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Figure S1: dgat2 is expressed in the YSL, liver and intestine of zebrafish embryos and larvae.
(A, B) Cross-sections of wild-type AB embryos following in situ hybridization for dgat2 mRNA
expression. Dgat2 expression is visible in the yolk syncytial layer (YSL) at 3 days post fertilization
(dpf) (A) and in the liver and intestine at 7 dpf (B). Dgat2 is expressed in the yolk syncytial layer
(YSL), liver and intestine; images are representative of all embryos from 3 experiments at each stage
with n = 10 embryos per probe per experiment; Scale bars = 100 ym.
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Figure S2: dgat25273%945 mutation details and in situ hybridization. (A) Depiction of the dgat2
gene structure (GRCz11; ENSDARG00000018846, transcript 201 (ENSDART00000066793.7))
highlighting the location of the sa13945 C>T mutation in exon 2 (red line); not to scale, numbers
indicate the length of introns and exons (exon 1 from ATG). Green arrows indicate gDNA genotyping
primer binding, blue arrows indicate cDNA primer binding and purple arrows indicate qPCR primer
binding. (B) cDNA sequence and translation of wild-type dgat2 and the dgat2527394° nonsense allele
from 1 bp to 204 bp, indicating the location of the C>T point mutation at position 100 in exon 2
(c.100C>T; p.Arg34*). Gray shading on wild-type sequence indicates exons 1 & 3. Yellow shading
on sa13945 mutant sequence corresponds to the region shown in the trace files from sanger
sequencing of wild-type and sa13945 mutant cDNA; box highlights the location of the mutated base.
(C) Example genomic DNA genotyping gel for the sa73945 mutation. A 191 bp amplicon is
generated using primers SF-MW-122F & SF-MW-36R. The forward primer was designed to
introduce a BamH1 restriction site only in the wild-type allele; digestion with BamH1 results in 163
and 28 bp fragments. (D) In situ hybridization for dgat2 expression at 3 and 6 dpf in wild-type,
dgat2s213945+ and dgat2537394% embryos. dgat2 continues to be expressed in the yolk syncytial layer
(YSL), liver and intestine in dgat25373%4> mutants; images are representative of all embryos from 1
experiment at each stage with n = 5 —-10 embryos per probe per experiment; Scale bars = 500 uym for
3 dpf, 200 um for 6 dpf.
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Figure S3: dgat2 CRISPR/Cas9 mutant details and complementation crosses. (A) Depiction of
the dgat2 gene structure (GRCz11; ENSDARG00000018846, transcript 201
(ENSDART00000066793.7)) highlighting the location of the CRISPR guide target sequences in exon
2 and exon 5 (red arrows), the putative neutral lipid binding domain (NLBD, green) and the enzymatic
HPHG motif (yellow); not to scale, numbers indicate the length of introns and exons (exon 1 from
ATG). Red lines below the exons indicate the deleted genomic regions in the ¢747 and c765 alleles;
the hashed regions indicate the resulting deletions in the cDNA. Green arrows indicate gDNA
genotyping primer binding for the ¢747 allele, blue arrows indicate cDNA primer binding for c747.
Orange arrows indicate gDNA genotyping primers for the ¢765 allele, purple arrows indicate cDNA
primer binding for ¢c765. (B) Example genomic DNA genotyping gel for the ¢747 mutation. A 465 bp
amplicon is generated for the wild-type allele using primers SF-MW-11F and SF-MW-36R, whereas
the ¢747 allele is 352 bp due to a deletion of 113 bp in exon 2 into intron 2-3. The doublet between
400 — 500 bp in the heterozygotes may be due to heteroduplex formation. (C) cDNA sequence and
translation of wild-type dgat2 and the dgat2°74” deletion allele from 1 bp to 204 bp, indicating the
resulting in-frame deletion of exon 2 (c.41-169del; p.Gly14_Met56del). Gray shading on the wild-type
sequence indicates exon 1 & 3. Yellow and pink shading on the c747 mutant sequence corresponds
to the regions shown in the trace file from sanger sequencing of dgat2¢74” cDNA to better highlight the
deletion. Part of the putative neutral lipid binding domain (FLXLXXXN; (151,152)(FLVLGVAC in
mouse DGAT2 (53), FLTMGIAC in zebrafish Dgat2) is eliminated in the ¢747 allele. (D) Example
genomic DNA genotyping gel for the ¢765 mutation. A 455 bp amplicon is generated for the wild-type
allele using primers SF-MW-165F and SF-MW-166R, whereas the c¢765 allele is 365 bp due to an in-
frame deletion of 90 bp in exon 5, including the HPHG enzymatic motif. (E) cDNA sequence and
translation of exon 5 from wild-type dgat2 and the dgat2°76® deletion allele (349 bp to 553 bp),
indicating the resulting in-frame deletion of 90 bp in the mutant allele (c.385_474del;
p.Tyr134_Phe163del). Yellow and pink shading on the ¢747 mutant sequence corresponds to the
regions shown in the trace file from sanger sequencing of dgat2°¢7%> cDNA to better highlight the
deletion. (F) Representative images of wild-type, dgat2°74” homozygous mutant and dgat2¢747/sa13945
trans-heterozygous mutant embryos at 3 dpf; Scale = 500 um. (G) Representative images of wild-
type, dgat2°76® homozygous mutant and dgat2°7655a13945 trgns-heterozygous mutant embryos at 3 dpf;
Scale = 500 um.
