2	Klebsiella pneumoniae	*
3	Staphylococcus aureus	*
4	Human immunodeficiency virus 1 (HIV	/-1)
5	Extra-intestinal pathogenic E. coli (ExP	EC)
6	Respiratory syncytial virus	*
T	Group A streptococcus (Streptococcus	s pyc
8	Group B streptococcus (Streptococcus	s aga
9	Pseudomonas aeruginosa	*
10	Mycobacterium leprae (leprosy)	*
11	Shigella	*
12	Leishmania	*
13	Plasmodium falciparum (malaria)	*
14	Influenza	*
15	Cytomegalovirus	*
16	Norovirus	٠
17	Neisseria gonorrhoeae	٠
18	Herpes simplex types 1 and 2	*
19	Chikungunya virus	*
20	Intestinal pathogenic E. coli (InPEC)	*
21	Salmonella Paratyphi	*
22	Non-typhoidal Salmonella	*
23	Schistosomes	*

Does the order of criteria in the bar chart seem correct to you? *

O Yes O No O Not sure

Does the order of pathogens listed seem reasonable to you? *

O Yes O No O Not sure

In your results, what was surprising? What was as expected?

Was the survey easy or difficult to understand? *

O Very difficult

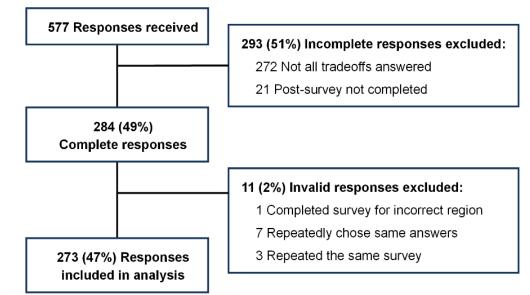
O Difficult

🔿 Neutral

🔿 Easy

O Very easy

Do you have any comments you would like to share?


Thank you for taking part in our survey. To learn more about this project, go to link.

Auto-fill Continue

Survey participants

Participants could start the survey multiple times. In total 577 responses were received from 533 survey participants.

sFigure 9 Survey responses

sTable 10	Regional and country representation in included survey responses

WHO Region	Responses included	Countries represented / Countries in region	% of countries	Countries with responses
African	55	27 / 47	57%	Benin, Burkina Faso, Burundi, Cameroon, Chad, Comoros, Congo, Democratic Republic, Congo, Rep., Eritrea, Eswatini, Ethiopia, Gabon, Ghana, Kenya, Madagascar, Malawi, Mali, Nigeria, Rwanda, Senegal, Seychelles, Sierra Leone, South Africa, Tanzania, Uganda, Zambia, Zimbabwe
Americas	45	18/35	51%	Argentina, Bahamas, Barbados, Bolivia, Brazil, Canada, Chile, Colombia, Cuba, Ecuador, El Salvador, Guatemala, Guyana, Jamaica, Mexico, Peru, Suriname, United States
E. Med.	38	15/21	71%	Afghanistan, Bahrain, Djibouti, Egypt, Arab Rep., Iran, Islamic Rep., Jordan, Kuwait, Lebanon, Oman, Pakistan, Saudi Arabia, Sudan, Syrian Arab Republic, Tunisia, United Arab Emirates
European	26	10 / 53	19%	France, Germany, Israel, Netherlands, Norway, Russian Federation, Sweden, Switzerland, Tajikistan, United Kingdom
SE Asian	44	9 / 11	82%	Bangladesh, Bhutan, India, Indonesia, Maldives, Myanmar, Nepal, Thailand, Timor-Leste
W. Pacific	65	10 / 27	37%	Australia, Cambodia, China, Fiji, Korea, Rep., Lao PDR, New Zealand, Papua New Guinea, Philippines, Vietnam
Total	273	89 / 194	46%	

sTable 11 Characteristics of survey participants

P-values were obtained using Chi-square or Fisher's Exact Test (when cell counts were less than 5) when assessing differences in proportions between "Africa" compared to other WHO regions.

Abbreviations: R&D, Research & Development

		Africa (n=55)		ericas =45)	Medite	tern rranean =38)		rope =26)		ast Asia =44)		n Pacific =65)	Total (n=273)
Characteristic	Option	n (%)	n (%)	P-value	n (%)	P-value	n (%)	P-value	n (%)	P-value	n (%)	P-value	n (%)
Years of Experience	ce												
	Up to 10 years	8 (15)	5 (11)	0.03	3 (8)	0.31	3 (12)	0.04	6 (14)	0.20	7 (11)	0.08	32(12)
	11-20 years	27 (49)	11 (24)		14 (37)		5 (19)		13 (30)		19 (29)		89 (33)
	21-30 years	10 (18)	11 (24)		12 (32)		9 (35)		12 (27)		19 (29)		73 (27)
	More than 30 years	10 (18)	18 (40)		9 (24)		9 (35)		13 (30)		20 (31)		79 (29)
Expertise													
Disease	No	24 (44)	18 (40)	0.84	15 (40)	0.83	14 (54)	0.48	23 (52)	0.42	36 (55)	0.27	130 (48)
Epidemiology	Yes	31(56)	27 (60)		23 (60)		12 (46)		21(48)		29 (45)		143 (52)
Economics &	No	51 (93)	42 (93)	1.00	34 (90)	0.71	25 (96)	1.00	39 (89)	0.50	63 (97)	0.41	254 (93)
Health Financing	Yes	4 (7)	3 (7)		4 (10)		1 (4)		5 (11)		2 (3)		19 (7)
Healthcare	No	35 (64)	17 (38)	0.02	18 (47)	0.14	17 (65)	1.00	26 (59)	0.68	50 (77)	0.16	163 (60)
	Yes	20 (36)	28 (62)		20 (53)		9 (35)		18 (41)		15 (23)		110 (40)
Health policy	No	38 (69)	34 (76)	0.51	24 (63)	0.66	15 (58)	0.33	30 (68)	1.00	52 (80)	0.21	193 (71)
	Yes	17 (31)	11 (24)		14 (37)		11 (42)		14 (32)		13 (20)		80 (29)
Regulatory affairs	No	50 (91)	44 (98)	0.22	36 (95)	0.70	25 (96)	0.66	39 (89)	0.75	59 (91)	1.00	253 (93)
	Yes	5 (9)	1 (2)		2 (5)		1 (4)		5 (11)		6 (9)		20 (7)
Vaccine R&D	No	34 (62)	26 (58)	0.22	27 (71)	0.38	7 (27)	0.004	27 (61)	1.00	29 (45)	0.07	150 (55)
	Yes	21 (38)	19 (42)		11 (29)		19 (73)		17 (39)		36 (55)		123 (45)
Other Expertise	No	45 (82)	42 (93)	0.14	34 (90)	0.38	22 (85)	1.00	41 (93)	0.14	58 (89)	0.30	242 (89)
	Yes	10 (18)	3 (7)		4 (10)		4 (15)		3 (7)		7 (11)		31 (11)

		Africa (n=55)		ericas =45)	Medite	tern rranean =38)		rope =26)	Souther (n=	ast Asia =44)		n Pacific =65)	Total (n=273)
Characteristic	Option	n (%)	n (%)	P-value	n (%)	P-value	n (%)	P-value	n (%)	P-value	n (%)	P-value	n (%)
Organisation Type													
Academic	No	38 (69)	18 (40)	0.01	29 (76)	0.49	16 (62)	0.62	29 (66)	0.83	36 (55)	0.14	166 (61)
Institution	Yes	17 (31)	27 (60)		9 (24)		10 (38)		15 (34)		29 (45)		107 (39)
Funding Agency	No	54 (98)	45 (100)	1.00	37 (97)	1.00	24 (92)	0.24	44 (100)	1.00	60 (92)	0.22	264 (97)
	Yes	1 (2)	0 (0)		1 (3)		2 (8)		0 (0)		5 (8)		9 (3)
Government	No	36 (66)	34 (76)	0.38	24 (63)	0.83	15 (58)	0.62	21 (48)	0.10	53 (82)	0.06	183 (67)
	Yes	19 (34)	11 (24)		14 (37)		11 (42)		23 (52)		12 (18)	5)	90 (33)
Healthcare	No	48 (87)	26 (58)	0.001	31 (82)	0.56	22 (85)	0.74	41 (93)	0.51	55 (85)	0.80	223 (82)
Provider	Yes	7 (13)	19 (42)		7 (18)		4 (15)		3 (7)		10 (15)		50 (18)
Non-governmental	No	49 (89)	44 (98)	0.12	31 (82)	0.37	25 (96)	0.42	41 (93)	0.73	58 (89)	1.00	248 (91)
organisation	Yes	6 (11)	1 (2)		7 (18)		1 (4)		3 (7)		7 (11)		25 (9)
Pharmaceutical	No	55 (100)	41 (91)	0.04	36 (95)	0.16	23 (88)	0.03	44 (100)	1.00	52 (80)	0.0002	251 (92)
Industry	Yes	0 (0)	4 (9)		2 (5)		3 (12)		0 (0)		13 (20)		22 (8)
Regulatory	No	50 (91)	44 (98)	0.22	36 (95)	0.22	26 (100)	0.17	42 (96)	0.46	63 (97)	0.24	261 (96)
Agency	Yes	5 (9)	1 (2)		2 (5)		0 (0)		2 (4)		2 (3)		12 (4)
UN agency	No	41 (75)	44 (98)	0.001	31 (82)	0.003	23 (88)	0.24	39 (89)	0.12	61 (94)	0.004	239 (88)
	Yes	14 (25)	1 (2)		7 (18)		3 (12)		5 (11)		4 (6)		34 (12)
Other	No	51 (93)	41 (91)	0.81	37 (97)	0.71	25 (96)	1.00	39 (89)	0.50	62 (95)	0.70	255 (93)
	Yes	4 (7)	4 (9)		1 (3)		1 (4)		5 (11)		3 (5)		18 (7)

Survey results

Criteria weights

sTable 12 Raw mean criteria weights

P-values were obtained using t-tests to assess differences in means between "Africa" compared to other WHO regions.

Abbreviation: SD, Standard Deviation

	African (n=55)	Americ (n=45		Mediterra	Eastern Mediterranean (n=38)		European(n=26)		Southeast Asian (n=44)		acific)
Criteria	Mean % (SD)	Mean % (SD)	Р	Mean % (SD)	Р	Mean % (SD)	Р	Mean % (SD)	Р	Mean % (SD)	Р
Annual deaths in children under 5 years	14.2 (7.9)	16.4 (7.8)	0.18	15.0 (11)	0.73	18.6 (7.8)	0.02	14.0 (8.2)	0.88	14.3 (8.0)	0.96
Annual deaths in people 5 years & older	11.5 (6.2)	13.4 (6.0)	0.14	11.9 (6.2)	0.79	14.5 (7.3)	0.08	13.3 (5.2)	0.14	14.9 (8.4)	0.01
Years lived with disability	11.6 (5.3)	13.0 (6.5)	0.26	12.8 (5.2)	0.29	13.9 (6.8)	0.13	11.0 (5.1)	0.56	12.7 (5.7)	0.29
Social and economic burden per case	11.6 (5.9)	9.0 (4.9)	0.02	10.6 (5.6)	0.40	9.6 (5.1)	0.12	11.9 (4.8)	0.79	9.9 (5.5)	0.10
Disruption due to outbreaks	13.3 (6.5)	11.8 (5.9)	0.19	13.2 (6.8)	0.88	7.4 (4.6)	0.0001	12.6 (6.2)	0.56	12.4 (7.3)	0.44
Contribution to inequity	11.5 (6.4)	10.7 (6.0)	0.48	11.7 (7.3)	0.90	8.4 (8.2)	0.09	12.0 (7.5)	0.12	11.7 (7.2)	0.90
Contribution to antimicrobial resistance	13.8 (6.6)	14.9 (7.1)	0.44	14.4 (8.2)	0.74	15.5 (7.8)	0.36	13.6 (6.5)	0.85	11.8 (6.7)	0.10
Unmet needs for prevention & treatment	12.3 (7.3)	10.9 (5.8)	0.31	10.5 (6.9)	0.25	12.2 (7.8)	0.96	11.6 (5.3)	0.62	12.4 (6.7)	0.92

Pathogen ranks by region

These lists are survey results intended to inform deliberations on regional and global priorities and should not be read as regional priorities in themselves.

