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1. Supplementary Note 2

1.1. Comparison with other spatial domain identification methods 3

parameter settings 4

We quantitatively compared STMVGAE with other methods on different 5

datasets, including the non-spatial method SCANPY [1], and the spatial 6

methods stLearn [2], SEDR [3], SpaGCN [4], DeepST [5], STAGATE [6] and 7

STAMaker [7]. 8

The selection of these comparison methods was based on the following 9

considerations: 10

1.Relevance of methods. The chosen methods are advanced approaches 11

specifically designed for spatial domain identification tasks in spatial tran- 12

scriptomics. They address key research objectives, including spatial domain 13

recognition, gene expression pattern analysis, and spatial data feature ex- 14

traction, making them highly relevant to our study. 15

2. Influence in the Field. These methods have gained widespread recognition 16

and citations in spatial transcriptomics research and have become benchmark 17

models in the field. 18

3. Method Diversity. The selected methods encompass a variety of technical 19

paradigms, enabling us to compare the performance of different types of 20

approaches in spatial transcriptomics data analysis. 21

The parameter settings of these methods are as follows: 22

• SCANPY: First, we used the same data preprocessing method as STMV- 23

GAE to preprocess gene expression (log-transformed, normalized and se- 24

lecting the top 3,000 HVGs). PCA dimensionality reduction was then 25

used to reduce the gene expression data to 30 PCs. Finally, we used 26

the scanpy.pp.neighbor() function default parameters provided by the SC- 27

NAPY package [1] to calculate neighbors, and the scanpy.tl.louvain() func- 28

tion is used to allocate spots. Additionally, the resolution parameter was 29

tuned manually to ensure the number of clustering is equal to the ground 30

truth. 31

• stLearn: We chose default parameters for stLearn on the DLPFC dataset. 32

Specifically, the stLearn.SME.SME_normalized() function was performed 33

on the raw gene expression of all genes with the parameter use_data=“raw” 34
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and weights=“physical_distance”. Then the first 30 PCs of the SME nor-35

malized matrix were used for clustering. We did not use stLearn for36

training on the melanoma dataset because it does not support training37

without histology images.38

• SEDR: SEDR can be trained on all datasets, and we retain all its de-39

fault parameters except for empirically selecting the number of neigh-40

bors on different datasets to ensure reasonable results. We perform the41

same strategy on each dataset, looking for the number of neighbors that42

gives the best results between 6 and 12 neighbors. We set n in the43

SEDR.graph_construction() function to 10 on the DLPFC dataset and44

to 12 on all other datasets.45

• SpaGCN: We use its recommended parameters for SpaGCN in all datasets.46

• DeepST: We retain all the default parameters of DeepST and set k in the47

deepen._get_graph() function to 12. Additional, We tested the results48

on the melanoma dataset with DeepST set up without using histological49

images.50

• STAGATE: STAGATE builds the graph by looking for neighbors within a51

radius, so the parameter r in the STAGATE.Cal_Spatial_Net() function52

changes in each dataset. We used the same rules as SEDR to select r. In53

DLPFC, we used the recommended parameter r set to 150, r in the BCDC54

data set to 350, r in the melanoma data set to 2, and r in the BRCA data55

set to 300.56

• STAMaker: Recommended parameters are used in STAMaker, and neigh-57

bor selection is consistent with STAGATE. We set n to randomly initialize58

the model in STAMaker to 5.59

1.2. Evaluation metrics of clustering60

ARI. The adjusted Rand index (ARI) [8] is a measure of the similarity61

between two clusterings, and it is an external evaluation index. We introduce62

ARI to calculate the similarity between the results obtained by STMVGAE63

spot assignment and manual annotation. The calculation of ARI must first64

calculate the values of the contingency table. The contingency table contains65

the following four parts: TF is the count of spot pairs classified into the66

same cluster in both the true and predicted clustering. TN is the count67

of spot pairs classified into different clusters in both the true and predicted68

clustering. FN is the count of spot pairs classified into the same cluster69
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in the true clustering but into different clusters in the predicted clustering. 70