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Figure S4: Expression of wild-type dgat2-FLAG partially rescues the yolk opacity in
dgat2s313945 embryos. Dgat2537394° embryos were co-injected at the 1-cell stage with CMV: dgat2-
FLAG and the CMV: EGFP-CAAX plasmid, or CMV: EGFP-CAAX alone as a control. Bright-field
images were obtained of all the embryos that expressed EGFP-CAAX in the YSL at 3 dpf. (A)
Representative images of embryos from the two treatment groups depicting different degrees of yolk
opacity. Insets highlight corresponding YSL EGFP expression in the embryos. White arrowhead
indicates opacity in the yolk extension. Scale = 200 um. (B) Images were assessed for the degree of
yolk opacity into the four denoted bins by a trained lab member who was blinded to the treatment
group, and graphed as a percent of total EGFP-positive embryos/treatment group (n = 69 EGFP-
CAAX and n = 71 dgat2-FLAG embryos pooled from 3 independent experiments).
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Figure S5: Dgat25273%945 mutants do not show signs of ER stress in the YSL. (A) Quantitative
RT-PCR for expression of ER stress-responsive genes ddit3 and bip in wild-type, dgat25a7394%* and
dgat2sa13945/5a13945 empbryos at 3 dpf (n = 6; 10 pooled fish per sample/genotype, mean + SD, one-way
ANOVA + Tukey’s multiple comparison, ddit3 p = 0.0044, (+/+) vs. (-/-) p = 0.0032, bip p = 0.8773,
n.s.). (B,C) Dgat2523%45> mutants were crossed into the Tg(5xATF6RE:d2GFP) ER stress reporter
line, which drives expression of a destabilized GFP under the control of ATF6 response elements
(71). ATFG6 is a transcription factor that resides in the ER and in response to ER stress, it is
transported to the Golgi apparatus where it is cleaved, resulting in a 50 kDa cleavage product
(ATFof). The ATF6f fragment translocates to the nucleus and activates transcriptional targets (153).
Representative images of d2GFP in the yolk sac of untreated wild-type, dgat2537394%* and dgat2sa1394°
embryos at 3 dpf and an embryo treated with 2 ug/ml tunicamycin (TM) for 24 h (B). Scale = 500 ym.
(C) Mean fluorescence intensity in the yolk sac; results represent data from N = 3 independent
experiments (n =21 (WT), n =64 (+~), n =40 (-/~), n =12 (TM) fish), mean + SD. Significance was
determined with a non-parametric Kruskall-Wallis ANOVA with multiple comparisons, p <0.0001; TM
vs. (+/+) p <0.0004, TM vs. (+/-) and (-/-) p <0.0001).
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Figure S6: LipoGlo PAGE gel primary data. Original gels corresponding to the data in Figure 4D.
Each gel shows a composite of the fluorescent Dil-LDL migration standard (yellow) and LipoGlo
chemiluminescent emission (blue) from WT (+/+), dgat25213945 (-/-) and dgat25a73%4%* (+/-) fish. Note,
the gels are overlaid with a piece of thin plastic film prior to imaging, which, if not cleaned properly,
can introduce a source of constant background in the 600 nm channel (yellow)(5 dpf set 1 and 3, are
especially visible). Gels were analyzed as detailed in (11).
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Figure S7: Dgat2 mutant embryos are slightly smaller than siblings but are not different as
larvae and adults and does not affect adipose tissue development. (A) Standard length,
musculature area and yolk sac area in dgat25213%4%> mutants and siblings (WT & dgat25273945*) were
measured as depicted at 3 dpf and 6 dpf (yolk is depleted by 6 dpf); mean £ SD, y axes are shifted
from zero for better comparison, n = 27-30 embryos pooled from three independent clutches; two-
tailed unpaired t test, * p < 0.05, ** p < 0.01, and *** p < 0.001. (B) Standard length, mass and body
mass index (BMI) for males (n = 22 +/+, 34 +/-, 20 -/-) and females (n = 12 +/+, 46 +/-, 12 -/-) from
two independent clutches were measured at 6 months of age; mean + SD, One-way ANOVA, p >
0.05 for all metrics. (C-E) Zebrafish siblings that were wild-type (+/+, n = 6), heterozygous (+/-, n =
25) or homozygous (-/-, n = 9) for the dgat2523%945 mutation were reared to 33 dpf, stained with Nile
Red to permit visualization of adipose tissue, and measured for standard length (SL), total body area,
and total adipose tissue area. (C) Representative image of a wild-type dgat25373%4% (+/+) zebrafish
larvae showing the average standard length for the whole group. (D) Total adipose tissue area plotted
against standard length. (E) Total adipose tissue area plotted against total body area.
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Figure S8: Expression of dgat1a and dgat1b are not upregulated in the intestine or liver of
adult dgat2 mutant fish. RNA was isolated from the anterior intestine or liver of 2-year old adult
male dgat25a13945*  dqgat25a13945 dgat2°76%* and dgat2°7®° zebrafish after a 24 hour fast (3 fish per
genotype). Equal quantities of RNA per sample was used to synthesize cDNA and quantitative RT-
PCR for dgat2, dgat1a and dgat1b was performed in triplicate for each sample along with zebrafish
18S (rps18) as a reference gene. Relative gene expression was calculated using the AACT method
(144) between heterozygotes and mutants for each allele; mean + SD. No significant differences in