	African		Americas		E. Med.	
Rank	Pathogen	Total weight	Pathogen	Total weight	Pathogen	Total weight
1	Mycobacterium tuberculosis (TB)	86.1%	HIV-1	71.8%	TB	82.4%
2	Plasmodium falciparum (malaria)	86.0%	S aureus	67.8%	S aureus	59.4%
3	Human immuno- deficiency virus 1 (HIV-1)	82.7%	K pneumoniae	58.2%	K pneumoniae	57.4%
4	Klebsiella pneumoniae	63.4%	ExPEC	55.6%	HIV-1	57.2%
5	Staphylococcus aureus	62.9%	TB	54.7%	Leishmania	56.2%
6	Shigella species	59.6%	Group A streptococcus	46.7%	ExPEC	54.2%
7	Non-typhoidal Salmonella	59.2%	Shigella species	42.5%	Shigella species	48.8%
8	Respiratory syncytial virus	51.1%	Respiratory syncytial virus	42.4%	Hepatitis C virus	48.2%
9	Extra-intestinal pathogenic <i>E coli</i> (ExPEC)	50.7%	Influenza	42.0%	Group A streptococcus	45.9%
10	Group B streptococcus	47.3%	Hepatitis C virus	39.8%	Norovirus	39.1%
11	Group A streptococcus	45.1%	Cytomegalovirus	38.5%	InPEC	36.7%
12	Leishmania	44.9%	P falciparum	38.4%	N gonorrhoeae	36.5%
13	Hepatitis C virus	44.2%	Leishmania	36.6%	Influenza	36.2%
14	Schistosomes	44.0%	Dengue virus	36.3%	Group B streptococcus	35.9%
15	Norovirus	40.6%	InPEC	35.9%	P falciparum	35.0%
16	Influenza	40.5%	N gonorrhoeae	35.6%	Cytomegalovirus	34.6%
17	Intestinal pathogenic <i>E coli</i> (InPEC)	37.8%	Group B streptococcus	35.1%	M leprae	33.3%
18	Neisseria gonorrhoeae	37.2%	M leprae	33.9%	Respiratory syncytial virus	32.9%
19	Cytomegalovirus	36.1%	Chikungunya virus	33.6%	Dengue virus	31.5%
20	Herpes simplex types 1	34.9%	Norovirus	33.5%	C trachomatis	30.5%
21	and 2 and <i>Mycobacterium leprae</i> (leprosy)	(tied)	Herpes simplex types 1 and 2	30.6%	Non-typhoidal Salmonella and	29.9% (tied)
22	Dengue virus	33.5%	Non-typhoidal Salmonella	28.8%	Salmonella Paratyphi	
23	Chlamydia trachomatis	32.2%	C trachomatis	28.1%	Schistosomes	26.5%
24	Chikungunya virus	30.8%	Schistosomes	25.2%	Chikungunya virus	24.6%
25	Hookworm	26.5%	Salmonella Paratyphi	18.9%	Hookworm	23.8%
26	Salmonella Paratyphi	23.8%	Hookworm	18.6%	Herpes simplex types 1 and 2	22.2%

sTable 13 Pathogen total weights and ranks by region

	European		SE Asian		W. Pacific	
Rank	Pathogen	Total weight	Pathogen	Total weight	Pathogen	Total weight
1	S aureus	69.0%	TB	96.6%	TB	85.5%
2	TB	65.2%	HIV-1	67.7%	S aureus	69.0%
3	HIV-1	60.6%	K pneumoniae	64.9%	HIV-1	61.9%
4	ExPEC	58.3%	S aureus	61.8%	Group A streptococcus	56.5%
5	K pneumoniae	56.5%	Group A streptococcus	60.8%	K pneumoniae	55.5%
6	Group A streptococcus	47.4%	ExPEC	59.2%	ExPEC	49.0%
7	Cytomegalovirus	44.9%	Respiratory syncytial virus	52.5%	Influenza	48.5%
8	Respiratory syncytial virus	43.4%	Shigella species	49.5%	Respiratory syncytial virus	48.3%
9	Hepatitis C virus	38.2%	Hepatitis C virus	49.2%	Hepatitis C virus	43.3%
10	Shigella species	36.3%	Dengue virus	45.9%	Cytomegalovirus	43.1%
11	Norovirus	33.6%	Group B streptococcus	45.7%	Dengue virus	41.1%
12	Influenza	33.1%	Leishmania and	44.9%	Shigella species	39.3%
13	N gonorrhoeae	32.4%	Influenza	(tied)	Group B streptococcus	38.3%
14	InPEC	31.7%	P falciparum	39.8%	M leprae	35.8%
15	Group B streptococcus	28.2%	M leprae	38.5%	Norovirus	35.2%
16	C trachomatis	27.2%	Norovirus and InPEC	38.1%	InPEC	34.4%
17	M leprae	26.4%		(tied)	N gonorrhoeae	34.2%
18	Non-typhoidal Salmonella	25.2%	N gonorrhoeae	37.7%	Herpes simplex types 1 and 2	31.0%
19	Herpes simplex types 1 and 2	24.1%	Cytomegalovirus	37.4%	P falciparum	30.2%
20	Chikungunya virus	23.2%	Chikungunya virus	33.9%	Chikungunya virus	28.8%
21	Leishmania	20.9%	C trachomatis	32.9%	Non-typhoidal Salmonella	28.4%
22	Hookworm	16.2%	Salmonella Paratyphi	30.9%	Leishmania	24.5%
23	Salmonella Paratyphi	15.1%	Herpes simplex types 1 and 2	30.1%	Hookworm	23.4%
24	Dengue virus	10.4%	Non-typhoidal Salmonella	27.7%	Schistosomes	22.8%
25	P falciparum	2.2%	Schistosomes	24.4%	Salmonella Paratyphi	22.6%
26	Schistosomes	1.1%	Hookworm	24.1%	C trachomatis	22.3%

sTable 14 Robustness testing results

See sTable 1 for abbreviations. \checkmark : retained in Global list, \times : drops from Global List

					Testing	conditions				
Global list	Cluster 1 responses only	Cluster 2 responses only	Omit Annual deaths in children under 5	Omit Annual deaths in people 5 and older		Omit Social and economic burden per case		Omit Contribution to inequity	Omit Contribution to antimicrobial resistance	Omit Unmet needs for prevention & treatment
Cytomegalovirus	\checkmark	✓	✓	✓	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark
Dengue virus	\checkmark	×	✓	×	\checkmark	✓	×	\checkmark	×	\checkmark
ExPEC	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark
GAS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
GBS	×	✓	×	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×
Hepatitis C virus	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HIV-1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Influenza	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
K pneumoniae	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Leishmania	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
M tuberculosis	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
NTS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Norovirus	\checkmark	x	\checkmark	x	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark
P falciparum	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
RSV	\checkmark	\checkmark	×	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Shigella	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
S aureus	\checkmark	✓	✓	✓	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark
Added pathogens	none	none	InPEC	InPEC	InPEC N gonorrhoeae	none	M leprae	none	none	InPEC

Use Cases and Action Categories

Use cases and category assignments were reviewed and endorsed by PDVAC in December 2023. For full supporting data, see the report to PDVAC at www.technet-21.org/en/resources/report/vaccine-r-d-priorities-vaccine-use-cases-and-action-categories-for-pdvac-input-december-2024. Any references to commercial products or trademarks are for tracking purposes only and not intended to reflect WHO product recommendations.

sTable 15 Use cases and Action Categories for pathogens on the Global list

		Action C	2023)	
Pathogen	Use Case	Research	Advance Product Development	Prepare to Implement
otals		10 use cases	17 use cases	7 use cases
51415		6 pathogens	10 pathogens	5 pathogens
Cytomegalovirus	Prevention and/or modification of sequelae associated with congenital CMV, by vaccinating women and girls prior to pregnancy ¹		Х	
Dengue virus	Vaccine for dengue naïve and seropositive individuals, to prevent dengue febrile illness induced by any dengue serotype ²			Х
Extra-intestinal	Prevention of invasive <i>E coli</i> disease, including urinary tract infections or bacteraemia, in high-risk populations ³			Х
pathogenic <i>E coli</i> (ExPEC)	Maternal immunisation during pregnancy to prevent invasive <i>E coli</i> disease, such as neonatal sepsis and meningitis, in neonates and young infants (<i>informed by PDVAC deliberations</i>)	Х		
Group A strep (GAS)	Prevention of GAS disease: pharyngitis, impetigo and invasive disease in young children. Potential for prevention of GAS immune-mediated sequelae: acute rheumatic fever and rheumatic heart disease ⁴	Х		
Group B strep (GBS)	Maternal immunisation during pregnancy to prevent GBS-related stillbirth and invasive GBS disease in neonates and young infants ⁵			Х
	Prevention of Group B streptococcal infections in older adults ⁶	Х		
	Prevention of chronic hepatitis C infection for persons at risk ⁷	Х		
Hepatitis C virus	Therapeutic vaccines to improve treatment outcomes for chronic HCV infections ⁸	Х		
	Prevention of HIV in high-risk populations (informed by clinical trials)	Х		
HIV-1	Treatment and/or cure of HIV infection in HIV-1 positive individuals (includes vaccines, mAbs, and combined approaches) (<i>informed by clinical trials</i>)	Х		

		Action (Action Category (as of December 2023)			
Pathogen	Use Case	Research	Advance Product Development	Prepare to Implement		
	Preventive mAbs for HIV-1 infection in confirmed HIV-negative individuals at substantial risk of HIV infection and their sexual partners and/or prevention of HIV-1 infection in neonates and infants with HIV exposure ⁹	Х				
Influenza Note: Preferred product characteristics for influenza vaccines	Universal-type ("broadly protective") influenza A vaccines for prevention of severe influenza illness caused by human influenza A virus infection in persons aged 6 weeks and older belonging to a group at high risk for severe influenza illness (children aged 6 weeks through 59 months, elderly adults, persons with chronic medical conditions, and pregnant women). Duration of efficacy should be a minimum of 5 years ¹⁰		х			
are currently being revised. Once they are available these use cases will be updated.	Improved seasonal influenza vaccines, with a duration of protection of at least one year ¹⁰		х			
	Vaccine administered during pregnancy to prevent neonatal sepsis caused by the major disease-causing serotypes of K pneumoniae ^{11,12}	х				
K pneumoniae	Preventing <i>K pneumoniae</i> -attributable disease, including pneumonia, bloodstream infections, and/or urinary tract infections in high-risk populations such as older adults, the immunocompromised, and those with anticipated prolonged hospital stay or planned surgeries ^{12,13}	Х				
Leishmania species	Prevention of visceral leishmaniasis and/or cutaneous leishmaniasis in all age groups in endemic regions starting from 6 months of age, and/or prevention or treatment of post-kala azar dermal leishmaniasis ¹⁴		Х			
	Prevention of active pulmonary TB disease (with or without evidence of latent infection), including in those with HIV infection ¹⁵			Х		
M tuberculosis	Prevention of TB disease in infants and young children, including in infants with HIV infection ¹⁵			Х		
	Adjunctive treatment of TB, or to prevent relapse following cure in patients being treated for active TB, both drug sensitive and drug resistant strains ¹⁶		Х			
	Paediatric vaccines for prevention of invasive disease caused by non-typhoidal <i>Salmonella</i> in children aged $6 - 36$ months ¹⁷		Х			
Non-typhoidal Salmonella	Prevention of invasive disease caused by non-typhoidal <i>Salmonella</i> in other individuals at high risk, including immunocompromised individuals, children over 36 months, the elderly, immunocompromised individuals, and persons living or traveling in settings with poor sanitation and hygiene ¹⁷		X			
Norovirus	Prevention of norovirus acute gastroenteritis for children in all countries from 6 weeks of age ¹⁸		Х			

