Supporting information

Cross-Shaped Organic Framework; a Multi-Functional Template Arranging Chromophores

C.C.E. Kroonen, A. D'Addio, A. Prescimone, D. Haussinger, M. Mayor*

Table of Contents

General	3
Synthesis	4
Experimental procedure C _{Br212}	4
Experimental procedures Chromophore library	6
Procedure template cleavage	
Physico-Chemical analysis	
Characterization $C_{Br_{2}I_{2}}$	
Characterization chromophores	
Optical analysis	
Chiral-analysis	
FRET-System	
Crystallographic data	
(<i>rac</i>)-C _{Br2l2} (CCDC – 2378892)	
(<i>P</i>)-C _{Br212} (CCDC – 2378893)	
(<i>rac</i>)-C _{Br2BY2} (CCDC – 2378894)	
Geometry optimized structures	
References	
NMR, IR and HR-ESI-MS spectra	

General

All chemicals and solvents were purchased from SigmaAldrich, Acros, Apollo Scientific, Alfa Aesar and Fluorochem and used as received. NMR solvents were obtained from CIL Cambridge Isotope Laboratories, Inc., Acros, Sigma-Aldrich, or Apollo Scientific. Dry solvents were used as crown capped and purchased from Acros and Sigma-Aldrich. Column chromatography was performed manually or on a Biotage Isolera using SilicaFlashR P60 from Silicycle with particle size of 40-63 µm (230-400 mesh) as stationary phase. TLC was performed with silica gel 60 F254 glass plates purchased from Merck. Recycling size-exclusion chromatography (SEC or GPC) was performed with a Shimadzu Prominence System equipped with SDV preparative columns from Polymer Standards Service (two Shodex columns in series, 20×600 mm each, exclusion limit: 30 000 g mol⁻¹) with chloroform as solvent. NMR experiments were performed on Bruker Avance III NMR spectrometers operating at 250, 400 or 500 MHz proton frequencies. The instruments were equipped with a direct-observe 5 mm BBFO smart probe (250, 400 MHz), or an indirect-detection 5 mm BBI probe (500, 600 MHz). All probes were equipped with actively shielded z-gradients (10 A). The chemical shifts are reported in ppm relative to TMS or referenced to residual solvent peak and the J values are given in Hz. Infrared spectra were recorded neat with an ATR equipped Schimadzu IRTacer-100. High-resolution mass spectra (HR-MS) were measured with a Bruker Maxis 4G ESI-TOF instrument. CD measurements were performed on a JASCO J-1500 CD Spectrophotometer in a 1 cm quartz glass cuvette. Quantum yields were recorded on an Absolute PL Quantum Yield Spectrometer: Hamamatsu Quantaurus QY -C11347. Fluorescence lifetime measurements were performed on a Compact Fluorescence Lifetime Spectrometer: Hamamatsu Quantaurus Tau – 11367. For analytical HPLC, a Shimadzu LC-20AT HPLC was used, equipped with a diode-array UV/Vis detector (SPD-M20 A VP from Shimadzu, λ =200–600 nm) and a column oven Shimadzu CTO-20AC. For preparative HPLC, a Shimadzu LC-20AP HPLC was used equipped with a diode-array UV/Vis detector (SPD-M20 A VP from Shimadzu, λ =200–600 nm). The used column for analytical separation on chiral stationary phase was a Chiralpak IG, IA, IC or IBN-5; 5 µm, 4.6×250 mm, Daicel Chemical Industries Ltd and for preparative separation, Chiralpak IG, 5 μm, 30×250 mm, Daicel Chemical Industries Ltd. DFT calculations^[1]; Geometries were optimized either using Gausian 09 or Gaussian 16 and stationary points were analyzed by subsequent frequency analysis. CBr212 was optimized at the B3LYP/3-21G level of theory while all other structures were optimized at the B3LYP/6-31G(d,p) level of theory. The initial guess was obtained from the crystallographic data and the P isomer was optimized. From the resulting geometry all initial guesses were modeled. CD spectra were simulated by calculation of rotary strengths at the TD-cam-B3LYP/6-31G(p,d) level of theory of the 50 lowest singlet transitions except for (P)-C_{Br212} where we used the 3-21G basis set.^[2] The simulated spectrum was fitted using SpecDis.^[3]

Synthesis

Scheme S1: Molecular design and retro-synthetic analysis of universal cross-shaped building block C_{Br212}.