FP is the count of spot pairs classified into different clusters in the true 71

clustering but into the same cluster in the predicted clustering. The value 72

range of ARI is between [-1,1]. Generally, the closer the ARI value is to 1, 73

the better the result. The closer the ARI value is to 0, the clustering result 74

is the same as the random clustering result. The calculation method of ARI 75

is based on paired samples. It considers the combination of samples of the 76

same category in different clusters in two clustering results and compares it 77

with random situations. ARI is computed as: 78

ARI =
TP + TN − E

TP + TN + FP + FN − E
(1)

The expected value of the index, denoted as E, represents the value that 79

would be obtained if the clustering were entirely random. It is calculated as 80

follows: 81

E =
(TP + FP )× (TP + FN) + (FN + TN)× (FP + TN)

TP + TN + FP + FN
(2)

NMI. Normalized Mutual Information (NMI) is an indicator used to evaluate 82

the performance of clustering algorithms. It measures the similarity between 83

two clustering results. The NMI value ranges between [0,1]. The closer 84

the value is to 1, the more similar the two clustering results are, while the 85

closer the value is to 0, the less similar they are. P represents the spatial 86

domain clustering result and T represents the ground truth clustering labels. 87

Their entropies are denoted as H(P ) and H(T ) respectively. NMI has been 88

widely used to evaluate the performance of spatial domain identification in 89

spatial transcriptomic data analysis [9]. The calculation formula for NMI is 90

as follows: 91

NMI =
MI(P, T )√
H(P )H(T )

(3)

HS. In unsupervised clustering, Homogeneity Score (HS) is a metric used 92

to evaluate clustering results, which measures whether the samples in each 93

cluster belong to the same category [6]. The value of HS ranges from 0 to 94

1. The closer the value is to 1, the better the clustering result is, that is, 95

each cluster contains samples of the same category. H(C) is the entropy of 96

the true class, which represents the uncertainty of the class distribution of 97
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the samples in the data set; H(C|K) is the conditional category entropy of a98

given clustering result, which represents the uncertainty of the category dis-99

tribution of the sample when the clustering result is known. The calculation100

formula for HS is as follows:101

HS = 1− H(C|K)

H(C)
(4)

Purity. In unsupervised clustering, Purity is a metric used to evaluate102

clustering results, which measures whether the samples contained in each103

cluster belong to the same category. The value range of Purity is between 0104

and 1. The closer the value is to 1, the better the clustering result is, that is,105

each cluster contains samples of the same category. N is the total number106

of samples in the dataset, k represents the index of the cluster, j represents107

the index of the real category, ck represents the sample set in cluster k, and108

tj represents the sample set in real category j. The |ck ∩ tj| in the formula109

represents the size of the intersection of samples in cluster k and samples in110

true category j. The calculation formula for Purity is as follows:111

Purity =
1

N

∑
kmaxj|ck ∩ tj| (5)

1.3. Implementation Details112

Our experiments were performed on a single NVIDIA RTX 4090Ti GPU113

using PyTorch (version 1.13.1) and Python 3.11. In the “ST data augmenta-114

tion” section, we selected Resnet50 as the default convolutional neural net-115

work, and then introduced two parameters α1 and α2 to balance the image116

feature matrix and the gene expression matrix. We fixed α2 to 1.0, and set117

α1 to 0.2 through experiments. In the “Spatial graph construction” section,118

we selected neighbors with a strategy that the number of neighbors will not119

be zero and will not generate too many neighbors (more than 12), and the120

best performance is obtained within this range. The baseline method also121

used the same strategy. On different datasets, the construction parameters122

of the adjacency matrix are set as follows:123

• DLPFC dataset: adjacency matrix parameters based on Radius r = 250124

, adjacency matrix parameters based on KNN k = 12 .125

• BCDC dataset: adjacency matrix parameters based on Radius r = 300 ,126

adjacency matrix parameters based on KNN k = 5 .127
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• Melanoma dataset: adjacency matrix parameters based on Radius r = 3 128