gene expression were noted (unpaired t-tests with false discovery rate 1.0%, Benjamini, Krieger, and

Yekutieli method); See Supporting Information File 4 for p values.
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Figure S9: dgat1 CRISPR/Cas9 mutant details. (A) Depiction of the dgat1a gene structure
(GRCz11; ENSDARG00000103503, transcript 201 (ENSDART00000158946.2)) highlighting the
location of the two CRISPR target sequences in exon 1 (red arrows) and the resulting 14 bp deletion
in exon 1 (red line below exon and hashing). Green arrows indicate gDNA genotyping primer binding,
blue arrows indicate cDNA primer binding. (B) Example genomic DNA genotyping gel for the
dgat1a®’’ mutation. A 240 bp amplicon is generated for the wild-type allele using primers SF-MRH-
169F and SF-MRH-170R, whereas the ¢770 allele is 226 bp due to a deletion of 14 bp in exon 1. The
asterisk indicates an extra band in the heterozygotes that is likely due to heteroduplex formation. (C)
cDNA sequence and translation of wild-type dgat7a and the dgat7a®’7? deletion allele from 1 bp to
204 bp, indicating the 14 bp deletion leading to a premature termination codon in exon 1 (c.47_60del;
p.Thr15ArgfsTer34). Gray shading on the wild-type sequence indicates exon 1. Yellow and pink
shading on the ¢770 mutant sequence corresponds to the regions shown in the trace file from sanger
sequencing of dgat1a°’7% cDNA to better highlight the deletion. (D) Depiction of the dgat1b gene
structure (GRCz11; ENSDARG00000054914, transcript 201 (ENSDART00000077185.5)) highlighting
the location of the two CRISPR target sequences in exon 1 (red arrows) and the location of the
resulting 57 bp deletion + 4 bp insertion in exon 1 (red line below exon and hashing). Green arrows
indicate gDNA genotyping primer binding, blue arrows indicate cDNA primer binding. (E) Example
genomic DNA genotyping gel for the dgat1b°’73 mutation. A 297 bp amplicon is generated for the
wild-type allele using primers SF-MRH-177F and SF-MRH-178R, whereas the ¢773 allele is 244 bp
due to a deletion of 57 and a 4 bp insertion in exon 1. (F) cDNA sequence and translation of wild-
type dgat1b and the dgat1b°’73 deletion allele from 1 bp to 414 bp, indicating the 57 bp deletion and 4
bp insertion (red text) (c.98 154delinsTCAC; p.Ala33ValfsTer88). Gray shading on the wild-type
sequence indicates exon 1 & 3. Yellow and pink shading on the c773 mutant sequence corresponds
to the regions shown in the trace file from sanger sequencing of dgat1b°”’3 cDNA to better highlight
the deletion.
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Figure S10: dgat triple mutant additional data. (A) Representative images of wild-type,
dgat1a®’’°, dgat1b°’”3 and dgat1a®’’%;dgat1b°’”3 homozygous mutant embryos from an in-cross of
dgat1ac’’%* dgat1b°’7%*,;dgat2521394%* parents at 3 dpf; Scale = 500 um. (B) Representative
transmission electron micrographs of the yolk and YSL from dgat2537394% and
dgat1a°’’%;dgat1bc’73;dgat2537394 triple mutants; dashed lines delineate the YSL region, n = nucleus,
LD = lipid droplet, scale = 10 ym. (C) LipoGlo luminescence (RLU = relative luminescence units) in
noted dgat genotypes at 3 dpf. Results represent pooled data from 6 clutches, n =4 — 51
embryos/genotype; mean * SD; One-way ANOVA, p = 0.9289. Note: the luminescence values in
these assays are much lower than those in Figure 4B because this set of assays was performed in
black 96-well plates, as opposed to the initial assays which were performed in white 96-well plates,
which amplify the luminescence values. (D) Standard length was measured siblings from a cross of
dgat1a®’’% dgat1b°’73"*;dgat2537394° parents at 3 dpf; mean + SD, n = 7— 41 embryos per genotype
pooled from two independent clutches; One-way ANOVA, p = 0.2051. (E-G) Standard length, mass
and body mass index (BMI) data for dgat2537394% and dgat1a®’’%;dgat1b°’73;dgat25373%4% triple mutants
at 6 months of age that were raised in separate, but adjacent tanks. Data is separated by sex: males
(n = 34 dgat2s213945 40 dgat triple mutants) and females (n = 7 dgat25373945 16 dgat triple mutants);
mean = SD, One-way ANOVA, p = 0.0548 for (E), p <0.0001 for (F)(statistical differences were due to
sex and not genotype), p <0.0001 for (G), *** denotes p = 0.001.
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Gene_ID chr [log2FC| padj Gene_Name