Experimental procedure CBr212

Compound 5: To a stirred solution of (2-amino-5-bromophenyl)methanol **4** (5.01 gr, 1 equiv.) in dry THF (82.5 mL) was added DIPEA (6 mL, 1.5 equiv.) at 0°C. A solution of di-tert-butyl dicarbonate (5.9 mL, 1.1 equiv.) in dry THF was added dropwise after which the reaction was allowed to warm to room temperature and where it was stirred for 18 hours. The mixture was diluted with EtOAc and washed with 0.1 M HCl

3 times. The organic phase was collected, dried with sodium sulfate and concentrated in vacuo. The crude was purified by column chromatography (SiO₂, cyclohexane:ethyl acetate 8:2 v/v) obtaining the boc-protected amine as a white solid (5.00 gr, 66 %).

TLC: $R_f = 0.15$ (SiO₂, cyclohexane: ethyl acetate 8:2 v/v)

¹**H-NMR:** (500 MHz, CD₂Cl₂): δ 7.85 (d, *J* = 8.7 Hz, 1H), 7.67 (s, 1H), 7.40 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.31 (d, *J* = 2.4 Hz, 1H), 4.64 (d, *J* = 5.7 Hz, 2H), 2.32 – 2.27 (m, 1H), 1.50 (s, 9H).

¹³**C-NMR {1H}:** (126 MHz, CD₂Cl₂): δ 153.31, 137.89, 131.96, 131.80, 131.29, 122.63, 115.42, 80.94, 63.95, 28.42.

HR-ESI-MS: *m*/*z* calculated for C₁₂H₁₆BrNNaO₃ [M+Na]⁺; 324.0206 found 324.0203.

Compound 3: Protected amine **5** (2.0 gr, 1 equiv.), B₂Pin₂ (1.94 mg, 1.15 equiv.) and KOAc (1.30 gr, 2 equiv.) were added to a 100 mL *Schlenk* tube and cycled between vacuum and argon 3 times. 40 mL dry dioxane was added and the mixture was degassed for 15 min. Pd(ddpf)Cl₂ (5 mol%) was added, the tube was sealed and heated to 90°C. After 16 hours the reaction was cooled, filtered over silica and flushed down with EtOAc. The volatiles were removed under reduced pressure and

the crude is subjected to column chromatography (SiO₂, cyclohexane: ethyl acetate 9:1 to 3:1 v/v) obtaining the product in the as a white fluffy solid (2.27 gr, 98%).

TLC: $R_f = 0.15$ (SiO₂, cyclohexane: ethyl acetate 6:4 (v/v)).

¹**H-NMR:** (500 MHz, CD₂Cl₂) δ 8.00 (d, *J* = 8.2 Hz, 1H), 7.89 (s, 1H), 7.68 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.55 (d, *J* = 1.5 Hz, 1H), 4.71 (s, 2H), 2.00 (s, 1H), 1.51 (s, 9H), 1.31 (s, 12H).

¹³**C-NMR {1H}:** (126 MHz, CD₂Cl₂) δ 153.15, 141.71, 136.10, 135.67, 127.66, 119.37, 84.13, 80.76, 64.77, 28.45, 25.07.

HR-ESI-MS: *m*/*z* calculated for C₁₈H₂₉BNO₅ [M+H]⁺; 350.2137 found 350.2132.

Compound 1: To a solution of **3** (2.0 gr, 2.05 equiv.) and Diacid **2** (1.11 gr, 1 equiv.) in dry DCM/DMF (23:4.4 mL) were added, *N*,*N*'-dicyclohexylcarbodiimide (1.27 gr, 2.2 equiv.) and finally 4-(dimethylamino)pyridine (35 mg, 0.1 equiv.) at room temperature under inert atmosphere. The reaction mixture was stirred at room temperature for 4 hours before it was filtered through a pad of celite and flushed down with DCM. The organic phase was washed

with water (3 times), dried over sodium sulfate and solvents were removed under vacuum. The crude was purified by flash column chromatography on silica gel (cyclohexane : ethyl acetate $9:1 \rightarrow 8:2 \text{ v/v}$) obtaining the product as a white fluffy solid (2.87 gr, 97 %), which was used in the next step without further purification. **TLC:** $R_f = 0.27$ (SiO₂, cyclohexane: ethyl acetate 6:4 (v/v)).

¹**H-NMR:** (500 MHz, CD₂Cl₂) δ 7.96 (d, *J* = 2.1 Hz, 2H), 7.88 (d, *J* = 8.2 Hz, 2H), 7.73 (dd, *J* = 8.3, 1.6 Hz, 2H), 7.51 (d, *J* = 1.5 Hz, 2H), 7.45 (dd, *J* = 8.2, 2.2 Hz, 2H), 7.05 (s, 2H), 6.87 (d, *J* = 8.1 Hz, 2H), 5.02 (d, *J* = 1.3 Hz, 4H), 1.50 (s, 18H), 1.33 (d, *J* = 3.6 Hz, 24H).

