Supplementary Information

Tunable band alignment and large power conversion efficiency in two dimensional InS/ZnIn₂S₄ van der Waals heterostructure

Hui-Ying Liu¹, Heng-Fu Lin^{1,2†}, Lu-Ya Xu¹, Ting-Ping Hou^{1,2}, and Nan-Shu Liu^{3†}

¹Hubei Province Key Laboratory of Systems Science in Metallurgical Process, and College of Science, Wuhan University of Science and Technology, Wuhan 430081, China ²The State Key Laboratory for Refractory Material and Metallurgy, International Research Institute for Steel Technology, and Collaborative Center on Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China ³ Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China

[†] Corresponding author. Email: hflin@wust.edu.cn (H. F. Lin), <u>liuns0215@gmail.com (N. S</u>. Liu),.

Fig. S1. Top and side views of InS monolayer [(a) and (b)] and $ZnIn_2S_4$ monolayer [(d) and (e)]. The black line in (a) and (d) indicates the unit cell. The band structures of InS monolayer (c) and $ZnIn_2S_4$ monolayer (f).

Fig. S2. The projected band structures of the $InS/ZnIn_2S_4$ heterostructure under electric field ranging from -0.4 to 0.3 V/Å.

Fig. S3. The projected band structures of $InS/ZnIn_2S_4$ heterostructure with different biaxial strains. The Fermi levels are set to zero.

Fig. S4. Phonon spectrums of $InS/ZnIn_2S_4$ heterostructure (a), the variation of total energy of Ga₂SeTe/In₂SSe (HS1-AB) vdw heterostructures as a function of time at temperature 300 K(b).

	<i>a</i> (Å)	b (Å)	<i>d</i> (Å)	$E_b(\text{meV})$
AA	6.796	3.929	3.71	-25.1
AB	6.796	3.928	3.77	-14.9
AC	6.795	3.926	4.19	-9.6
AD	6.795	3.928	4.03	-11.7

Table S1. The calculated lattice constants (*a* and *b*), equilibrium interlayer distance (*d*), and binding energy (E_b) of the InS/ZnIn₂S₄ heterostructures with different stacking configuration.

Table S2. The calculated η of the InS/ZnIn₂S₄ heterostructure under different electric field E_{\perp} . The relevant parameters for the η , E_{g}^{d} , *Jsc/Psolar*, ΔE_{c} , and V_{oc} , are also provided.

E_{\perp}	E^d , M	Jsc/Psolar	ΔEc [eV]	Voc [V]	η(%)
-0.3	2.63	0.078	2.17	0.16	0.81
-0.2	3.02	0.032	1.91	0.81	1.68
-0.1	2.61	0.081	0.90	1.41	7.42
0	2.57	0.087	0.36	1.91	10.80
0.025	2.59	0.085	0.28	2.01	11.10
0.1	2.60	0.082	0.37	1.93	10.29
0.2	2.24	0.155	0.73	1.21	12.19
0.3	1.84	0.245	1.09	0.45	7.17

£(%)	E^d , where	Jsc/Psolar	Δ <i>E</i> c [eV]	Voc [V]	η(%)
-3	3.07	0.028	0.47	2.30	4.18
-2	2.90	0.042	0.43	2.17	5.92
-1	2.73	0.065	0.38	2.05	8.66
0	2.57	0.087	0.36	1.91	10.80
1	2.35	0.127	0.32	1.73	14.28
2	2.18	0.163	0.30	1.58	16.74
3	2.00	0.205	0.28	1.42	18.92
4	1.83	0.252	0.26	1.27	20.80

Table S3. The calculated η of the InS/ZnIn₂S₄ heterostructure under different biaxial strains ε . The relevant parameters for the η , E_{g}^{d} , *Jsc/Psolar*, ΔE_{c} , and V_{oc} , are also provided.

Table S4. Calculated carrier effective mass (m*), deformation potential constant (E_l), and carrier mobility (μ) for electron (e) and hole (h) along the zigzag (x) and armchair (y) directions at 300 K in InS/ZnIn₂S₄ heterostructure

Carrier type	$m^*_{x(m_0)}$	$m_{y(m_0)}^*$	$E_{lx}(eV)$	$E_{ly}(eV)$	μ_x	μ_y
					(cm ² V ⁻¹ s ⁻¹)	$(cm^2 V^{-1} s^{-1})$
Electron	1.49	1.28	-8.35	-8.72	2091.06	2231.94
Hole	0.9	1.01	-9.28	-7.00	3481.04	6118.01
	9					