ENSDARG00000070885 22 8.13 9.61E-07 | NA (anti-sense)

ENSDARGO00000071012 17 4.36 1.41E-07 | ifit14

ENSDARG00000075996 9 4.33 1.93E-02 | znfl1b

ENSDARG00000007086 16 3.83 7.46E-15 | agp10a

ENSDARG00000008948 10 3.57 6.92E-03 | pla2g3

ENSDARG00000095820 22 3.47 1.89E-02 | NA (lincRNA)

ENSDARGO00000079227 12 3.36 3.99E-17 | plekhs1.1

ENSDARG00000074210 11 3.35 1.04E-03 | NA, possibly ADP-ribosylation factor 4-like
ENSDARG00000104919 14 3.12 2.26E-10 | NA, possibly related to YrdC domain-containing protein
ENSDARG00000096110 25 3.04 2.26E-10 | zgc:123278

ENSDARGO00000094929 16 2.97 6.20E-03 | apoa4b.3

ENSDARG00000035852 7 2.83 1.65E-05 | cart3

ENSDARGO00000104007 10 2.79 2.54E-05 | pcdhigl

ENSDARGO00000087311 15 2.65 2.77E-07 | lgals9l5

ENSDARGO00000094741 13 2.52 2.84E-04 | HTRA2

ENSDARG00000095409 12 2.47 1.70E-03 | NA, possibly GP2-like

ENSDARG00000062788 14 2.47 8.67E-07 | irgll

ENSDARG00000113315 12 2.26 2.94E-04 | NA, possibly apha-tectorin-like protein
ENSDARG00000069139 10 2.23 1.96E-12 | GRIK1

ENSDARG00000039352 13 2.11 2.26E-10 | paldib

ENSDARGO00000092719 12 2.05 4.05E-06 | NA (pseudogene)

ENSDARGO00000117266 12 2.03 1.58E-03 | NA (lincRNA)

ENSDARG00000069630 18 2.02 1.55E-05 | tat

ENSDARG00000053480 7 2.02 2.39E-07 | aqgp9b

ENSDARG00000038296 3 1.98 4.21E-22 | tmem86b

ENSDARG00000096739 12 1.95 3.95E-03 | NA, possibly E3 ubiquitin ligase TRIM39-like isoform X1
ENSDARG00000076196 12 1.93 4.29E-02 | NA, possibly GP2-like

ENSDARGO00000101040 2 1.92 2.74E-02 | ccl20a.3

ENSDARG00000096933 16 1.86 1.12E-02 | si:ch211-135n15.2

ENSDARGO00000101665 10 1.74 1.45E-07 | pcdhigii

ENSDARG00000055365 20 1.73 8.35E-03 | si:dkey-25e12.3, possibly adenosine 5’monophosphoramidase HINT3
ENSDARGO00000074150 12 1.51 2.60E-02 | NA, possibly GP2-like