¹³**C-NMR {1H}:** (126 MHz, CD₂Cl₂) δ 165.63, 152.47, 140.65, 140.32, 137.85, 136.45, 134.64, 132.91, 131.51, 130.39, 122.88, 121.36, 120.13, 83.80, 80.62, 64.39, 28.05, 24.71.

HR-ESI-MS: *m*/*z* calculated for C₅₀H₆₁B₂Br₂N₂O₁₂ [M+Na]⁺; 1061.2774 found 1061.2778.

Compound C_{Br₂NBoc₂}: **1** (3.44 gr, 1 equiv.), PdCl₂PPh₃ (459 mg, 20 mol %) and boric acid (1.20 gr, 6 equiv.) were dissolved a 600 mL toluene/150 mL MeOH mixture. The solution was stirred vigorously for 15 minutes, followed by the addition of 150 mL H₂O and KF (1.88 gr, 10 equiv.). The reaction mixture was allowed to stir at room temperature for 7 hours open to the air. The mixture was portioned between toluene and water, followed by subsequent extraction of the aqueous phase with

toluene. The combined organic layers were dried over sodium sulfate and concentrated in vacuo. The crude reaction mixture was purified by column chromatography (SiO₂, cyclohexane: ethyl acetate 9:1 \rightarrow 8:2 \rightarrow 1:1 v/v) obtaining the product as an off-white powder (1.69 gr, 61 %). **TLC:** R_f = 0.17 (SiO₂, cyclohexane: ethyl acetate 6:4 (v/v)).

¹**H-NMR:** (500 MHz, CD₂Cl₂): δ 8.44 – 8.41 (m, 2H), 7.77 – 7.73 (m, 2H), 7.43 (s, 4H), 7.21 – 7.18 (m, 2H), 6.94 (s, 2H), 6.22 (s, 2H), 5.67 (d, *J* = 14.2 Hz, 2H), 5.04 (d, *J* = 14.3 Hz, 2H), 1.50 (s, 18H).

¹³**C-NMR {1H}:** (126 MHz, CD₂Cl₂) δ 164.66, 153.60, 143.45, 137.50, 135.42, 134.19, 133.41, 132.99, 130.24, 128.64, 125.51, 125.31, 124.82, 121.63, 81.07, 62.80, 28.40.

HR-ESI-MS: *m*/*z* calculated for C₃₈H₃₆Br₂N₂NaO₈ [M+Na]⁺; 829.0731 found 829.0725.

Compound C_{Br₂I₂}: To a solution of p-TsOH*H2O (579 mg, 6 equiv.) in 2.5 mL toluene and 2.5 mL ACN was added **C**_{Br₂Nboc₂} (400 mg, 0.495 mmol, 1 equiv.). The mixture was stirred for 4 hours, until full deprotection was observed (LC-MS). The white suspension was cooled to -15°C before a solution of NaNO₂ (137 mg, 4 equiv.) and KI (411 mg, 5 equiv.) in 0.75 mL water was added dropwise. The mixture was stirred on ice for 10 minutes before it was warmed to room temperature. After stirring 1

hour the reaction mixture was diluted with water, sat NaHCO₃ and 40% aq. NaHSO₃, followed by extraction with toluene. The organics were collected, combined, dried with Na₂SO₄ and concentrated. The resulting crude was purified by column chromatography (Cyclohexane:CH₂Cl₂ 9:1 --> 1:1) obtaining the product in the 1st fraction as a white solid (256 mg, 62 %).

TLC: $R_f = 0.18$ (SiO₂, cyclohexane: dichloromethane 9:1).

'H-NMR: (500 MHz, CD₂Cl₂) δ 8.44 (d, *J* = 2.1 Hz, 2H), 7.84 (d, *J* = 8.1 Hz, 2H), 7.76 (dd, *J* = 8.3, 2.1 Hz, 2H), 7.20 (d, *J* = 8.2 Hz, 2H), 7.18 – 7.15 (m, 2H), 6.77 – 6.76 (m, 2H), 5.49 (dt, *J* = 14.8, 1.0 Hz, 2H), 4.98 (dt, *J* = 14.7, 0.8 Hz, 2H).

¹³**C-NMR {1H}:** (126 MHz, CD₂Cl₂) δ 164.31, 143.48, 140.60, 139.71, 138.61, 135.64, 134.24, 132.95, 128.34, 126.80, 126.09, 121.69, 93.35, 70.45.

HR-ESI-MS: *m*/*z* calculated for C₂₈H₁₆Br₂I₂NaO₄ [M+Na]⁺; 850.7397 found 850.7389.