		Action Category (as of December 2023)		
Pathogen	Use Case	Research	Advance Product Development	Prepare to Implement
	Prevention of norovirus acute gastroenteritis for adolescents, adults, and/or older persons in all countries (including travellers) ¹⁸		Х	
	Prevention of blood-stage infection due to <i>P falciparum</i> malaria at the individual level, for populations or age groups who experience high incidence of infection ¹⁹		Х	
P falciparum	Prevention of malaria transmission at the community level for children and adults, including women of childbearing age, who represent the infectious reservoir and will need to be targeted to maximize the vaccine's impact on transmission ¹⁹		х	
	mAbs for prevention of blood-stage infection due to P falciparum at the individual level, and/or reduction of clinical malaria, including severe malaria and death due to P falciparum ¹⁹		Х	
	Active immunisation of women during pregnancy, for prevention of severe RSV disease in offspring during the neonatal period and early infancy ²⁰			Х
RSV	Active immunisation of infants, for prevention of RSV disease in infants and young children ²⁰		Х	
	mAbs for prevention of severe RSV disease for all infants in the first 6 months of life and for high-risk young children entering their second RSV season (e.g with chronic heart or chronic lung disease) ²¹			Х
	Prevention of moderate to severe diarrhoea due to <i>Shigella</i> in infants from 6 months and children up to 36 months of age ^{22,23}		Х	
Shigella species	Prevention of <i>Shigella</i> -attributable dysentery and diarrhoea for high-risk populations such as travellers and the military, communities with high incidence, elderly and institutionalized individuals, and/or pregnant women ^{22,23}		х	
S aureus	Prevention of severe infection in populations at risk, such as children, those over 60 years of age, and/or those in all age groups who are immunocompromised, experiencing recurrent skin and soft tissue infections, suffering from relevant comorbidities, exposed to epidemic strains, diabetics, or undergoing elective surgery or other invasive procedures with high risk of <i>S aureus</i> infection ²⁴		Х	
	mAbs for prevention or treatment of disease caused by S aureus, such as severe pneumonia and/or superinfection in conjunction with viral pneumonia ^{25,26}		Х	

Detailed methods for assessing predictors and cluster patterns in MCDA-generated criteria weights

Overview

The primary goals of this portion of the study analysis included determining: (1) whether participant characteristics were associated with their reported weights for each of the eight areas of prioritization, (2) if groups of respondents shared similar overall patterns in criteria weights, and (3) if groups of respondents sharing similar patterns in criteria weights also shared similar biographical backgrounds or impressions of the survey.

Data from 577 survey responses submitted from November 15, 2022 to May 1, 2023 were extracted from the 1000Minds website (https://www.1000minds.com, Last Accessed: August 29, 2023). Data was anonymized prior to use. Analysis was limited to the first regional survey submission by a participant in which all trade-off questions and the post-survey had been completed. Biographical information was self-reported by participants and was not verified for this analysis.

Outcomes

The first set of outcomes (used to identify participant characteristics associated with MCDA-generated weights) included **criteria weights calculated by the 1000minds tool across the "Very high" level for the eight criteria for prioritization**, namely *Annual deaths in children under five years*, *Annual deaths in people five years and older*, *Years lived with disability for all ages*, *Social and economic burden per case*, *Disruption due to outbreaks*, *Contribution to inequity*, *Contribution to antimicrobial resistance*, and *Unmet needs for prevention and treatment*.

The second set of outcomes (used to identify cluster patterns in criteria weights) was a **composite indicator of Medium and Very high levels for each of the eight criteria**. We generated the indicator using Principal Components Analysis (PCA) on weights generated by MCDA to allow both levels of criteria weights to be integrated into the same cluster model while avoiding issues of collinearity between measured scores. The composite indicator of MCDA criteria weights included the first set of eigenvectors accounting for at least 80 percent of the explained variance in the PCA model. Construction of the composite indicator was performed using the R packages 'stats' (version 4.3.1) and 'factoextra' (version 1.0.7), and 'FactoMineR' (version 2.11).^{27,28}

The third set of outcomes (used to characterize potential predictors of cluster patterns) was a **participant's membership in a specific cluster of survey respondents**, determined based on groups identified through k-means clustering (goal 2) of the composite indicator of criteria weights.

Potential predictors of criteria weights and their cluster patterns

Participant's Background: Participant characteristics considered in the analysis included: language of survey (English, Arabic, Chinese, French, Portuguese, Russian, Spanish), WHO region of survey (Africa, Americas, Eastern Mediterranean, Europe, South-East Asia, Western Pacific), a participant's years of experience (up to 10 years, 11 to 20 years, 21 to 30 years, more than 30 years), their expertise (or not) in the fields of disease epidemiology, economics and health financing, health care, health policy, regulatory affairs, vaccine research and development, or another field; type of organisations that a participant works for (or not) including an academic institution, funding agency, government, health care provider, non-governmental organisation, pharmaceutical industry, regulatory agency, United Nations agency, or other entity; as well as eligibility status for Gavi support in 2023 (initial self-financing, preparatory transition, accelerated transition, not eligible) and World Bank group classification by income level in 2023 (low income, lower middle income, upper middle income, high income) for the participant's country of work. Participants who selected "Other" for expertise or type of organisation were provided the opportunity to give additional information in a comment field. When descriptions in these fields corresponded to existing categories for expertise or type of organisation, these responses were reassigned to those categories. Gavi eligibility and World Bank income group classifications were inferred based on the participant's self-reported country of work.

Face Validity of Survey: Factors linked to a participant's face-validity assessment of the MCDA survey were also assessed based on responses to the following questions in the post-survey: "Was the survey easy or difficult to understand?" (very difficult, difficult, neutral, easy, very easy); "Does the order of criteria in the bar chart seem correct to you?" (no, not sure, yes); and "Does the order of pathogens listed seem reasonable to you?" (no, not sure, yes).

Statistical analysis

Categorical data were presented as numbers and percentages. Continuous data were summarized as means with standard deviation. Differences in proportions and means were assessed using Chi-square/Fisher's Exact Test and t-test, respectively. To assess for potential selection bias due to incomplete surveys, a generalized estimating equation (GEE) with a binomial distribution and logit function was used to assess associations between participant characteristics and completion of trade-off questions after accounting for multiple responses per person. GEE was performed using the R package 'gee' (version 4.13-25).²⁹

To **determine if participant characteristics were associated with their reported weights** for each of the eight criteria, multivariate linear regression was used to model mean differences in weights by a participant's years of experience (reference: up to 10 years); expertise in each of six areas (reference: not in the listed area); employment in each of nine types of organisations (reference: does not work for specified type of organisation); 2023 eligibility for Gavi support (reference: not eligible) and World Bank group classification (reference: high income) for the participant's country of work; language of survey (reference: English); WHO region of survey (reference: Africa); whether the survey was easy or difficult to understand (reference: neutral); if the order of criteria weights were correct (reference: yes); and, if pathogen rankings were reasonable (reference: yes). Multivariate linear regression was performed using the R package 'stats' (version 4.3.1).²⁷

To **characterize group patterns in criteria weights,** K-means algorithm (an unsupervised machine learning method) was used to identify groups of survey respondents sharing similar sets of criteria weights. Optimal number of clusters was determined based on consensus of cut-off values using the elbow method, silhouette coefficient, Gap statistic and NbClust with centroid values ranging from 0 to 25.³⁰⁻³³ Cluster analysis was performed using the R packages 'stats' (version 4.3.1), 'factoextra' (version 1.0.7), and "NbClust" (version 3.0.1).^{27,28,33}

To assess whether groups of respondents sharing similar patterns in criteria weights also shared similar biographical backgrounds or impressions of the survey, a generalized linear model (GLM) with a binomial distribution and logit link function (based on the two-cluster model) was used to compare odds of membership in a specific cluster by years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank income group classifications for country of work, type of work organisation, and face-validity assessment. GLM was performed using the R package 'stats' (version 4.3.1).²⁷

Statistical power calculations for this analysis suggest that the minimum detectable odds ratio for membership in a specific cluster (based on two-cluster model) for the GLM analysis is between 0.213 and 2.475. The estimate is based on a sample size of 95 subjects in one cluster, 178 subjects in a reference cluster, a 15% likelihood of presenting a specific background characteristic, 80% statistical power and a two-sided significance level of 0.05.

Analysis was completed using R version 4.2.2 (R Foundation for Statistical Computing, Vienna, Austria).

Detailed results from assessing predictors and cluster patterns in MCDA-generated criteria weights

Determining if participant characteristics were associated with their reported weights

sFigure 10 Adjusted mean difference in criteria weights by region, Criteria 1-4 (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Abbreviations: MD, Mean Difference; CI, Confidence Interval; SD, Standard Deviation; No., Number of Participants; E. Med., Eastern Mediterranean; SE Asian, South East Asian; W. Pacific, Western Pacific

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Annual deaths in children under 5 ye	ars		ł	
African	55 (20)	14.3 (7.9)		Reference
Americas	45 (16)	16.4 (7.8)		-0.67 (-7.25 to 5.91)
E. Med.	38 (14)	15.0 (10.6)	<u> </u>	1.00 (-3.95 to 5.96)
European	26 (10)	18.6 (7.8)		3.37 (-3.40 to 10.15)
SE Asian	44 (16)	14.0 (8.2)	_	0.12 (-4.99 to 5.22)
W. Pacific	65 (24)	14.3 (8.0)		0.06 (-5.64 to 5.76)
Annual deaths in people 5 years & o	lder		1	
African	55 (20)	11.5 (6.2)	i	Reference
Americas	45 (16)	13.4 (6.0)	<u> </u>	0.96 (-4.24 to 6.16)
E. Med.	38 (14)	11.9 (6.2)	- -	0.68 (-3.23 to 4.60)
European	26 (10)	14.5 (7.3)		1.51 (-3.85 to 6.86)
SE Asian	44 (16)	13.3 (5.2)		1.96 (-2.07 to 6.00)
W. Pacific	65 (24)	14.9 (8.4)		2.52 (-1.98 to 7.03)
Years lived with disability (YLD)			1	
African	55 (20)	11.6 (5.3)	i	Reference
Americas	45 (16)	13.0 (6.5)		1.59 (-2.77 to 5.94)
E. Med.	38 (14)	12.8 (5.2)	<u>+</u>	2.07 (-1.21 to 5.35)
European	26 (10)	13.9 (6.8)	- <u> </u>	3.29 (-1.19 to 7.78)
SE Asian	44 (16)	11.0 (5.1)	- +	0.19 (-3.19 to 3.57)
W. Pacific	65 (24)	12.7 (5.7)		1.70 (-2.07 to 5.47)
Social and economic burden per cas	e		1	
African	55 (20)	11.6 (5.9)		Reference
Americas	45 (16)	9.0 (4.9)	_	-2.71 (-6.91 to 1.49)
E. Med.	38 (14)	10.6 (5.6)		-1.38 (-4.55 to 1.78)
European	26 (10)	9.6 (5.1)	- <u> </u>	-2.87 (-7.20 to 1.46)
SE Asian	44 (16)	11.9 (4.8)	_+ _	-0.19 (-3.45 to 3.07)
W. Pacific	65 (24)	9.9 (5.5)	-10 -5 0 5 10 Mean Difference	-1.67 (-5.31 to 1.97)

sFigure 11 Adjusted mean difference in criteria weights by region, Criteria 5-8 (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Abbreviations: MD, Mean Difference; CI, Confidence Interval; SD, Standard Deviation; No., Number of Participants; E. Med., Eastern Mediterranean; SE Asian, South East Asian; W. Pacific, Western Pacific