, adjacency matrix parameters based on KNN k = 7 . 129

• BRCA dataset: adjacency matrix parameters based on Radius r = 500 , 130

adjacency matrix parameters based on KNN k = 11 . 131

The linear encoder was set to [1000, 400, 30]. Then, the hidden representation 132

is learned through a two-layer GCN encoder. The GCN waw set to [64, 8] and 133

the linear decoder is set to [400, 1000]. The training strategy was established 134

for 1000 epochs, the learning rate set at 0.001 and the weight decay set at 135

0.0001. For the loss function, we chose the hyperparameters empirically, we 136

set λ1 and λ4 to 0.1, λ2 and λ3 to 1.0. 137
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2. Supplementary Figure138

See next page
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Figure S1. Comparison of spatial domains identification by clustering assignments via
STMVGAE, STAGATE, SEDR, DeepST, stLearn, and manual annotation in all 12 slices
of the DLPFC dataset.
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Figure S2. UMAP visualization and PAGA trajectory inference by STMVGAE, SEDR,
STAGATE, DeepST, SpaGCN, and stLearn embeddings respectively.
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Figure S3. (A) UMAP visiulization of multi-slice joint analysis on 151507-151510 slices
in DLPFC datasets. Each row represents the use of STMVGAE, SCANPY, and SEDR
methods with Harmony for batch integration, and each column represents batches, identi-
fication spatial domains, and ground truth labels, respectively. (B) STMVGAE performs
multi-slice joint analysis on 151669-151672 slices in the DLPFC dataset. (C) STMVGAE
performs multi-slice joint analysis on 151673-151676 slices in the DLPFC dataset.
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Figure S4. Box plot and significance markers of the NMI values of the STMVGAE
method under multiple view combinations. The significance markers are calculated by
the Wilcoxon rank sum test.

Figure S5. Box plot and significance markers of the HS values of the STMVGAE
method under multiple view combinations. The significance markers are calculated by
the Wilcoxon rank sum test.
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Figure S6. Box plot and significance markers of the Purity values of the STMVGAE
method under multiple view combinations. The significance markers are calculated by the
Wilcoxon rank sum test.
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3. Supplementary Table139

Table S1: Overview of comparative spatial domain identification methods.

Method Methodology Input Data Downstream tasks Link

SCANPY [1] Non-spatial
method Gene expression data

Spatial domain identification
Visualization

Trajectory inference

https://scanpy.
readthedocs.io/

stLearn [2] Deep neural
network

Gene expression data
Histology information

Spatial domain identification
Visualization

Trajectory inference

https://github.com/
Biomedical

MachineLearning/
stLearn

SEDR [3] Variational graph
autoencoders

Spatial location data
Gene expression data

Spatial domain identification
Visualization

Trajectory inference
Denosing

Batch integration

https://github.com/
HzFu/SEDR/

SpaGCN [4] Graph convolutional
networks

Spatial location data
Gene expression data
Histology information

Spatial domain identification
Visualization

Trajectory inference
SVGs identification

https://github.com/
jianhuupenn/SpaGCN/

DeepST [5] Variational graph
autoencoders

Spatial location data
Gene expression data
Histology information

Spatial domain identification
Visualization

Trajectory inference
Batch integration

https://github.com/
JiangBioLab/DeepST/

STAGATE [6] Graph attention
autoencoders

Spatial location data
Gene expression data

Spatial domain identification
Visualization

Trajectory inference
Denosing

https://github.com/
zhanglabtools/STAGATE/
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Table S2: Summary of the datasets in this study.

Platform Tissue Section Number of domains Spots Genes

10X Visium

Human
dorsolateral

prefrontal cortex
(DLPFC)[10]

151507 7 4226

33538

151508 7 4384
151509 7 4789
151510 7 4634
151669 5 3661
151670 5 3498
151671 5 4110
151672 5 4015
151673 7 3639
151674 7 3673
151675 7 3592
151676 7 3460

Human breast
cancer:

ductal carcinoma
in situ[11]

\ 2 2518 17943

Human breast[3]
cancer \ 20 3798 36601

Spatialresearch Melanoma cancer[12] \ 4 293 16148

Stereo-seq Mouse olfactory
bulb[13] \ \ 19109 27106
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Table S3: Experiments on selection of hyperparameters α1 and α2. Because gene expres-
sion is important for spatial transcriptomics analysis, we want to preserve its raw gene
expression matrix, so we fixed α2 to 1.0. We explored the impact of the “ST data aug-
mentation” module on performance by changing α1.