FT-IR (ATR) \tilde{v} [cm⁻¹]: 3070 (w), 2906 (w), 1729 (s), 1583 (m), 1551 (m), 1462 (w), 1438 (w), 1424 (w), 1369 (m), 1274 (m), 1229 (s), 1140 (m), 1090 (m), 1073 (s), 1011 (w), 1003 (m), 984 (w), 964 (w), 897 (w), 872 (w), 826 (s), 810 (s), 786 (s), 724 (s), 704 (m), 694 (m), 670 (w), 654 (w), 581 (w), 565 (w), 546 (m), 531 (m), 497 (m), 418 (m).

Experimental procedures Chromophore library

NI-Br: 4-bromo-1,8-naphthalicanhydride (1.07 g, 1 equiv.) was treated with n-hexylamine (0.35 mL, 4.83 mmol, 1.25 equiv.) in ethanol (25 mL). The mixture was heated at reflux for 16 hours before cooled down to room temperature. Hydrochloric acid (2M, 10 mL) was added and the mixture was diluted with EtOAc. Phases were separated and the organic phase was collected, dried and concentrated. The crude was purified by silica column chromatography (cyclohexane:CH2Cl2 7:3 \rightarrow 1:1 v/v) obtaining the product as a yellow

solid (1.3 gr, 93 %).

TLC: $R_f = 0.20$ (SiO₂, cyclohexane: dichloromethane 7:3)

¹**H-NMR:** (400 MHz, CD₂Cl₂) δ 8.61 (dd, *J* = 7.3, 1.1 Hz, 1H), 8.56 (dd, *J* = 8.5, 1.1 Hz, 1H), 8.37 (d, *J* = 7.9 Hz, 1H), 8.04 (d, *J* = 7.9 Hz, 1H), 7.85 (dd, *J* = 8.5, 7.3 Hz, 1H), 4.15 – 4.09 (m, 2H), 1.70 (p, *J* = 7.4 Hz, 2H), 1.45 – 1.27 (m, 6H), 0.92 – 0.86 (m, 3H).

¹³**C-NMR {1H}:** (101 MHz, CD₂Cl₂) δ 163.83, 163.80, 133.37, 132.10, 131.49, 131.32, 130.99, 130.27, 129.37, 128.47, 123.71, 122.89, 40.84, 31.96, 28.36, 27.18, 22.99, 14.22.

HR-ESI-MS: *m*/*z* calculated for C₁₈H₁₈BrNNaO₂ [M+Na]⁺; 382.0413 found 382.0412.

NI-BPin: NI-Br (768 mg, 1 equiv.), B_2Pin_2 (650 mg, 1.2 equiv.) and KOAc (418 mg, 2 equiv.) were added to a 25 mL *Schlenk* tube and cycled between vacuum and argon 3 times. The solids were dispersed in 12 mL dry dioxane followed by degassing with argon for 15 minutes. PdCl₂(dppf) (78 mg, 5 mol %) was added, the tube sealed and heated to 85 °C for 4 hours. The reaction mixture was cooled down, filtered over a celite pad and the filtrate was concentrated under reduced pressure. The crude was plugged over silica with dichloromethane, obtaining the product as a white-greenish solid (900 mg, 99 %).

¹**H-NMR:** (500 MHz, CD₂Cl₂) δ 9.12 (dd, *J* = 8.5, 1.1 Hz, 1H), 8.61 – 8.49 (m, 2H), 8.27 (d, *J* = 7.3 Hz, 1H), 7.83 – 7.74 (m, 1H), 4.17 – 4.09 (m, 2H), 1.70 (p, *J* = 7.4 Hz, 2H), 1.44 (s, 12H), 1.43 – 1.28 (m, 6H), 0.95 – 0.86 (m, 3H).

¹³**C-NMR {1H}:** (101 MHz, CD₂Cl₂) δ 164.48, 164.46, 135.97, 135.64, 135.14, 130.91, 129.80, 128.24, 127.37, 125.32, 123.26, 85.01, 40.73, 31.99, 28.40, 27.22, 25.15, 23.00, 14.23.

HR-ESI-MS: m/z calculated for C₂₄H₃₁BNO₄ [M+H]⁺; 408.2345 found 408.2341.