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Disruption due to outbreaks			1	
African	55 (20)	13.4 (6.5)		Reference
Americas	45 (16)	11.7 (5.9)		-2.17 (-7.10 to 2.76)
E. Med.	38 (14)	13.2 (6.8)		-1.71 (-5.43 to 2.00)
European	26 (10)	7.4 (4.6)	— —	-6.95 (-12.02 to -1.87)
SE Asian	44 (16)	12.6 (6.2)	_	-2.08 (-5.90 to 1.75)
W. Pacific	65 (24)	12.4 (7.3)	e	-4.58 (-8.85 to -0.32)
Contribution to inequity				
African	55 (20)	11.5 (6.4)		Reference
Americas	45 (16)	10.7 (6.0)		-0.53 (-5.81 to 4.75)
E. Med.	38 (14)	11.7 (7.3)	<u> </u>	1.59 (-2.39 to 5.56)
European	26 (10)	8.4 (8.2)		-2.05 (-7.49 to 3.38)
SE Asian	44 (16)	12.0 (7.5)		2.43 (-1.67 to 6.53)
W. Pacific	65 (24)	11.7 (7.2)		2.52 (-2.05 to 7.09)
Contribution to antimicrobial resista	nce			
African	55 (20)	13.8 (6.6)		Reference
Americas	45 (16)	14.9 (7.1)		2.68 (-2.70 to 8.06)
E. Med.	38 (14)	14.4 (8.2)		-0.91 (-4.96 to 3.15)
European	26 (10)	15.5 (7.8)		0.69 (-4.85 to 6.23)
SE Asian	44 (16)	13.6 (6.5)		-1.52 (-5.70 to 2.66)
W. Pacific	65 (24)	11.8 (6.7)		-2.55 (-7.22 to 2.11)
Unmet needs for prevention & treatn	nent			
African	55 (20)	12.3 (7.3)		Reference
Americas	45 (16)	10.9 (5.8)		0.85 (-4.13 to 5.83)
E. Med.	38 (14)	10.5 (6.9)		-1.34 (-5.09 to 2.41)
European	26 (10)	12.2 (7.7)	<u> </u>	3.00 (-2.13 to 8.13)
SE Asian	44 (16)	11.6 (5.3)	-	-0.91 (-4.78 to 2.95)
W. Pacific	65 (24)	12.4 (6.7)	-10 -5 0 5 10	2.01 (-2.31 to 6.32)

-10 -5 0 5 10 Mean Difference

sFigure 12 Adjusted mean difference in criteria weights by language of survey, Criteria 1-4 (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Abbreviations: MD, Mean Difference; CI, Confidence Interval; SD, Standard Deviation; No., Number of Participants

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Annual deaths in children under 5 ye	ears		i	
English	189 (69)	14.8 (8.5)	1	Reference
Arabic	2 (1)	8.6 (4.1)	< ■	-6.62 (-19.69 to 6.45)
Chinese	38 (14)	14.1 (8.6)		-0.04 (-6.08 to 6.00)
French	19 (7)	15.4 (7.5)		0.96 (-3.85 to 5.78)
Portuguese	1 (0)	16.4 (0.0)		→ 4.95 (-13.24 to 23.13)
Russian	3 (1)	19.4 (9.6)		0.54 (-11.13 to 12.21)
Spanish	21 (8)	19.2 (8.2)	<u> </u>	4.79 (-1.74 to 11.32)
Annual deaths in people 5 years & o	lder			
English	189 (69)	12.9 (6.3)		Reference
Arabic	2 (1)	11.9 (7.5)		2.19 (-8.14 to 12.51)
Chinese	38 (14)	14.9 (9.9)		1.59 (-3.18 to 6.36)
French	19 (7)	13.4 (5.6)		2.45 (-1.35 to 6.25)
Portuguese	1 (0)	10.9 (0.0)	← •	-2.20 (-16.56 to 12.17)
Russian	3 (1)	13.7 (9.9)	<u> </u>	-1.44 (-10.66 to 7.78)
Spanish	21 (8)	13.5 (4.8)		0.92 (-4.24 to 6.08)
Years lived with disability (YLD)			1	
English	189 (69)	12.5 (5.7)		Reference
Arabic	2 (1)	4.6 (0.1)	<	-8.06 (-16.71 to 0.58)
Chinese	38 (14)	12.3 (6.1)		-1.66 (-5.66 to 2.33)
French	19 (7)	11.0 (4.6)	_	-0.74 (-3.93 to 2.44)
Portuguese	1 (0)	18.2 (0.0)		0.72 (-11.31 to 12.75)
Russian	3 (1)	9.7 (4.4)		-6.21 (-13.93 to 1.51)
Spanish	21 (8)	12.9 (6.3)	B	-1.09 (-5.41 to 3.22)
Social and economic burden per cas	e			
English	189 (69)	10.6 (5.2)		Reference
Arabic	2 (1)	11.5 (1.1)		1.29 (-7.06 to 9.63)
Chinese	38 (14)	9.9 (5.8)		-0.55 (-4.41 to 3.31)
French	19 (7)	11.2 (6.2)	_ +	0.15 (-2.93 to 3.22)
Portuguese	1 (0)	3.6 (0.0)		-7.14 (-18.75 to 4.47)
Russian	3 (1)	14.9 (0.1)	·	6.18 (-1.27 to 13.63)
Spanish	21 (8)	9.1 (5.7)	_	-0.53 (-4.70 to 3.64)
			-10 -5 0 5 10	
			-10 -5 0 5 10 Moon Difference	

sFigure 13 Adjusted mean difference in criteria weights by language of survey, Criteria 5-8 (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Abbreviations: MD, Mean Difference; CI, Confidence Interval; SD, Standard Deviation; No., Number of Participants

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Disruption due to outbreaks			i	
English	189 (69)	11.9 (6.3)	1	Reference
Arabic	2 (1)	16.6 (0.8)		4.70 (-5.09 to 14.49)
Chinese	38 (14)	13.8 (8.5)		3.56 (-0.97 to 8.08)
French	19 (7)	12.0 (6.0)	i	0.24 (-3.36 to 3.85)
Portuguese	1 (0)	3.6 (0.0)	←∎	-10.76 (-24.38 to 2.86)
Russian	3 (1)	6.9 (3.0)		-2.58 (-11.32 to 6.16)
Spanish	21 (8)	11.9 (6.0)	_	-0.54 (-5.43 to 4.35)
Contribution to inequity				
English	189 (69)	11.2 (7.3)		Reference
Arabic	2 (1)	10.7 (5.8)		-3.68 (-14.16 to 6.81)
Chinese	38 (14)	11.1 (7.2)	_	-0.15 (-5.00 to 4.69)
French	19 (7)	11.9 (6.8)	_	-0.71 (-4.57 to 3.15)
Portuguese	1 (0)	9.1 (-)		→ 3.52 (-11.07 to 18.10)
Russian	3 (1)	10.4 (3.2)		→ 5.67 (-3.69 to 15.03)
Spanish	21 (8)	11.2 (6.2)		2.48 (-2.76 to 7.72)
Contribution to antimicrobial resist	ance			
English	189 (69)	13.8 (7.0)		Reference
Arabic	2 (1)	23.2 (12.5)		→ 10.23 (-0.46 to 20.92)
Chinese	38 (14)	11.8 (7.0)		1.76 (-3.18 to 6.70)
French	19 (7)	15.8 (6.9)		0.96 (-2.98 to 4.89)
Portuguese	1 (0)	16.4 (0.0)		→ 1.27 (-13.60 to 16.14)
Russian	3 (1)	16.0 (12.2)	· · · ·	2.92 (-6.63 to 12.47)
Spanish	21 (8)	12.8 (6.3)		1.44 (-3.90 to 6.78)
Unmet needs for prevention & trea	tment			
English	189 (69)	12.2 (6.5)		Reference
Arabic	2 (1)	12.9 (4.4)		-0.05 (-9.95 to 9.84)
Chinese	38 (14)	11.9 (7.5)		-4.50 (-9.08 to 0.07)
French	19 (7)	9.4 (6.5)		-3.31 (-6.96 to 0.34)
Portuguese	1 (0)	21.8 (-)	<u> </u>	▶ 9.64 (-4.12 to 23.41)
Russian	3 (1)	8.9 (7.0)		-5.08 (-13.92 to 3.76)
Spanish	21 (8)	9.4 (5.2)	-10 -5 0 5 10	-4.58 (-9.53 to 0.36)
			Mean Difference	

sFigure 14 Adjusted mean difference in criteria weights by participant characteristics: Years of experience (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Abbreviations: MD, Mean Difference; CI, Confidence Interval; SD, Standard Deviation; No., Number of Participants

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Annual deaths in children under 5 ye	ears	-	I	
Up to 10 years	32 (12)	15.3 (9.4)	1	Reference
11-20 years	89 (33)	15.2 (8.9)	_ _	0.32 (-3.42 to 4.05)
21-30 years	73 (27)	15.8 (7.8)		0.73 (-3.08 to 4.54)
More than 30 years	79 (29)	14.3 (8.1)	_	-1.10 (-4.91 to 2.71)
Annual deaths in people 5 years & o	lder			
Up to 10 years	32 (12)	13.7 (9.2)		Reference
11-20 years	89 (33)	13.1 (6.6)	_ + _	-0.21 (-3.16 to 2.74)
21-30 years	73 (27)	12.7 (6.0)	-	-0.77 (-3.78 to 2.24)
More than 30 years	79 (29)	13.7 (6.6)	_ _ _	0.08 (-2.93 to 3.09)
Years lived with disability (YLD)	. ,			. ,
Up to 10 years	32 (12)	12.2 (5.7)		Reference
11-20 years	89 (33)	12.9 (6.0)	_ _	0.68 (-1.79 to 3.14)
21-30 years	73 (27)	11.6 (5.3)	_	-0.66 (-3.18 to 1.86)
More than 30 years	79 (29)	12.5 (5.8)	_ +	0.33 (-2.19 to 2.85)
Social and economic burden per cas			I I	
Up to 10 years	32 (12)	11.4 (4.8)	1	Reference
11-20 years	89 (33)	10.5 (6.0)		-0.30 (-2.68 to 2.08)
21-30 years	73 (27)	9.4 (5.1)		-1.09 (-3.53 to 1.34)
More than 30 years	79 (29)	11.1 (5.2)		0.45 (-1.99 to 2.88)
Disruption due to outbreaks	, ,			, , ,
Up to 10 years	32 (12)	10.1 (6.0)		Reference
11-20 years	89 (33)	11.9 (6.0)		1.18 (-1.62 to 3.97)
21-30 years	73 (27)	12.8 (7.8)	¦ +- =	2.33 (-0.52 to 5.18)
More than 30 years	79 (29)	12.7 (6.2)	÷	2.41 (-0.44 to 5.26)
Contribution to inequity				
Up to 10 years	32 (12)	10.1 (5.9)		Reference
11-20 years	89 (33)	10.7 (5.9)	_ i _	-0.22 (-3.22 to 2.77)
21-30 years	73 (27)	12.3 (8.3)		2.06 (-0.99 to 5.12)
More than 30 years	79 (29)	11.3 (7.4)		1.05 (-2.01 to 4.10)
Contribution to antimicrobial resista	nce			
Up to 10 years	32 (12)	14.9 (7.9)		Reference
11-20 years	89 (33)	13.3 (7.0)		-1.90 (-4.96 to 1.15)
21-30 years	73 (27)	13.8 (6.6)		-1.99 (-5.11 to 1.13)
More than 30 years	79 (29)	13.6 (7.3)	_	-2.08 (-5.20 to 1.03)
Unmet needs for prevention & treatm				
Up to 10 years	32 (12)	12.3 (7.9)	1	Reference
11-20 years	89 (33)	12.4 (6.8)	_ _	0.47 (-2.36 to 3.29)
21-30 years	73 (27)	11.6 (6.2)		-0.60 (-3.49 to 2.28)
More than 30 years	79 (29)	10.9 (6.1)		-1.13 (-4.02 to 1.75)
-			-10 -5 0 5 10	