α1
DLPFC BCDC BRCA

ARI NMI HS Purity ARI NMI HS Purity ARI NMI HS Purity
1.0 0.261 0.384 0.377 0.540 0.523 0.415 0.393 0.865 0.535 0.635 0.626 0.583
0.5 0.437 0.592 0.614 0.752 0.677 0.572 0.547 0.914 0.569 0.682 0.671 0.634
0.2 0.562 0.638 0.648 0.789 0.730 0.584 0.583 0.931 0.660 0.699 0.689 0.678
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Table S4: STMVGAE performs graph combination test results on 12 slices of the
DLPFC dataset. STMVGAE integrates the results of four different graphs in a free
combination manner to calculate ARI, NMI, HS, and Pur (Purity) respectively. A(1),
A(2), A(3), and A(4) represent Radius_balltree, Radius_kdtree, KNN_balltree, and
KNN_kdtree respectively. The best result is underlined.

Slice A(1) + A(2) A(1) + A(3) A(1) + A(4) A(2) + A(3) A(2) + A(4) A(3) + A(4)

ARI NMI HS Pur ARI NMI HS Pur ARI NMI HS Pur ARI NMI HS Pur ARI NMI HS Pur ARI NMI HS Pur
151507 0.549 0.662 0.664 0.685 0.692 0.712 0.763 0.860 0.548 0.644 0.658 0.737 0.561 0.677 0.675 0.698 0.501 0.648 0.673 0.754 0.567 0.698 0.710 0.750
151508 0.594 0.657 0.681 0.813 0.696 0.703 0.724 0.821 0.666 0.689 0.739 0.841 0.582 0.620 0.640 0.801 0.503 0.604 0.606 0.691 0.573 0.664 0.654 0.686
151509 0.421 0.585 0.573 0.672 0.567 0.644 0.636 0.783 0.421 0.588 0.581 0.704 0.504 0.637 0.609 0.699 0.411 0.567 0.560 0.673 0.604 0.653 0.643 0.773
151510 0.557 0.651 0.610 0.737 0.444 0.562 0.532 0.660 0.403 0.559 0.530 0.653 0.548 0.651 0.607 0.719 0.496 0.648 0.613 0.734 0.410 0.560 0.544 0.648
151669 0.400 0.523 0.513 0.775 0.422 0.570 0.530 0.739 0.415 0.562 0.527 0.776 0.201 0.405 0.386 0.670 0.375 0.492 0.499 0.769 0.342 0.512 0.467 0.701
151670 0.386 0.509 0.468 0.722 0.455 0.559 0.527 0.758 0.337 0.475 0.433 0.693 0.324 0.486 0.433 0.650 0.314 0.455 0.412 0.688 0.246 0.414 0.376 0.601
151671 0.770 0.724 0.711 0.866 0.744 0.707 0.720 0.895 0.784 0.751 0.741 0.894 0.706 0.688 0.665 0.833 0.746 0.703 0.773 0.921 0.698 0.708 0.688 0.833
151672 0.670 0.697 0.814 0.925 0.722 0.724 0.740 0.851 0.640 0.658 0.690 0.811 0.700 0.713 0.762 0.902 0.686 0.701 0.710 0.805 0.617 0.654 0.692 0.831
151673 0.446 0.624 0.670 0.731 0.440 0.618 0.639 0.708 0.464 0.638 0.659 0.739 0.430 0.618 0.647 0.744 0.496 0.645 0.699 0.804 0.499 0.647 0.656 0.749
151674 0.454 0.584 0.591 0.689 0.483 0.608 0.655 0.801 0.427 0.607 0.610 0.667 0.458 0.544 0.552 0.725 0.420 0.554 0.584 0.743 0.466 0.588 0.599 0.711
151675 0.504 0.628 0.656 0.764 0.530 0.601 0.641 0.817 0.538 0.621 0.674 0.839 0.479 0.629 0.697 0.815 0.486 0.601 0.641 0.764 0.528 0.652 0.665 0.767
151676 0.444 0.601 0.641 0.750 0.548 0.643 0.667 0.773 0.513 0.602 0.632 0.758 0.469 0.634 0.664 0.762 0.488 0.611 0.652 0.780 0.477 0.632 0.642 0.715
Average 0.516 0.620 0.633 0.761 0.562 0.638 0.648 0.789 0.513 0.616 0.623 0.759 0.497 0.608 0.611 0.751 0.494 0.602 0.618 0.761 0.502 0.615 0.611 0.730