BY-Br: At room temperature, a solution of TFA (22 μ L) in 2 mL of dry-DCM was added to a degassed mixture of 2,4-dimethylpyrrole (0.45 mL, 2.25 equiv.) and 3,5dibromobenzaldehyde (359 mg, 1 equiv.) in 97 mL dry-DCM under argon atmosphere. The mixture was stirred for 3 hours before it was cooled to 0 °C and a mixture of DDQ (460 mg, 1 equiv.) in 28 mL dry-DCM was added dropwise. After full addition the mixture was heated to room temperature and was stirred for one hour. Et₃N

(3.9 mL, 14 equiv.) was added and the mixture was cooled on ice before BF₃·Et₂O (3.9 mL) was added slowly. The reaction was stirred for an additional 2 hours at room temperature. The mixture was washed with sat. Na₂CO₃ (twice) and the organics were collected, dried over Na₂SO₄ and evaporated to dryness. The crude product was subjected to silica column chromatography (cyclohexane:CH₂Cl₂ 6:4) obtaining the product as a red-solid (230 mg, 29 %).

¹**H-NMR:** (400 MHz, CD₂Cl₂) δ 7.67 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.4 Hz, 2H), 6.03 (s, 2H), 2.51 (s, 6H), 1.43 (s, 6H).

¹³**C-NMR {1H}:** (101 MHz, CD₂Cl₂) δ 156.19, 143.61, 140.73, 134.30, 132.88, 131.58, 130.39, 123.63, 121.76, 14.81, 14.73.

¹⁹**F-NMR {1H}:** (376 MHz, CD₂Cl₂, not referenced) δ -146.27 (dd, J = 65.8, 33.0 Hz).

¹¹**B NMR:** (128 MHz, CD_2CI_2 , not referenced) δ 0.69 (t, *J* = 32.9 Hz).

HR-ESI-MS: *m*/*z* calculated for C₁₉H₁₈B₂F₂N₂Na [M+H]⁺; 425.0610 found 425.0604.

BY-Bpin: BY-Br (160 mg, 1 equiv.), B₂Pin₂ (170 mg, 1.5 equiv.) and KOAc (85 mg, 2 equiv.) were added to a 5 mL *Schlenk* tube and cycled between vacuum and argon 3 times. The solids were dispersed in 2.5 mL dry dioxane followed by degassing for 15 minutes. PdCl₂(dppf) (25 mg, 7 mol %) was added, the tube sealed and heated to 85 °C for 20 hours. The reaction mixture was cooled down, filtered over a silica pad and the filtrate was concentrated under reduced pressure. The obtained crude was plugged over silica with dichloromethane and the obtained solid was washed with heptane, yielding the product

as a red-solid (150 mg, 83 %).

¹H-NMR: (400 MHz, CD₂Cl₂) δ 7.88 (d, *J* = 7.8 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 2H), 6.01 (s, 2H), 2.50 (s, 6H), 1.38 (s, 6H), 1.36 (s, 12H).

¹³**C-NMR {1H}:** (101 MHz, CD₂Cl₂) δ 143.80, 139.08, 138.04, 135.69, 127.77, 121.49, 84.50, 25.25, 14.70, 14.64. ¹⁹**F-NMR {1H}:** (376 MHz, CD₂Cl₂, not referenced) δ -δ -146.28 (dd, *J* = 65.9, 33.1 Hz).

¹¹**B NMR:** (128 MHz, CD₂Cl₂, not referenced) δ 30.38, 0.71 (t, *J* = 32.9 Hz).

HR-ESI-MS: *m*/*z* calculated for C₂₅H₃₀B₂F₂N₂NaO₂ [M+Na]⁺; 473.2362 found 473.2357.

Compound C_{Br₂Naph₂}: **C**_{Br₂l₂} (30.2 mg, 1. equiv.), 6-Methoxy-naphtalene boric acid (16.4 mg, 2.2 equiv) and K₂CO₃ (25.0 mg, 5 equiv.) were added to a 10 mL *Schlenk* tube and dispersed in 4 mL of a 4:1:4 mixture of toluene:EtoH:H₂O. The mixture was degassed with argon for 15 minutes, before PdCl₂(dppf) (10 mol%) was added. The tube was

sealed and heated at 60 °C for 17 hours. The reaction was cooled to r.t. and extracted with CH₂Cl₂. Organic phases were dried with Na₂SO₂, filtered and concentrated under reduced pressure. The crude was purified by column chromatography (SiO₂, cyclohexane:CH₂Cl₂ 8:2 \rightarrow 1:1) obtaining the product (21.3 mg, 62 %) as a white solid.

TLC: $R_f = 0.24$ (SiO₂, cyclohexane: dichloromethane 1:1).

¹**H-NMR:** (500 MHz, CD₂Cl₂): δ 8.39 (d, J = 2.1 Hz, 2H), 7.85 (d, J = 8.4 Hz, 2H), 7.80 (d, J = 8.9 Hz, 2H), 7.75 (d, J = 2.0 Hz, 3H), 7.73 (d, J = 2.1 Hz, 1H), 7.67 (dd, J = 7.9, 2.0 Hz, 2H), 7.47 (dd, J = 8.3, 1.8 Hz, 2H), 7.43 (d, J = 7.8 Hz, 2H), 7.32 (d, J = 1.9 Hz, 2H), 7.25 – 7.16 (m, 6H), 5.90 (d, J = 14.0 Hz, 2H), 4.96 (d, J = 14.0 Hz, 2H), 3.95 (s, 6H).