Mean Difference

sFigure 15 Adjusted mean difference in criteria weights by participant characteristics: Areas of expertise and Annual deaths in children under 5 years (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Annual deaths in children unde	r 5 years		i	
Disease epidemiology				
No	130 (48)	14.5 (8.0)		Reference
Yes	143 (52)	15.7 (8.8)		0.31 (-2.06 to 2.68)
Econ & health financing				
No	254 (93)	15.0 (8.3)	1	Reference
Yes	19 (7)	15.9 (10.1)	<u> </u>	1.32 (-3.33 to 5.96)
Health care			1	
No	163 (60)	15.0 (8.8)		Reference
Yes	110 (40)	15.2 (7.9)		-0.01 (-2.57 to 2.55)
Health policy			i i	
No	193 (71)	15.2 (8.5)		Reference
Yes	80 (29)	15.0 (8.3)	e ¦	-0.71 (-3.39 to 1.97)
Regulatory affairs			1	
No	253 (93)	15.3 (8.6)		Reference
Yes	20 (7)	12.4 (5.6)		-4.17 (-9.66 to 1.31)
Vaccine R&D				
No	150 (55)	14.6 (7.8)		Reference
Yes	123 (45)	15.7 (9.1)	_ _	0.41 (-2.22 to 3.04)
Other				
No	242 (89)	15.5 (8.6)	1	Reference
Yes	31 (11)	12.1 (5.9)	-10 -5 0 5 10 Mean Difference	-3.17 (-6.70 to 0.36)

sFigure 16 Adjusted mean difference in criteria weights by participant characteristics: Areas of expertise and Annual deaths in people 5 years and older (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Annual deaths in people 5	years & older			
Disease epidemiology				
No	130 (48)	13.4 (6.6)	1	Reference
Yes	143 (52)	13.1 (6.9)		-1.10 (-2.97 to 0.77)
Econ & health financing				
No	254 (93)	13.1 (6.4)		Reference
Yes	19 (7)	15.4 (10.7)	⊹ ∎	3.02 (-0.65 to 6.70)
Health care			1	
No	163 (60)	13.6 (7.4)		Reference
Yes	110 (40)	12.8 (5.7)		-0.13 (-2.15 to 1.90)
Health policy				
No	193 (71)	13.0 (6.4)		Reference
Yes	80 (29)	13.7 (7.7)	_ 	1.09 (-1.02 to 3.21)
Regulatory affairs				
No	253 (93)	13.4 (6.9)	1	Reference
Yes	20 (7)	11.2 (5.4)	_	-3.56 (-7.90 to 0.77)
Vaccine R&D				
No	150 (55)	12.8 (7.0)		Reference
Yes	123 (45)	13.7 (6.5)	_ 	0.71 (-1.37 to 2.78)
Other				
No	242 (89)	13.3 (6.8)		Reference
Yes	31 (11)	12.7 (6.5)	-10 -5 0 5 10 Mean Difference	0.10 (-2.89 to 2.69)

sFigure 17 Adjusted mean difference in criteria weights by participant characteristics: Areas of expertise and Years lived with disability (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Abbreviations: MD, Mean Difference; CI, Confidence Interval; SD, Standard Deviation; No., Number of Participants; Econ, Economics; R&D, Research and Development

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Years lived with disability ((YLD)		1	
Disease epidemiology				
No	130 (48)	12.0 (5.5)		Reference
Yes	143 (52)	12.0 (5.5)		-1.09 (-2.65 to 0.48)
Econ & health financing				
No	254 (93)	12.4 (5.8)	1	Reference
Yes	19 (7)	11.1 (4.4)		-0.57 (-3.65 to 2.50)
Health care			1	
No	163 (60)	12.7 (5.7)	1	Reference
Yes	110 (40)	11.9 (5.8)		-1.50 (-3.19 to 0.19)
Health policy			1	
No	193 (71)	12.3 (5.7)		Reference
Yes	80 (29)	12.4 (5.8)	- -	0.75 (-1.02 to 2.53)
Regulatory affairs			1	
No	253 (93)	12.4 (5.7)	1	Reference
Yes	20 (7)	12.3 (6.2)	_	-0.60 (-4.22 to 3.03)
Vaccine R&D				
No	150 (55)	12.3 (5.9)		Reference
Yes	123 (45)	12.4 (5.9)		0.07 (-1.67 to 1.81)
Other				
No	242 (89)	12.4 (6.4)	1	Reference
Yes	31 (11)	12.4 (6.4)	-10 -5 0 5 10 Mean Difference	-0.01 (-2.35 to 2.32)

50

sFigure 18 Adjusted mean difference in criteria weights by participant characteristics: Areas of expertise and Social and economic burden per case (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Social and economic burden	per case		Ì	
Disease epidemiology				
No	130 (48)	10.4 (5.3)		Reference
Yes	143 (52)	10.6 (5.5)		-0.13 (-1.64 to 1.38)
Econ & health financing				
No	254 (93)	10.3 (5.2)		Reference
Yes	19 (7)	12.5 (7.5)	_	0.51 (-2.46 to 3.48)
Health care			1	
No	163 (60)	10.7(5.5)		Reference
Yes	110 (40)	10.2 (5.3)		-0.42 (-2.05 to 1.22)
Health policy			1	
No	193 (71)	10.2 (5.2)		Reference
Yes	80 (29)	11.3 (5.9)	 	1.23 (-0.48 to 2.94)
Regulatory affairs				
No	253 (93)	10.5(5.4)		Reference
Yes	20 (7)	10.7 (6.2)		-0.46 (-3.97 to 3.04)
Vaccine R&D				
No	150 (55)	10.6 (5.6)		Reference
Yes	123 (45)	10.4 (5.2)	-	-0.04 (-1.71 to 1.64)
Other				
No	242 (89)	10.6 (5.0)	1	Reference
Yes	31 (11)	9.4 (5.0)		-1.02 (-3.28 to 1.23)

sFigure 19 Adjusted mean difference in criteria weights by participant characteristics: Areas of expertise and Disruption due to outbreaks (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Disruption due to outbre	aks			
Disease epidemiology				
No	130 (48)	12.2 (6.5)	1	Reference
Yes	143 (52)	12.1 (6.7)		-0.70 (-2.47 to 1.07)
Econ & health financing			1	
No	254 (93)	12.2 (6.6)	1	Reference
Yes	19 (7)	11.9 (6.9)	= 1	-0.74 (-4.23 to 2.74)
Health care			1	
No	163 (60)	12.0 (6.8)		Reference
Yes	110 (40)	12.4 (6.4)		-0.38 (-2.30 to 1.53)
Health policy			1	
No	193 (71)	12.2 (6.4)	1	Reference
Yes	80 (29)	12.0 (7.1)	- + -	-0.17 (-2.18 to 1.83)
Regulatory affairs			1	
No	253 (93)	11.9 (6.4)	I I	Reference
Yes	20 (7)	15.2 (8.7)	¦	5.53 (1.42 to 9.64)
Vaccine R&D			1	
No	150 (55)	12.8 (6.4)		Reference
Yes	123 (45)	11.3 (6.9)		-0.65 (-2.62 to 1.32)
Other				
No	242 (89)	12.0 (6.6)	1	Reference
Yes	31 (11)	13.2 (6.8)	-10 -5 0 5 10 Mean Difference	0.89 (-1.75 to 3.54)

sFigure 20 Adjusted mean difference in criteria weights by participant characteristics: Areas of expertise and Contribution to inequity (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Contribution to inequ	uity		i	
Disease epidemiology	,			
No	130 (48)	10.4 (7.5)		Reference
Yes	143 (52)	12.0 (7.5)		2.73 (0.83 to 4.63)
Econ & health financin	ng		i I	
No	254 (93)	11.3 (7.1)	1	Reference
Yes	19 (7)	9.8 (6.8)	-	-1.46 (-5.19 to 2.26)
Health care			1	
No	163 (60)	10.4 (6.7)		Reference
Yes	110 (40)	12.4 (7.4)		2.68 (0.62 to 4.73)
Health policy				
No	193 (71)	11.4 (6.9)		Reference
Yes	80 (29)	10.8 (6.9)	- - - -	-1.37 (-3.51 to 0.78)
Regulatory affairs			1	
No	253 (93)	11.4 (7.1)	1	Reference
Yes	20 (7)	9.6 (6.4)	_	-1.68 (-6.08 to 2.72)
Vaccine R&D				
No	150 (55)	11.7 (7.2)		Reference
Yes	123 (45)	10.6 (6.8)	_ _	-1.29 (-3.40 to 0.82)
Other			i I	
No	242 (89)	11.2 (7.2)	1	Reference
Yes	31 (11)	11.2 (6.2)	-10 -5 0 5 10 Mean Difference	0.13 (-2.70 to 2.96)

sFigure 21 Adjusted mean difference in criteria weights by participant characteristics: Areas of expertise and Contribution to antimicrobial resistance (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Contribution to antimicrobial	resistance		i	
Disease epidemiology				
No	130 (48)	13.4 (7.4)	1	Reference
Yes	143 (52)	13.5 (6.8)	- i -	-0.13 (-2.07 to 1.80)
Econ & health financing				
No	254 (93)	13.7 (7.2)	1	Reference
Yes	19 (7)	13.7 (6.2)	_	-0.30 (-4.10 to 3.50)
Health care			1	
No	163 (60)	13.6 (7.0)		Reference
Yes	110 (40)	13.8 (7.2)		-0.31 (-2.40 to 1.79)
Health policy				
No	193 (71)	13.5 (7.0)		Reference
Yes	80 (29)	14.2 (7.4)	_ _	0.69 (-1.50 to 2.88)
Regulatory affairs			1	
No	253 (93)	13.7 (7.1)	1	Reference
Yes	20 (7)	13.7 (7.3)	_	1.55 (-2.94 to 6.04)
Vaccine R&D				
No	150 (55)	14.0 (6.8)		Reference
Yes	123 (45)	13.3 (7.4)		-0.30 (-2.45 to 1.85)
Other				
No	242 (89)	13.4 (7.0)	1	Reference
Yes	31 (11)	16.4 (7.2)	-10 -5 0 5 10 Mean Difference	_ 2.30 (-0.59 to 5.19)

sFigure 22 Adjusted mean difference in criteria weights by participant characteristics: Areas of expertise and Unmet needs for prevention and treatment (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Unmet needs for preventio	n & treatment		i	
Disease epidemiology				
No	130 (48)	12.4 (6.8)		Reference
Yes	143 (52)	11.2 (6.4)		0.11 (-1.68 to 1.90)
Econ & health financing				
No	254 (93)	11.9 (6.6)		Reference
Yes	19 (7)	9.7 (6.0)	- +	-1.76 (-5.28 to 1.75)
Health care			1	
No	163 (60)	12.0 (7.0)		Reference
Yes	110 (40)	11.3 (6.0)	-	0.07 (-1.87 to 2.01)
Health policy				
No	193 (71)	12.2 (6.6)		Reference
Yes	80 (29)	10.6 (6.3)	- -	-1.52 (-3.55 to 0.50)
Regulatory affairs				
No	253 (93)	11.5 (6.4)		Reference
Yes	20 (7)	15.0 (7.7)	÷	3.40 (-0.76 to 7.55)
Vaccine R&D				
No	150 (55)	11.1 (6.4)		Reference
Yes	123 (45)	12.5 (6.7)		1.10 (-0.89 to 3.09)
Other				
No	242 (89)	11.6 (6.5)		Reference
Yes	31 (11)	12.7 (7.3)	-10 -5 0 5 10 Mean Difference	_ 0.99 (-1.69 to 3.66)

sFigure 23 Adjusted mean difference in criteria weights by participant characteristics: Type of work organisation and Annual deaths in children under 5 years (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Abbreviations: MD, Mean Difference; CI, Confidence Interval; SD, Standard Deviation; No., Number of Participants; NGO, Non-Governmental Organization