ENSDARG00000022730 20 1.50 3.61E-03 | AASDH

ENSDARGO00000100538 24 -9.06 2.89E-09 NA, possibly a transposon related protein
ENSDARG00000089794 24 -8.43 1.80E-07 | NA, possibly sterile apha motif domain-containing protein 3 (SAMDS3)
ENSDARG00000101486 SC -7.77 1.55E-05 | zgc: 77614, clone-based ensembl gene (SC: scaffold)
ENSDARG00000093389 5 -6.51 9.75E-03 NA, possibly coiled-coil alpha helical rod protein 1 isoform X2
ENSDARG00000096299 19 -6.13 4.77E-02 NA, possibly NKD inhibitor of WNT signaling pathway 3
ENSDARGO00000097985 17 -4.27 1.39E-03 | lincRNA

ENSDARGO00000116065 13 -3.15 3.61E-03 NA, possibly RNA-directed DNA polymerase from mobile element jockey
ENSDARGO00000038378 15 -2.30 1.55E-02 | sagb

ENSDARGO00000103347 23 -2.19 2.27E-08 | cyp2aa3

ENSDARG00000033610 10 -2.05 3.90E-02 | morn5

ENSDARGO00000001437 23 -2.02 5.41E-03 | slc2ala

ENSDARGO00000104057 10 -1.96 2.59E-03 | pcdhig14

ENSDARG00000104387 10 -1.94 9.61E-07 | SLC4A5

ENSDARGO00000079946 16 -1.89 2.11E-04 | sqlea

ENSDARGO00000062632 25 -1.79 4.98E-02 | NA, possibly dual oxidase

ENSDARGO00000117636 1 -1.76 1.29E-02 | lincRNA

ENSDARGO00000075600 10 -1.72 2.74E-03 | NA, possibly CSPG4-like isoform X2
ENSDARG00000045089 13 -1.68 5.05E-07 | apcs

ENSDARGO00000100292 10 -1.66 8.94E-03 | fam166b

ENSDARGO00000099447 10 -1.63 5.51E-04 | pcdh1g18

ENSDARGO00000089066 7 -1.52 8.67E-07 | NHSL2




Figure S11: Differentially expressed genes in dgat2533945 mutants.

RNA was isolated from pools of 6 dgat2537394> mutant or 6 wild-type sibling mid-bodies from each of
three separate clutches (resulting in 3 samples per genotype). RNA sequencing identified a total of
102 upregulated and 65 downregulated differentially expressed genes in dgat2523945 mutants meeting
an adjusted p value (padj) <0.05 (See Supporting Information File 2 for full list). Twenty-four of these
genes were located on chromosome 10, many of which are within 12 Mb of the dgat2 gene locus.
Shown here are the differentially expressed genes meeting a log2fold change (log2FC) cutoff of 21.5
or =-1.5. Green shading indicates upregulated genes, red shading denotes downregulated genes,
blue shading highlights genes on chromosome 10 (chr). Many of the genes are not annotated in
Ensembl (NA), but BLASTP searches sometimes provided possible gene information.

Additional discussion of the RNA sequencing analysis related to Figure S11:

While the RNA sequencing analysis comparing transcripts in wild-type vs. dgat25373945 mutants
did not reveal any candidates for the residual triacylglycerol synthesis activity, there was differential
expression of some interesting genes. One gene of interest upregulated in dgat2 mutants was
tmem86b, a lysoplasmalogenase found in liver and intestinal microsomes that has been suggested to
regulate the levels of plasmalogens in the cell (154,155). Plasmalogens are glycerolipids that contain
an ether bond at the sn-1 position, typically these are found as ether phospholipids, but “neutral
plasmalogens” or ether analogues of triacylglycerols (monoalkyl-diacylgycerols, MADAG) also exist
(156). These neutral ether lipids can be synthesized by DGAT1, DGAT2, MGAT2 and MGAT3 (157).
Previous lipidomics analyses of the zebrafish yolk indicate the presence of low concentrations of
plasmalogens, although these were primarily ether phospholipids (1). It would be curious to perform
similar lipidomics analyses on the dgat2 mutant yolk and isolated lipid droplets, as the increased
tmem86b expression suggests possible changes in ether lipid levels, which could affect membrane
dynamics and in turn influence phenotypic changes we see in the mutants. dgat2 mutants also had
upregulation of aquaporin 10a (aqp70a). This gene encodes an aquaglyceroporin, which transports
both water and glycerol across the plasma membrane of adipocytes in humans (158,159) and is also
found in the capillary endothelium and gastroenteropancreatic cells of the intestinal duodenum and
jejunum (160). Though in situ hybridization data suggests it is not expressed in the YSL of wild-type
zebrafish embryos (161), it is expressed in the intestine, liver and kidney of adults and has been
demonstrated to transport water, glycerol and urea (162). In adipocytes, it is pH-sensitive and aids in
the release of glycerol into the circulation following lipolysis (158). Perhaps it is upregulated in the
YSL of dgat2 mutants as an alternate mechanism to secrete yolk platelet and/or lipid-droplet-derived
glycerol out of the yolk sac, thus helping to alleviate the back-up in B-Ip-based lipid secretion.
Alternatively, its upregulation might help to explain the severe edema often noted in quadruple
mogat3b;dgatia;dgat1b;dgat2 mutants.
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Figure S12: Inhibition of ATGL does not rescue yolk opacity in dgat2s373945 mutants.
dgat253739345 homozygous mutants were treated with vehicle (DMSO) or ATGlistatin (25 uM or 50 uM)
for 48 hours from 1 to 3 dpf. Bright-field images were obtained following treatment at 3 dpf. (A)
Representative images of embryos from the three treatment groups; scale = 200 ym. (B) Images of
10 embryos from each of 3 clutches of dgat25273945 mutants were scored for the degree of yolk
opacity, binned into the four noted categories and expressed as a percent of total embryos per
treatment.
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Figure S13: Zebrafish Mogat3b is more related to Dgat2 than Mogat2 or Mogat3a. Syntenic
analysis indicates that zebrafish mogat2 and dgat2 are orthologs of human MGAT2 and DGAT2 (A),
zebrafish do not have an ortholog of human MGAT1 (B) and zebrafish mogat3a and mogat3b both
share synteny with human MOGAT3 (C). (D) A phylogenetic tree was generated using DGAT2/dgat2
and MGAT/Mogat amino acid sequences from human (Homo sapien), mouse (Mus musculus), rat
(Rattus norvegicus), opossum (Mondelphis domestica), tropical clawed frog (Xenopus tropicalis),
spotted gar (Lepisosteus oculatus), tetraodon (Tetraodon nigroviridis) and zebrafish (Danio rerio).
Bootstrap support for each clade is reported (>70 interpreted as significant). Zebrafish mogat3a and
mogat3b did not result from the teleost-specific whole genome duplication event, but rather an earlier
duplication event as evidenced by the presence of mogat3a and mogat3b in another ray-finned fish,
spotted gar (a member of the holostei infraclass). Zebrafish Mogat3b groups more closely with Dgat2
than to the other mogat genes. (E) Identity and similarity scores between the human DGAT2 and
MGAT protein sequences. (F) lIdentity and similarity scores between zebrafish Dgat2 and Mogat
protein sequences.
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Figure S14: mogat3b CRISPR/Cas9 mutant details