¹³**C-NMR {1H}:** (126 MHz, CD₂Cl₂): (126 MHz, CD₂Cl₂) δ 165.00, 158.50, 143.66, 139.65, 139.54, 135.41, 135.18, 134.77, 134.25, 134.14, 132.80, 131.00, 129.91, 129.13, 128.94, 128.14, 128.08, 127.31, 125.93, 125.09, 121.53, 119.71, 106.00, 64.46, 55.76.

HR-ESI-MS: m/z calculated for $C_{50}H_{34}Br_2NaO_6$ [M+Na]⁺; 911.0614 found 911.0605.

FT-IR (ATR) \tilde{v} [cm⁻¹]: 3060 (w), 2967 (m), 2902 (m), 2837 (w), 1725 (s), 1633 (w), 1605 (m), 1554 (w), 1495 (m), 1463 (w), 1388 (m), 1372 (m), 1269 (m), 1232 (s), 1204 (s), 1145 (m), 1082 (m), 1070 (s), 1031 (m), 1003 (m), 916 (w), 892 (w), 856 (w), 830 (m), 806 (m), 787 (m), 716 (w), 675 (w), 654 (w), 569 (w), 548 (w), 522 (w), 476 (m).

Compound C_{Naph4}: Route 1 (two-fold Suzuki): A 5 ml Schlenk tube was charged with C_{Br2Naph2} (21.3 mg, 1 equiv.), Methoxy-naphtalene boric acid (11.6 mg, 2.4 equiv.) and K₂CO₃ (16.4 mg, 5 equiv.) in 2.5 mL of a mixture of toluene:EtOH:H₂O (4/1/4 v/v/v). The mixture was degassed for 15 min with argon and PdCl₂(dppf) (10 mol %) was added. The reaction mixture was heated at 85 °C for 24 hours. After completion the mixture was cooled down and extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄ and evaporated under reduced pressure. The crude product was purified by a column chromatography (SiO₂, cyclohexane:DCM; 1:1 v/v) collecting the 2nd

peak. After concentration the solid was triturated with diethylether yielding the product as a white solid (13.2 mg, 47 %).

Route 2 (four-fold Suzuki): A 10 mL Schlenk tube was charged with $C_{Br_2l_2}$ (29.8 mg, 1 equiv.), 6methoxy naphtalene boric acid (40.2 mg, 5.5 equiv.) and K₂CO₃ (40 mg, 8 equiv.). The solids were dispersed in a 6 mL mixture of toluene/Etoh/H₂O v/v/v 4:1:1 and the solution was degassed with Argon for 15 minutes. PdCl2(dppf) 20 mol% was added, the tube sealed and the mixture was heated to 85°C for 16 hours. After completion the mixture was cooled to r.t. diluted with toluene and washed with water. Organics were concentrated in vacuo and the crude was purified by silica column chromatography (cyclohexane:DCM; 1:1 v/v) obtaining the product as a white solid (21 mg, 56 %). **TLC:** R_f = 0.19 (SiO₂, cyclohexane:dichloromethane 4:6).

¹**H-NMR:** (500 MHz, THF-d8) δ 8.64 (d, J = 2.0 Hz, 2H), 8.15 (s, 2H), 8.02 (dd, J = 8.0, 2.0 Hz, 2H), 7.87 – 7.79 (m, 12H), 7.68 (dd, J = 7.9, 1.7 Hz, 2H), 7.49 (d, J = 8.4 Hz, 4H), 7.45 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.29 (d, J = 2.4 Hz, 2H), 7.24 (d, J = 2.4 Hz, 2H), 7.19 – 7.11 (m, 4H), 5.96 (d, J = 14.4 Hz, 2H), 5.01 (d, J = 14.3 Hz, 2H), 3.92 (s, 6H), 3.90 (s, 6H).

¹³**C-NMR {1H}:** (126 MHz, THF-d8) δ 166.32, 159.38, 159.32, 145.36, 141.13, 140.32, 140.22, 136.11, 136.04, 135.43, 135.19, 132.98, 131.33, 131.17, 130.64, 130.51, 130.45, 130.09, 128.76, 128.72, 128.56, 128.38, 127.89, 126.57, 126.51, 126.44, 125.28, 120.25, 120.16, 106.47, 55.70, 55.67.