Table S5: STMVGAE performs graph combination test results on 12 slices of the
DLPFC dataset. STMVGAE integrates the results of four different graphs in a free
combination manner to calculate ARI, NMI, HS, and Pur (Purity) respectively. A(1),
A(2), A(3), and A(4) represent Radius_balltree, Radius_kdtree, KNN_balltree, and
KNN_kdtree respectively. The best result is underlined.

Slice A(1) + A(2) + A(3) A(1) + A(2) + A(4) A(1) + A(3) + A(4) A(2) + A(3) + A(4) A(1) + A(2) + A(3) + A(4)

ARI NMI HS Pur ARI NMI HS Pur ARI NMI HS Pur ARI NMI HS Pur ARI NMI HS Pur
151507 0.618 0.708 0.827 0.913 0.581 0.699 0.710 0.761 0.688 0.729 0.773 0.866 0.569 0.700 0.715 0.771 0.583 0.704 0.719 0.776
151508 0.660 0.700 0.721 0.824 0.625 0.674 0.696 0.814 0.705 0.723 0.753 0.839 0.597 0.681 0.724 0.847 0.676 0.708 0.730 0.821
151509 0.570 0.657 0.641 0.776 0.428 0.612 0.601 0.693 0.570 0.646 0.630 0.747 0.496 0.643 0.618 0.696 0.574 0.656 0.644 0.777
151510 0.501 0.652 0.635 0.717 0.438 0.634 0.603 0.680 0.411 0.588 0.563 0.678 0.421 0.622 0.593 0.681 0.433 0.635 0.614 0.686
151669 0.353 0.543 0.506 0.746 0.417 0.551 0.515 0.773 0.374 0.558 0.534 0.739 0.384 0.498 0.495 0.767 0.298 0.513 0.481 0.727
151670 0.335 0.516 0.459 0.673 0.423 0.537 0.493 0.741 0.481 0.534 0.507 0.764 0.379 0.509 0.462 0.685 0.443 0.512 0.470 0.743
151671 0.745 0.723 0.748 0.910 0.826 0.740 0.751 0.890 0.790 0.751 0.742 0.896 0.729 0.701 0.785 0.929 0.798 0.751 0.735 0.882
151672 0.726 0.718 0.755 0.848 0.704 0.705 0.748 0.827 0.725 0.723 0.742 0.855 0.709 0.712 0.728 0.815 0.718 0.717 0.736 0.850
151673 0.500 0.654 0.659 0.694 0.543 0.675 0.694 0.788 0.532 0.672 0.687 0.741 0.498 0.645 0.648 0.738 0.512 0.665 0.665 0.702
151676 0.490 0.592 0.625 0.749 0.422 0.587 0.590 0.662 0.477 0.628 0.620 0.672 0.460 0.592 0.625 0.742 0.463 0.607 0.613 0.693
151675 0.528 0.662 0.691 0.779 0.507 0.624 0.652 0.768 0.462 0.616 0.655 0.760 0.473 0.621 0.680 0.801 0.531 0.661 0.693 0.788
151676 0.442 0.616 0.635 0.708 0.471 0.643 0.679 0.728 0.445 0.616 0.644 0.721 0.479 0.647 0.687 0.730 0.476 0.642 0.654 0.691
Average 0.539 0.645 0.658 0.778 0.532 0.640 0.644 0.760 0.555 0.649 0.654 0.773 0.516 0.631 0.647 0.767 0.542 0.648 0.646 0.761
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