(A) Depiction of the mogat3b gene structure (GRCz11; ENSDARG00000003635, transcript 201
(ENSDART00000015136.10)) highlighting the location of the two CRISPR target sequences in exon 4
& 5 (red arrows) and the enzymatic HPHG motif (yellow); not to scale, numbers indicate the length of
introns and exons. Red line above the exons indicates the 276 bp deleted genomic region in the
c858 allele; the hashed region indicates the resulting deletions in the cDNA (red outline: deleted
region that corresponds to the genomic deletion; black outline: all of exon 4 and 5 are spliced out).
Purple line, text and caret below the exons indicate the locations of the 51 bp insertion and 13 bp
deletion in the ¢862 allele; the hashed region outlined in purple indicates the resulting deletion in the
cDNA. Green arrows indicate gDNA genotyping primer binding for both alleles, blue arrows indicate
cDNA primer binding for both alleles. Location of gPCR primers used in Figure 6D are shown in pink.
(B) Example genomic DNA genotyping gel for the mogat3b°8°¢ mutation. A 374 bp amplicon is
generated for the wild-type allele using primers SF-MW-198F and SF-MW-199R, whereas the c858
allele is 98 bp due to a deletion of 276 bp across exons 4-5. (C) Example genomic DNA genotyping
gel for the mogat3b°®2 mutation. A 374 bp amplicon is generated for the wild-type allele using
primers SF-MW-198F and SF-MW-199R, whereas the ¢862 allele is 412 bp due to an insertion of 51
bp in exons 4 and a 13 bp deletion in exon 5. The insertion consists of sequence from the guide RNA
scaffold. (D) Example gel showing amplification of the cDNA sequence around the ¢858 mutation
results in two major cDNA products, at 175 bp and 87 bp. The ¢862 mutation results in one major
cDNA product at 401 bp. (E & F) cDNA sequences and translations of wild-type mogat3b and
mogat3bc88 deletion alleles from 199 — 561 bp (E), indicating both the in-frame deletion of exons 4 &
5 (middle, c.221_496del, p.Gly74 _Ala165del) and the 188 bp deletion across exons 4 — 5 that results
in a frame-shift and premature termination codon (bottom, c.271_458del, p.Arg91ProfsTer19). In
both transcripts, the coding region for the HPHG motif in exon 5 is eliminated. Gray shading on the
wild-type sequence indicates exons 3 & 5. Yellow, green and pink shading on the ¢858 sequences
corresponds to the regions shown in the trace files (F) from sanger sequencing of the cDNA to better
highlight the deletions. (G & H) cDNA sequences and translation of wild-type mogat3b and the
mogat3b°6? deletion allele from wild-type 199 — 555 bp (G), indicating the 51 bp insertion in exon 4
and 13 bp deletion in exon 5. The insertion causes a frame shift and premature termination codon
(c.288 289insGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAACGTGAAGGTAACAAGAC446_458
del, p.Lys97AlafsTer4). Gray shading on the wild-type sequence indicates exons 3 & 5. Yellow,
green and pink shading on the ¢862 sequence corresponds to the region shown in the trace file (H)
from sanger sequencing of the cDNA to better highlight the insertion and deletion.
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Figure S15: mogat3b;dgat2 double mutants are similar in size to dgat2 mutants as adults.

(A) Representative image of a mogat3b°88;dgat2537394> double mutant with no yolk extension at 2 dpf.
Arrows indicate where the YE should be located; tissue remnants of the YE are visible; Scale = 200
um. (B,C) Standard length, mass and body mass index (BMI) data at 6 months of age for progeny of
1 in-cross of either mogat3b°85%+;dgat25a73945* (B) or mogat3bc®*;dgat25a13945* (C) parents.

Embryos exhibiting yolk opacity were selected prior to raising on the nursery and the sa13945
genotype was confirmed with genotyping at time of measurement. For B, n = 54 total fish, split by sex
and genotype 3 — 15 fish per group; mean + SD, One-way ANOVA with Tukey’s multiple comparisons
test, p = 0.0005 (length), p < 0.0001 (mass), p < 0.0001 (BMI); no significant pairwise differences
were found between genotypes, significant differences were only noted between sex and/or
sex/genotype (not shown). For C, n = 26 total fish, sexes were combined because nearly all fish were
male (22), 3 — 16 fish per genotype; mean = SD, One-way ANOVA, p = 0.6485 (length), p = 0.2367
(mass), p = 0.2070 (BMI). (D) Representative images of mogat3b°8¢+;dgat25213945 mutants at 3 dpf
either lacking the yolk extension (left) or with a short yolk extension (right); Scale = 500 um.
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Figure S16: dgat2 CRISPR alleles can also present with abnormal yolk extension morphology
(A) Examples of dgat2¢74” and dgat2°76° CRISPR/Cas9 mutant embryos with short or absent yolk
extensions. Scale = 200 uym. (B) The percent of embryos per clutch exhibiting abnormal yolk
extension morphology (lack of YE, short YE, broken YE) on 3 dpf from in-crosses of the noted
parental genotypes (N = 8 — 18 clutches per genotype (clutch size ranged from 10 — 198 embryos).
(C) Embryos from 4 in-crosses of dgat25a73945* dgat2°747*, or dgat2°76%* parents were imaged and
scored at 3 dpf for the degree of yolk opacity, binned into the four noted categories and expressed as
a percent of total embryos per genotype. (D) Normalized LipoGlo luminescence (RLU = relative
luminescence units) in dgat25373945 and dgat2°7%° mutants and siblings at 3 dpf. Results represent
pooled data from 3 independent clutches per dgat2 allele, n = 17 — 33 embryos per genotype; mean +
SD. To allow for a more accurate comparison between dgat2 alleles, embryos from both alleles were
assayed at the same time; for example, the embryos from dgat25273945 clutch 1 and dgat2°76° clutch 1
were assayed in the same 96-well plate. Significance was determined with a One-way ANOVA,
Tukey’s multiple comparisons tests were performed to compare genotypes at each day of
development, and p values were adjusted to control for multiple comparisons, for clarity, only selected
significance tests are shown (** p<0.01, *** p<0.001, ****p<0.0001). (E & F) Quantitation of B-Ip size
distribution from whole embryo lysate and associated LipoGlo PAGE gels from dgat25373%945 and
dgat2°76° mutants and WT siblings at 3 dpf. As in Figure 4 and Supplemental Figure 6, B-lps are
divided into four classes based on mobility, including zero mobility (ZM), very low density lipoproteins
(VLDL), intermediate density lipoproteins (IDL) and low density lipoprotein (LDL). Graph show B-Ip
subclass % abundance, analyzed as described in (11), note the dil-LDL used here for gel calibration
was from a different product lot # as in Supplemental Figure 6, thus the bin cut-off values for each
subclass reflect this differential calibration. Results represent pooled data from 3 independent
clutches per dgat? allele, n = 6 embryos/genotype; mean + SD. Significance was determined with a
One-way ANOVA, Sidak's multiple comparisons tests were performed to compare genotypes, and p
values were adjusted to control for multiple comparisons, for clarity, only selected significance tests
are shown (****p<0.0001).
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Figure S17: The dgat2°7% allele influences yolk opacity in embryos but does not affect adult
size.