HR-ESI-MS: *m*/*z* calculated for C₇₂H₅₂NaO₈ [M+Na]⁺; 1067.3554 found 1067.3553.

FT-IR (ATR) \tilde{v} [cm⁻¹]: 3065 (w), 2996(w), 2955 (m), 2935 (m), 2842 (w), 1724 (s), 1632 (w), 1604 (m), 1495 (s), 1465 (w), 1452 (w), 1391 (w), 1375 (w), 1304 (w), 1271 (w), 1251 (m), 1225 (s), 1203 (s), 1153 (m), 1071 (s), 1033 (m), 1005 (w), 916 (w), 891 (w), 840 (m), 834 (w), 808 (w), 796 (w), 788 (w), 684 (w), 522 (w), 473 (m).

Compound C_{Br₂Nl₂}: **Racemate synthesis:** A 10 mL *Schlenk* tube was charged with $C_{Br_2l_2}$ (60 mg, 1 equiv.), **NI-Bpin** (63.5 mg, 2.05 equiv.) and K₂CO₃ (50 mg, 5 equiv.). The solids were dispersed in a 5 mL mixture of THF/H₂O 4:1 and the solution was degassed with Argon for 15 minutes. PdCl₂(dppf) 10 mol% was added, the

tube sealed and the mixture heated to 55°C for 4.5 hours. After completion the mixture was cooled to r.t. diluted with EtOAC and water. The phases were separated and the organics were concentrated in vacuo. The crude was purified by silica column chromatography (cyclohexane:CH₂Cl₂ 4:6) collecting the 1st band. The obtained solid was triturated with DCM/MeOH to obtain the product (50 mg, 61%) as an ivory white solid.

Enantiopure synthesis (P)-C_{Br₂Nl₂: A 5 mL Schlenk tube was charged with (P)- C_{Br₂l₂} (28.7 mg, 1 equiv.), NI-Bpin (29.6 mg, 2.05 equiv.) and K₂CO₃ (23.9 mg, 5 equiv.). The solids were dispersed in a 2.5 mL mixture of THF/H₂O 4:1 and the solution was degassed with Argon for 15 minutes. PdCl₂(dppf) 10 mol% was added, the tube sealed and the mixture heated to 55°C for 6 hours. After completion the mixture was cooled to r.t. diluted with EtOAC and water. The phases were separated and the organics were dried over Na₂SO, filtered and concentrated in vacuo. The crude was purified by silica column chromatography (cyclohexane:CH₂Cl₂ 4:6) collecting the 3rd band. The obtained solid was subjected to GPC (chloroform) obtaining the product (20 mg, 51 %) as an ivory white solid. **TLC:** R_f = 0.18 (SiO₂, Cyclohexane:CH₂Cl₂4:6)}

¹**H-NMR:** (500 MHz, CD_2CI_2) δ 8.72 – 8.65 (m, 2H), 8.65 – 8.57 (m, 2H), 8.37 (dd, J = 8.7, 2.1 Hz, 1H), 8.32 (dd, J = 7.5, 2.1 Hz, 1H), 8.05 (ddd, J = 8.3, 7.1, 1.1 Hz, 1H), 7.91 – 7.82 (m, 2H), 7.81 – 7.76 (m, 3H), 7.75 – 7.66 (m, 4H), 7.51 – 7.38 (m, 4H), 7.12 (td, J = 8.2, 1.7 Hz, 2H), 5.70 (t, J = 14.5 Hz, 1H), 5.50 (dd, J = 18.4, 14.2 Hz, 1H), 4.44 (dd, J = 14.0, 9.4 Hz, 1H), 4.24 – 4.15 (m, 4H), 1.80 – 1.70 (m, 4H), 1.49 – 1.41 (m, 4H), 1.41 – 1.31 (m, 8H), 0.91 (t, J = 7.0 Hz, 6H).

¹³**C-NMR {1H}:** (151 MHz, CD₂Cl₂) δ 164.90, 164.83, 164.78, 164.73, 164.38, 164.33, 164.19, 144.16, 143.92, 143.67, 143.56, 141.02, 140.84, 140.72, 140.55, 135.97, 135.94, 135.90, 135.84, 135.62, 135.58, 134.07, 132.84, 132.70, 132.45, 132.40, 132.24, 131.58, 131.44, 131.18, 131.09, 130.90, 130.79, 130.71, 128.90, 128.69, 128.61, 128.55, 128.23, 128.21, 127.80, 127.73, 127.09, 126.47, 126.44, 125.84, 125.47, 125.25, 123.63, 123.16, 121.53, 63.96, 63.92, 63.84, 63.80, 40.79, 32.00, 28.43, 27.21, 23.01, 14.24. **HR-ESI-MS**: m/z calculated for C₆₄H₅₃Br₂N₂O₈ [M+H]⁺; 135.2163 found 1135.2164.