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Annual deaths in children un	der 5 years		1	
Academic institution				
No	166 (61)	16.0 (7.8)	1	Reference
Yes	107 (39)	16.0 (9.2)	<u> </u>	1.20 (-1.61 to 4.01)
Funding agency			1	
No	264 (97)	15.1 (8.4)		Reference
Yes	9 (3)	15.6 (8.6)		1.24 (-5.31 to 7.78)
Government				
No	183 (67)	15.0 (8.4)		Reference
Yes	90 (33)	15.4 (8.5)	- -	0.49 (-2.31 to 3.28)
Health care provider			1	
No	223 (82)	16.0 (8.6)	1	Reference
Yes	50 (18)	16.0 (7.7)	_ + _	0.06 (-3.21 to 3.33)
NGO				
No	248 (91)	15.2 (8.5)		Reference
Yes	25 (9)	13.6 (7.8)		-1.16 (-5.17 to 2.84)
Pharmaceutical industry				
No	251 (92)	13.4 (8.4)	1	Reference
Yes	22 (8)	13.4 (8.5)		-1.05 (-5.87 to 3.78)
Regulatory agency			1	
No	261 (96)	14.4 (8.4)		Reference
Yes	12 (4)	14.4 (8.5)		3.08 (-3.92 to 10.08)
United Nations agency				
No	239 (88)	15.0 (8.3)		Reference
Yes	34 (12)	15.5 (9.0)	_	0.59 (-3.56 to 4.74)
Other				
No	255 (93)	15.2 (8.6)	1	Reference
Yes	18 (7)	13.1 (5.3)	-10 -5 0 5 10 Mean Difference	0.93 (-5.55 to 3.70)

sFigure 24 Adjusted mean difference in criteria weights by participant characteristics: Type of work organisation and Annual deaths in people 5 years and older (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Abbreviations: MD, Mean Difference; CI, Confidence Interval; SD, Standard Deviation; No., Number of Participants; NGO, Non-Governmental Organization

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Annual deaths in people 5	years & older			
Academic institution				
No	166 (61)	12.7 (6.4)		Reference
Yes	107 (39)	14.1 (7.3)	÷,∎	0.95 (-1.27 to 3.16)
Funding agency			1	
No	264 (97)	13.2 (6.8)		Reference
Yes	9 (3)	14.1 (7.2)		0.11 (-5.06 to 5.28)
Government				
No	183 (67)	13.7 (7.3)		Reference
Yes	90 (33)	12.3 (5.5)		-1.39 (-3.60 to 0.82)
Health care provider			1	
No	223 (82)	13.4 (7.0)	1	Reference
Yes	50 (18)	12.5 (5.9)	- -	-0.50 (-3.09 to 2.08)
NGO				
No	248 (91)	13.6 (6.9)		Reference
Yes	25 (9)	9.8 (4.6)	- - -	-3.98 (-7.15 to -0.82)
Pharmaceutical industry				
No	251 (92)	13.2 (6.6)	1	Reference
Yes	22 (8)	13.8 (8.5)		-1.29 (-5.10 to 2.52)
Regulatory agency				
No	261 (96)	13.4 (6.8)		Reference
Yes	12 (4)	10.8 (5.6)		1.37 (-4.16 to 6.90)
United Nations agency				
No	239 (88)	14.7 (6.8)		Reference
Yes	34 (12)	14.7 (6.8)		1.69 (-1.59 to 4.96)
Other			1	
No	255 (93)	13.3 (6.8)		Reference
Yes	18 (7)	12.5 (6.3)	-10 -5 0 5 10 Mean Difference	0.58 (-4.23 to 3.08)

sFigure 25 Adjusted mean difference in criteria weights by participant characteristics: Type of work organisation and Years lived with disability (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Abbreviations: MD, Mean Difference; CI, Confidence Interval; SD, Standard Deviation; No., Number of Participants; NGO, Non-Governmental Organization

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Years lived with disability	(YLD)			
Academic institution				
No	166 (61)	12.4 (5.6)	1	Reference
Yes	107 (39)	12.3 (5.9)	- = ¹ / ₁	-1.30 (-3.16 to 0.55)
Funding agency			1	
No	264 (97)	12.4 (5.8)		Reference
Yes	9 (3)	11.2 (4.3)		-2.75 (-7.08 to 1.58)
Government				
No	183 (67)	12.9 (5.8)		Reference
Yes	90 (33)	11.3 (5.4)		-2.41 (-4.26 to -0.56)
Health care provider			1	
No	223 (82)	12.0 (5.4)	1	Reference
Yes	50 (18)	13.9 (6.7)		2.21 (0.04 to 4.37)
NGO				
No	248 (91)	12.4 (5.8)	1	Reference
Yes	25 (9)	12.2 (4.9)		-0.99 (-3.64 to 1.67)
Pharmaceutical industry				
No	251 (92)	12.4 (6.8)		Reference
Yes	22 (8)	12.1 (6.8)	e	-2.23 (-5.42 to 0.96)
Regulatory agency				
No	261 (96)	12.3 (5.8)		Reference
Yes	12 (4)	13.2 (4.8)		0.85 (-3.78 to 5.48)
United Nations agency				
No	239 (88)	12.4 (5.8)		Reference
Yes	34 (12)	11.9 (5.5)		-2.13 (-4.88 to 0.61)
Other			1	
No	255 (93)	12.4 (5.8)	1	Reference
Yes	18 (7)	11.2 (4.4)	-10 -5 0 5 10	1.77 (-4.83 to 1.29)

sFigure 26 Adjusted mean difference in criteria weights by participant characteristics: Type of work organisation and Social and economic burden per case (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Abbreviations: MD, Mean Difference; CI, Confidence Interval; SD, Standard Deviation; No., Number of Participants; NGO, Non-Governmental Organization

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Social and economic burde	n per case		1	
Academic institution				
No	166 (61)	10.5 (5.5)	1	Reference
Yes	107 (39)	10.4 (5.3)	- 	0.54 (-1.25 to 2.33)
Funding agency			1	
No	264 (97)	10.5 (5.4)	1	Reference
Yes	9 (3)	8.7 (5.8)		-2.19 (-6.37 to 1.99)
Government				
No	183 (67)	10.4 (5.5)	1	Reference
Yes	90 (33)	10.6 (5.2)	- + -	-0.04 (-1.82 to 1.75)
Health care provider			1	
No	223 (82)	10.7 (5.3)	1	Reference
Yes	50 (18)	9.7 (5.7)		-0.23 (-2.32 to 1.86)
NGO				
No	248 (91)	10.4 (5.3)		Reference
Yes	25 (9)	11.0 (6.4)	_ _	0.32 (-2.24 to 2.88)
Pharmaceutical industry				
No	251 (92)	10.6 (5.5)	1	Reference
Yes	22 (8)	9.4 (4.6)	_ + _	-0.08 (-3.16 to 3.00)
Regulatory agency			1	
No	261 (96)	10.4 (5.4)	1	Reference
Yes	12 (4)	11.0 (5.8)		0.72 (-3.75 to 5.19)
United Nations agency				
No	239 (88)	10.3 (5.3)		Reference
Yes	34 (12)	11.5 (5.9)		0.80 (-1.85 to 3.45)
Other				
No	255 (93)	10.4 (5.4)		Reference
Yes	18 (7)	10.8 (5.3)	-10 -5 0 5 10 Mean Difference	_ 0.71 (-2.24 to 3.67)

sFigure 27 Adjusted mean difference in criteria weights by participant characteristics: Type of work organisation and Disruption due to outbreaks (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Abbreviations: MD, Mean Difference; CI, Confidence Interval; SD, Standard Deviation; No., Number of Participants; NGO, Non-Governmental Organization

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Disruption due to outbrea	iks		1	
Academic institution				
No	166 (61)	12.3 (6.5)	1	Reference
Yes	107 (39)	11.9 (6.8)		0.34 (-1.76 to 2.45)
Funding agency			1	
No	264 (97)	12.0 (6.6)		Reference
Yes	9 (3)	15.6 (6.7)		5.49 (0.59 to 10.39)
Government				
No	183 (67)	12.2 (6.7)		Reference
Yes	90 (33)	12.0 (6.5)		0.58 (-1.51 to 2.68)
Health care provider			1	
No	223 (82)	12.0 (6.4)	1	Reference
Yes	50 (18)	12.9 (7.6)	+	1.86 (-0.59 to 4.31)
NGO				
No	248 (91)	12.0 (6.6)		Reference
Yes	25 (9)	13.1 (6.4)		1.37 (-1.63 to 4.37)
Pharmaceutical industry				
No	251 (92)	12.2 (6.4)	1	Reference
Yes	22 (8)	11.2 (8.6)	=	-0.80 (-4.41 to 2.82)
Regulatory agency				
No	261 (96)	12.1 (6.7)		Reference
Yes	12 (4)	12.6 (5.7)		-4.65 (-9.89 to 0.60)
United Nations agency				
No	239 (88)	12.1 (6.5)		Reference
Yes	34 (12)	12.7 (7.6)	- <u>+</u>	1.86 (-1.25 to 4.97)
Other				
No	255 (93)	12.1 (6.6)		Reference
Yes	18 (7)	13.3 (6.3)	-10 -5 0 5 10	1.01 (-2.45 to 4.48)

sFigure 28 Adjusted mean difference in criteria weights by participant characteristics: Type of work organisation and Contribution to inequity (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Abbreviations: MD, Mean Difference; CI, Confidence Interval; SD, Standard Deviation; No., Number of Participants; NGO, Non-Governmental Organization

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Contribution to inequit	ty		l	
Academic institution				
No	166 (61)	11.4 (7.2)	1	Reference
Yes	107 (39)	10.9 (6.8)	-+-	0.16 (-2.09 to 2.41)
Funding agency			1	
No	264 (97)	11.2 (7.1)		Reference
Yes	9 (3)	12.1 (4.7)		1.14 (-4.11 to 6.39)
Government				
No	183 (67)	10.6 (6.4)		Reference
Yes	90 (33)	12.5 (8.0)		2.15 (-0.10 to 4.39)
Health care provider			1	
No	223 (82)	11.4 (7.1)		Reference
Yes	50 (18)	10.4 (6.7)		-2.65 (-5.27 to -0.02)
NGO				
No	248 (91)	11.3 (7.0)		Reference
Yes	25 (9)	10.4 (7.7)		-1.13 (-4.35 to 2.08)
Pharmaceutical industry	•			
No	251 (92)	11.1 (7.0)	1	Reference
Yes	22 (8)	13.1 (6.9)	- 	5.06 (1.19 to 8.93)
Regulatory agency				
No	261 (96)	11.3 (7.0)		Reference
Yes	12 (4)	9.7 (7.1)		0.07 (-5.55 to 5.68)
United Nations agency				
No	239 (88)	11.2 (7.0)		Reference
Yes	34 (12)	11.1 (7.7)	- + -	-0.23 (-3.56 to 3.10)
Other				
No	255 (93)	11.3 (7.2)		Reference
Yes	18 (7)	10.2 (5.0)	-10 -5 0 5 10 Mean Difference	-0.87 (-4.58 to 2.84)

sFigure 29 Adjusted mean difference in criteria weights by participant characteristics: Type of work organisation and Contribution to antimicrobial resistance (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Abbreviations: MD, Mean Difference; CI, Confidence Interval; SD, Standard Deviation; No., Number of Participants; NGO, Non-Governmental Organization