(A) Embryos from 3 crosses of dgat1ac’’%*;dgat1b°”73;dgat2sa13945/c765 x
dgat1a®’’%;dgat1b°’73;dgat2°7%° parents were imaged and scored at 3 dpf for the degree of yolk
opacity, binned into the four noted categories and expressed as a percent of total embryos per
genotype (n = 291 fish total, 6 — 37 fish per genotype). (B — D) Standard length, mass and body
mass index (BMI) data for progeny of 2 crosses of dgat1ac”’%*;dgat1b°’73;dgat25a13945c765 x
dgat1a®’7%;dgat1b°’73;dgat2°7%° parents at 3 months of age (n = 136 total fish, 2 — 22 fish per
genotype); mean = SD, One-way ANOVA, p = 0.0121 for (B), p = 0.0397 for (C) and p = 0.329 for (D).
Tukey’s multiple comparisons tests were performed to compare genotypes, * p <0.05, ** p <0.01.
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Figure S18: Mutations in tmem68 do not rescue yolk opacity in dgat2 mutants

(A) Depiction of the tmem68 gene structure (GRCz11; ENSDARG00000086737, transcript 202
(ENSDART000000188261.1)) highlighting the location of the four CRISPR target sequences in exon
2 & 3 (red lines). Green arrowheads indicate gDNA genotyping primer binding used for the gel,
purple arrowhead indicates the gDNA reverse primer location used for Amplicon sequencing,
numbers represent bp lengths of exons and introns. (B) Fish were injected at the 1-cell stage with
Cas9 protein and either a mixture of four CRISPR guide RNAs targeting tmem68 or a mixture of four
non-targeting scramble guides. At 3 dpf, fish were sacrificed and genomic DNA was extracted, a
region around exon 2 was amplified using primers SF-MW-286F and SF-MW-287R. The expected
WT amplicon length is 507 bp, however, in the fish injected with guide RNA against tmem®68,
amplicon sizes of variable length are detected, indicating successful Cas9 nuclease activity. Lanes
represent PCR amplicons from individual injected fish. To characterize some of the indels present in
the injected fish, the samples shown on the gel were also used for Amplicon sequencing. A smaller
region around exon 2 was amplified using primers SF-MW-286F and SF-MW-319R (expected WT
amplicon length is 400 bp), samples were pooled and submitted to Genewiz for Amplicon-EZ next-
generation sequencing and analysis. While 96.6% of reads from the imem68 guide RNA injected fish
exhibited indels (65.6% of which resulted in a frame shift), only 1.43% of reads in the Scramble guide
RNA sample had indels with 1.39% of these resulting in a shift in the reading frame. We hypothesize
that the base changes noted in the Scramble sequencing data are either natural polymorphisms (C>T
at position 36 and G>A at position 243) or occurred during PCR amplification as we did not use a
proofreading polymerase. For further details, refer to Supporting Information File 3. (C) Wild-type and
dgat2°7%° embryos were injected with the tmem68 and scramble guide RNAs and imaged at 3 dpf.
The tmem68 guide RNAs did not alter yolk translucence or morphology of wild-type fish, and did not
rescue the yolk opacity in the dgatf2°¢76° mutants. Scale = 200 ym. (D) Images were assessed for the
degree of yolk opacity into the four denoted bins and graphed as a percent of total embryos/treatment
group (n = 24 fish per treatment group per clutch, N = 4 clutches; Combined data from all four
clutches is also presented).
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