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Contribution to antimicrobi	al resistance		1	
Academic institution				
Νο	166 (61)	14.3 (7.0)		Reference
Yes	107 (39)	12.8 (7.1)		-1.54 (-3.83 to 0.76)
Funding agency			1	
No	264 (97)	13.7 (7.0)		Reference
Yes	9 (3)	12.9 (8.6)		-0.33 (-5.68 to 5.02)
Government				
Νο	183 (67)	13.2 (7.3)		Reference
Yes	90 (33)	14.7 (6.5)	_ 	1.01 (-1.27 to 3.30)
Health care provider				
No	223 (82)	13.8 (7.1)	1	Reference
Yes	50 (18)	13.5 (7.0)	_	-0.14 (-2.82 to 2.53)
NGO				
No	248 (91)	13.5 (7.0)		Reference
Yes	25 (9)	16.0 (7.6)		2.86 (-0.42 to 6.14)
Pharmaceutical industry				
No	251 (92)	13.6 (6.9)	1	Reference
Yes	22 (8)	14.9 (8.6)	- <u> </u>	1.31 (-2.63 to 5.26)
Regulatory agency				
No	261 (96)	13.7 (7.1)		Reference
Yes	12 (4)	13.6 (7.7)		-2.12 (-7.84 to 3.61)
United Nations agency				
No	239 (88)	14.0 (7.1)		Reference
Yes	34 (12)	11.9 (6.8)		-1.11 (-4.51 to 2.28)
Other			1	
No	255 (93)	13.6 (7.1)	1	Reference
Yes	18 (7)	14.5 (6.3)	-10 -5 0 5 10	_ 0.35 (-3.43 to 4.13)

sFigure 30 Adjusted mean difference in criteria weights by participant characteristics: Type of work organisation and Unmet needs for prevention and treatment (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Abbreviations: MD, Mean Difference; CI, Confidence Interval; SD, Standard Deviation; No., Number of Participants; NGO, Non-Governmental Organization

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Unmet needs for prevention &	treatment		l	
Academic institution				
No	166 (61)	11.9 (6.7)		Reference
Yes	107 (39)	11.5 (6.4)	-	-0.35 (-2.48 to 1.77)
Funding agency			1	
No	264 (97)	11.8 (6.6)		Reference
Yes	9 (3)	9.8 (4.7)		-2.72 (-7.67 to 2.24)
Government				
No	183 (67)	12.0 (6.8)		Reference
Yes	90 (33)	11.2 (6.2)	_ _	-0.39 (-2.51 to 1.72)
Health care provider				
No	223 (82)	11.9 (6.8)	1	Reference
Yes	50 (18)	11.0 (5.5)		-0.60 (-3.08 to 1.88)
NGO			I	
No	248 (91)	11.5 (6.4)		Reference
Yes	25 (9)	13.8 (7.7)		2.72 (-0.32 to 5.75)
Pharmaceutical industry			1	
No	251 (92)	11.7 (6.6)		Reference
Yes	22 (8)	12.2 (6.5)	-	-0.94 (-4.59 to 2.72)
Regulatory agency			1	
No	261 (96)	11.6 (6.5)		Reference
Yes	12 (4)	14.7 (8.3)	· · · · · ·	0.68 (-4.62 to 5.99)
United Nations agency				
No	239 (88)	11.9 (6.5)		Reference
Yes	34 (12)	10.7 (7.2)		-1.46 (-4.60 to 1.69)
Other			1	
No	255 (93)	11.5 (6.5)	1	Reference
Yes	18 (7)	14.4 (7.0)	-10 -5 0 5 10	_ 2.07 (-1.43 to 5.58)

sFigure 31 Adjusted mean difference in criteria weights by participant characteristics: Gavi eligibility of participants' country of work (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Abbreviations: MD, Mean Difference; CI, Confidence Interval; SD, Standard Deviation; No., Number of Participants

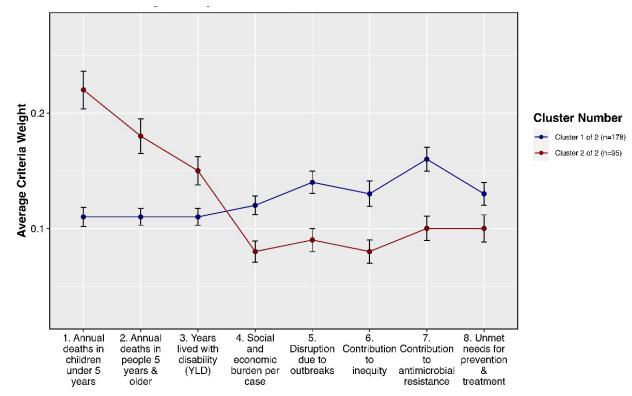
Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)
Annual deaths in children u	nder 5 years		1	
Not eligible	205 (75)	15.4 (8.5)	I	Reference
Eligible	68 (25)	14.2 (8.0)		1.02 (-3.78 to 5.83)
Annual deaths in people 5 y	ears & older			
Not eligible	205 (75)	13.7 (6.8)		Reference
Eligible	68 (25)	11.8 (6.7)	_ _	0.35 (-3.45 to 4.15)
Years lived with disability (YLD)			
Not eligible	205 (75)	12.6 (5.9)		Reference
Eligible	68 (25)	11.6 (5.0)		1.46 (-1.72 to 4.64)
Social and economic burde	n per case		1	
Not eligible	205 (75)	10.2 (5.4)		Reference
Eligible	68 (25)	11.2 (5.4)		-1.97 (-5.04 to 1.10)
Disruption due to outbreaks	5			
Not eligible	205 (75)	12.0 (6.8)		Reference
Eligible	68 (25)	12.6 (6.1)		-2.03 (-5.63 to 1.57)
Contribution to inequity				
Not eligible	205 (75)	10.8 (7.0)	1	Reference
Eligible	68 (25)	12.4 (7.0)		3.60 (-0.26 to 7.45)
Contribution to antimicrobia	al resistance			
Not eligible	205 (75)	13.7 (7.3)		Reference
Eligible	68 (25)	13.8 (6.6)	_ _	-3.04 (-6.97 to 0.89)
Unmet needs for prevention	& treatment			
Not eligible	205 (75)	11.6 (6.4)		Reference
Eligible	68 (25)	12.3 (7.2)	-10 -5 0 5 10	_ 0.61 (-3.03 to 4.25)

sFigure 32 Adjusted mean difference in criteria weights by participant characteristics: World Bank classification of participants' country of work (n=273)

Multivariate linear regression was used to compare mean differences in criteria weights by participant characteristics. Analysis was based on first survey submission per survey type by a participant in which all trade-off questions and post-survey were complete. Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Criteria weights are expressed as a percentage. Bars on plot indicate 95% confidence interval.

Abbreviations: MD, Mean Difference; CI, Confidence Interval; SD, Standard Deviation; No., Number of Participants

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)		
Annual deaths in children under 5 years						
High income	68 (25)	16.3 (9.0)		Reference		
Upper middle income	85 (31)	15.5 (8.4)		-0.82 (-5.75 to 4.11)		
Lower middle income	90 (33)	14.3 (8.1)		-1.35 (-6.29 to 3.60)		
Low income	30 (11)	13.6 (8.0)		-2.74 (-9.39 to 3.90)		
Annual deaths in people 5 years	& older		1			
High income	68 (25)	14.2 (6.8)		Reference		
Upper middle income	85 (31)	13.9 (7.5)		-1.40 (-5.30 to 2.49)		
Lower middle income	90 (33)	12.7 (6.1)		-1.55 (-5.46 to 2.36)		
Low income	30 (11)	10.9 (5.9)	<u>+</u>	-3.42 (-8.67 to 1.83)		
Years lived with disability (YLD)						
High income	68 (25)	13.7 (6.5)	1	Reference		
Upper middle income	85 (31)	12.6 (5.8)	_ +	0.14 (-3.13 to 3.40)		
Lower middle income	90 (33)	11.6 (5.1)	— •	-0.90 (-4.17 to 2.37)		
Low income	30 (11)	11.0 (5.2)		-1.82 (-6.22 to 2.57)		
Social and economic burden pe	r case					
High income	68 (25)	9.4 (4.9)		Reference		
Upper middle income	85 (31)	10.2 (5.9)		0.66 (-2.49 to 3.81)		
Lower middle income	90 (33)	10.9 (4.8)	+-	0.36 (-2.80 to 3.52)		
Low income	30 (11)	12.5 (6.0)	-10 -5 0 5 10	2.34 (-1.90 to 6.59)		


Mean Difference

Characteristic	No. (%)	Mean (SD)		Adjusted MD (95% CI)	
Disruption due to outbreaks					
High income	68 (25)	9.8 (5.6)		Reference	
Upper middle income	85 (31)	12.9 (7.0)		0.49 (-3.20 to 4.18)	
Lower middle income	90 (33)	13.0 (7.0)	_	1.09 (-2.62 to 4.79)	
Low income	30 (11)	13.0 (5.2)		1.33 (-3.65 to 6.31)	
Contribution to inequity			1		
High income	68 (25)	10.6 (7.9)		Reference	
Upper middle income	85 (31)	10.7 (6.5)		-0.54 (-4.50 to 3.41)	
Lower middle income	90 (33)	12.0 (6.7)		-1.21 (-5.18 to 2.75)	
Low income	30 (11)	12.1 (7.3)		-0.58 (-5.91 to 4.75)	
Contribution to antimicrobial resistance					
High income	68 (25)	14.5 (8.1)		Reference	
Upper middle income	85 (31)	12.3 (6.3)	_ +	-2.08 (-6.11 to 1.95)	
Lower middle income	90 (33)	14.0 (6.7)		1.75 (-2.30 to 5.79)	
Low income	30 (11)	14.9 (7.4)		2.61 (-2.83 to 8.04)	
Unmet needs for prevention & t	treatment				
High income	68 (25)	11.5 (6.2)		Reference	
Upper middle income	85 (31)	11.9 (6.9)		3.55 (-0.18 to 7.28)	
Lower middle income	90 (33)	11.6 (6.6)	- +	1.82 (-1.92 to 5.56)	
Low income	30 (11)	12.0 (6.7)	-10 -5 0 5 10	2.28 (-2.75 to 7.32)	

Characterising group patterns in criteria weights

sFigure 33 Criteria weights by cluster (2-cluster model) (n=273)

Error bars show 95% confidence interval.

Assessing whether groups of respondents sharing similar patterns in criteria weights also shared similar biographical backgrounds or impressions of the survey

sFigure 34 Participant Factors associated with cluster membership, Years of experience and Areas of expertise

A generalized linear model was used to compare odds of membership in a specific cluster by participant characteristics. Cluster #1 and Cluster #2 columns represent number of subjects (%). Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Bars on plot indicate 95% confidence interval.

Characteristic	Cluster #1 (n=178)	Cluster #2 (n=95)	6	Adjusted OR (95% CI)
Years of Experience			1	
Up to 10 years	24 (14)	8 (8)		Reference
11-20 years	51 (29)	38 (40)	<u> </u>	2.52 (0.93 to 7.36)
21-30 years	46 (26)	27 (28)	<u> </u>	2.04 (0.73 to 6.06)
More than 30 years	57 (32)	22 (23)		0.99 (0.35 to 2.96)
Area of Expertise				
Disease epidemiology				
No	88 (49)	42 (44)	1	Reference
Yes	90 (51)	53 (56)		1.15 (0.61 to 2.15)
Econ & health financing				
No	165 (93)	89 (94)	l I	Reference
Yes	13 (7)	6 (6)	_	0.90 (0.25 to 3.03)
Health care				
No	103 (58)	60 (63)		Reference
Yes	75 (42)	35 (37)		0.76 (0.38 to 1.49)
Health policy				
No	127 (71)	66 (70)	l	Reference
Yes	51 (29)	29 (30)	+	1.03 (0.50 to 2.09)
Regulatory affairs			1	
No	163 (92)	90 (95)		Reference
Yes	15 (8)	5 (5)	e	0.43 (0.08 to 1.86)
Vaccine R&D				
No	103 (58)	47 (50)		Reference
Yes	75 (42)	48 (50)	— þ —	1.11 (0.56 to 2.21)
Other			l I	
No	154 (86)	88 (93)		Reference
Yes	24 (14)	7 (7)	_	0.47 (0.16 to 1.25)
			0.5 1 2 3	
			Odds Ratio	

Abbreviations: OR, Odds Ratio; CI, Confidence Interval

Cluster 1 Cluster 2

sFigure 35 Participant Factors associated with cluster membership, Type of work organization and Country of work

A generalized linear model was used to compare odds of membership in a specific cluster by participant characteristics. Cluster #1 and Cluster #2 columns represent number of subjects (%). Models were adjusted for years of experience, language and WHO region of survey, field of expertise, eligibility for Gavi support and World Bank group classifications for country of work, type of work organisation, and participant's assessment regarding ease or difficulty to understand survey. Bars on plot indicate 95% confidence interval.

Abbreviations: OR, Odds Ratio; CI, Confidence Interval; NGO, Non-Governmental Organization

Characteristic	Cluster #1 (n=178)	Cluster #2 (n=95)		Adjusted OR (95% C
Type of work organization				
Academic institution				
No	111 (62)	55 (58)		Reference
Yes	67 (38)	40 (42)		1.11 (0.51 to 2.39)
Funding agency				
No	173 (97)	91 (96)		Reference
Yes	5 (3)	4 (4)		1.64 (0.23 to 10.07)
Government				
No	113 (64)	70 (74)		Reference
Yes	65 (36)	25 (26)	_	0.53 (0.23 to 1.15)
Health care provider				
No	145 (82)	78 (82)		Reference
Yes	33 (18)	17 (18)	+	0.97 (0.39 to 2.36)
NGO	. ,	. ,	1	, ,
No	157 (88)	91 (96)		Reference
Yes	21 (12)	4 (4)		0.27 (0.07 to 0.89)
Pharmaceutical industry		()		· · · · · ·
No	165 (93)	86 (90)		Reference
Yes	13 (7)	9 (10)		0.92 (0.26 to 3.16)
Regulatory agency				, ,
No	169 (95)	92 (97)		Reference
Yes	9 (5)	3 (3)		1.55 (0.20 to 10.62)
United Nations agency		()		· · · · · · · · · · · · · · · · · · ·
No	159 (89)	80 (84)		Reference
Yes	19 (11)	15 (16)		1.16 (0.39 to 3.43)
Other	. ,	()		,
No	165 (93)	90 (95)		Reference
Yes	13 (7)	5 (5)	_	1.03 (0.28 to 3.45)
Participant's Country of Work		()		()
Country's eligibility for Gavi Fundir	na (2023)		1	
Not eligible	128 (72)	77 (81)	1	Reference
Eligible	50 (28)	18 (19)		1.39 (0.35 to 5.21)
Country's World Bank Classificatio		- \ /		
High income	36 (20)	32 (34)		Reference
Upper middle income	54 (30)	31 (33)		0.68 (0.17 to 2.52)
Lower middle income	65 (36)	25 (26)		0.61 (0.15 to 2.34)
Low income	23 (13)	7 (7)		0.62 (0.10 to 3.87)
	20 (10)	• (•)		
			0.5 1 2 3 Odds Ratio	
			Cluster 1 Cluster 2	\longrightarrow

Cluster 1 Cluster 2

References

- 1. Boppana SB, van Boven M, Britt WJ, Gantt S, Griffiths PD, Grosse SD, et al. Vaccine value profile for cytomegalovirus. Vaccine. 2023 Nov;41 Suppl 2:S53–75.
- World Health Organization. Dengue vaccines: WHO position paper September 2018. Wkly Epidemiol Rec [Internet]. 2018;36(93):457–76. Available from: <u>https://www.who.int/publications/i/item/who-wer9335-457-476</u>
- 3. Wellcome Trust. Vaccines to tackle drug resistant infections An evaluation of R&D opportunities [Internet]. 2018 [cited 2024 June 20]. Available from: https://vaccinesforamr.org/wp-content/uploads/2018/09/Vaccines for AMR.pdf
- 4. World Health Organization. WHO Preferred Product Characteristics for Group A Streptococcus Vaccines [Internet]. 2018 [cited 2024 June 20]. Available from: <u>https://www.who.int/publications-detail-redirect/who-preferred-product-characteristics-for-group-a-streptococcus-vaccines</u>
- 5. World Health Organization. WHO Preferred Product Characteristics for Group B Streptococcus Vaccines [Internet]. 2017 [cited 2024 June 20]. Available from: https://apps.who.int/iris/rest/bitstreams/1087677/retrieve
- Minervax ApS. Study to Evaluate the Safety, Tolerability and Immunogenicity of Three Doses of GBS Vaccine in Elderly Participants: NCT05782179 [Internet]. 2023 [cited 2024 June 20]. Available from: <u>https://classic.clinicaltrials.gov/ct2/show/NCT05782179</u>
- 7. Phelps CC, Walker CM, Honegger JR. Where to Next? Research Directions after the First Hepatitis C Vaccine Efficacy Trial. Viruses. 2021 Jul;13(7):1351.
- Pevion Biotech Ltd. GeneCure Biotechnologies. A Phase I Trial of an Immunotherapy (HCVaxTM) in Chronic Hepatitis C Infected Patients: NCT00445419 [Internet]. 2007 [cited 2024 June 20]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT00445419
- 9. World Health Organization. WHO preferred product characteristics for monoclonal antibodies for HIV prevention [Internet]. 2022 [cited 2024 June 20]. Available from: https://www.who.int/publications/i/item/9789240045729
- World Health Organization. WHO Preferred Product Characteristics for Next-Generation Influenza Vaccines [Internet]. 2017 [cited 2024 June 20]. Available from: <u>https://www.who.int/publications/i/item/9789241512466</u>
- 11. Kumar CK, Sands K, Walsh TR, O'Brien S, Sharland M, Lewnard JA, et al. Global, regional, and national estimates of the impact of a maternal *Klebsiella pneumoniae* vaccine: A Bayesian modeling analysis. PLoS Med. 2023 May;20(5):e1004239.
- 12. Dangor Z, Benson N, Berkley JA, Bielicki J, Bijsma MW, Broad J, et al. Vaccine value profile for *Klebsiella pneumoniae*. Vaccine. 2024 Jul;42(19S1):S125-S141.
- 13. Wantuch PL, Rosen DA. *Klebsiella pneumoniae*: adaptive immune landscapes and vaccine horizons. Trends Immunol. 2023 Oct;44(10):826–44.
- 14. Kaye PM, Matlashewski G, Mohan S, Le Rutte E, Mondal D, Khamesipour A, et al.

Vaccine value profile for leishmaniasis. Vaccine. 2023 Nov;41:S153-75.

- 15. Schrager LK, Chandrasekaran P, Fritzell BH, Hatherill M, Lambert PH, McShane H, et al. WHO preferred product characteristics for new vaccines against tuberculosis. The Lancet Infectious Diseases. 2018 Aug;18(8):828–9.
- World Health Organization. Preferred Product Characteristics for Therapeutic Vaccines to Improve Tuberculosis Treatment Outcomes [Internet]. 2019 [cited 2024 June 20]. Available from: <u>https://www.who.int/publications/i/item/WHO-IVB-19-05</u>
- World Health Organization. PDVAC (virtual) meeting on invasive non-typhoidal Salmonella (iNTS) vaccines: Summary and outcomes from PDVAC closed discussion [Internet]. 2022 [cited 2024 June 20]. Available from: <u>https://cdn.who.int/media/docs/default-source/immunization/pdvac/pdvac-2022/final-summary-outcomes-pdvac-closed-discussion-feb-2022.pdf?sfvrsn=f62d9b5d_5</u>
- 18. Armah G, Lopman BA, Vinjé J, O'Ryan M, Lanata CF, Groome M, et al. Vaccine value profile for norovirus. Vaccine. 2023 Nov;41:S134–52.
- 19. World Health Organization. Malaria vaccines: preferred product characteristics and clinical development considerations. [Internet]. 2022 [cited 2024 June 20]. Available from: <u>https://www.who.int/publications/i/item/9789240057463</u>
- 20. World Health Organization. WHO Preferred Product Characteristics for Respiratory Syncytial Virus (RSV) Vaccines [Internet]. 2017 [cited 2024 June 20]. Available from: <u>https://apps.who.int/iris/bitstream/handle/10665/258705/WHO-IVB-17.11-</u> <u>eng.pdf?sequence=1</u>
- 21. World Health Organization. WHO preferred product characteristics of monoclonal antibodies for passive immunization against respiratory syncytial virus (RSV) disease [Internet]. 2021 [cited 2024 June 20]. Available from: https://www.who.int/publications/i/item/9789240021853
- 22. World Health Organization. WHO Preferred Product Characteristics for Vaccines against *Shigella* [Internet]. 2020 [cited 2024 June 20]. Available from: <u>https://www.who.int/publications/i/item/9789240036741</u>
- 23. Hausdorff WP, Anderson JD 4th, Bagamian KH, Bourgeois AL, Mills M, Sawe F, et al. Vaccine value profile for *Shigella*. Vaccine. 2023 Nov;41 Suppl 2:S76–94.
- 24. World Health Organization. 2021 Bacterial vaccines in clinical and preclinical development: an overview and analysis. [Internet]. 2022 [cited 2024 June 20]. Available from: https://www.who.int/publications/i/item/9789240052451
- 25. AridisPharma. Aridis Pharmaceuticals Announces Third Quarter 2023 Financial Results and Business Update [Internet]. 2023 [cited 2024 Apr 22]. Available from: <u>https://www.biospace.com/article/releases/aridis-pharmaceuticals-announces-thirdquarter-2023-financial-results-and-business-update/</u>
- BioSpace [Internet]. 2024 [cited 2024 Oct 2]. Aridis Provides Corporate Update June 24, 2024. Available from: <u>https://www.biospace.com/aridis-provides-corporate-update-june-24-2024</u>
- 27. R Core Team (2023). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing. Vienna, Austria.

- 28. Kassambara A, Mundt F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. 2020 [cited 2024 June 20]. Available from: <u>https://CRAN.R-project.org/package=factoextra</u>. R package version 1.0.7.
- 29. Carey VJ. gee: Generalized Estimation Equation Solver, 2022 [cited 2024 June 20]. Available from: <u>https://CRAN.R-project.org/package=gee</u>. R package version 4.13-25.
- 30. Thorndike RL. Who belongs in the family? Psychometrika. 1953;18(4):267–76.
- 31. Rousseeuw P. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J Comput Appl Math. 1987 Nov 1;20:53–65.
- 32. Tibshirani R, Walther G, Hastie T. Estimating the Number of Clusters in a Data Set Via the Gap Statistic. Journal of the Royal Statistical Society Series B: Statistical Methodology. 2001 Jul 1;63(2):411–23.
- Charrad M, Ghazzali N, Boiteau V, Niknafs A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. Journal of Statistical Software. 2014 Nov 3;61:1–36.