FT-IR (ATR) \tilde{v} [cm⁻¹]: 3065 (w), 2958 (m), 2927 (m), 2853 (m), 1729 (m), 1699 (s), 1657 (s), 1616 (w), 1589 (m), 1464 (w), 1386 (w), 1353 (s), 1293 (w), 1274 (w), 1228 (s), 1176 (w), 1147 (w), 1092 (m), 1069 (m), 1002 (w), 822 (m), 784 (s), 759 (m).

Compound C_{NI4}: Racemate synthesis: C_{Br2l2} (19 mg, 1 equiv.), **NI-Bpin** (60 mg, 6 equiv.) and K₂CO₃ (30 mg, 10 equiv.) were added to a 10 mL *Schlenk*. 4 mL of a 4:1:1 mixture of toluene/EtOH/H₂O was added the solution was degassed with Argon for 15 minutes. PdCl₂(dppf) 20 mol% was added, the tube sealed and the mixture heated to 85 °C for 18 hours. After completion the mixture was cooled to r.t. diluted with toluene and water. The phases were separated and the organics were concentrated in vacuo. The crude was subjected to silica column chromatography (cyclohexane:CH₂Cl₂ 4:6 \rightarrow 0:10) collecting the band. The obtained solid after concentration was purified by GPC with chloroform as mobile phase obtaining the product (10 mg, 27 %)

as a white solid.

Enantiopure synthesis (P)-C_{NI4}: **(P)-C**_{Br₂NI₂} (15 mg, 1 equiv.), **NI-Bpin** (17 mg, 3 equiv.) and K₂CO₃ (10 mg, 5 equiv.) were added to a 5 mL *Schlenk* flask. 1.25 mL of a 4:1 mixture of dioxane/H₂O was added followed by degassing with Argon for 15 minutes. PdCl₂(dppf) 10 mol% was added, the tube sealed and the mixture heated to 85 °C for 16 hours. After completion the mixture was cooled to r.t. diluted with EtOac and water. The phases were separated and the organics were concentrated in vacuo. The crude was subjected to silica column chromatography (CH₂Cl₂ isocratic). The obtained solid after concentration was purified by GPC with chloroform as mobile phase obtaining the product (2.5 mg, 12 %) as a white solid. **TLC:** R_f = 0.15 (SiO₂, CH₂Cl₂).

¹**H-NMR:** (500 MHz, CD₂Cl₂) δ 8.69 – 8.59 (m, 6H), 8.50 – 8.42 (m, 3H), 8.34 (dd, *J* = 8.4, 5.5 Hz, 2H), 7.95 (ddd, *J* = 8.3, 6.2, 1.1 Hz, 1H), 7.92 – 7.64 (m, 13H), 7.63 – 7.54 (m, 4H), 7.49 (ddd, *J* = 9.8, 8.4, 7.3 Hz, 1H), 7.45 – 7.39 (m, 2H), 5.77 (dd, *J* = 14.4, 7.8 Hz, 1H), 5.57 (dd, *J* = 14.6, 9.3 Hz, 1H), 4.60 (t, *J* = 14.0 Hz, 1H), 4.48 (dd, *J* = 14.4, 4.7 Hz, 1H), 4.17 (q, *J* = 7.0 Hz, 8H), 1.73 (p, *J* = 7.4 Hz, 8H), 1.43 (t, *J* = 6.7 Hz, 8H), 1.41 – 1.31 (m, 16H), 0.94 – 0.88 (m, 12H).

¹³**C-NMR {1H}:** (151 MHz, CD₂Cl₂) δ 165.93, 165.87, 165.83, 165.77, 164.37, 164.36, 164.29, 164.25, 164.18, 164.13, 145.63, 145.59, 145.47, 145.44, 145.35, 145.31, 144.14, 143.84, 140.87, 140.73, 140.61, 140.46, 138.58, 138.54, 135.98, 135.96, 135.92, 135.90, 135.84, 135.81, 135.78, 133.99, 132.69, 132.64, 132.35, 132.21, 131.89, 131.76, 131.43, 131.37, 131.22, 131.10, 131.05, 131.02, 130.86, 130.67, 130.23, 129.07, 128.86, 128.71, 128.65, 128.51, 128.18, 127.79, 127.56, 127.53, 127.50, 127.45, 126.81, 126.46, 126.41, 126.04, 125.36, 125.32, 125.19, 123.65, 123.63, 123.60, 123.52, 123.13, 123.12, 122.90, 122.87, 122.83, 63.90, 63.82, 40.77, 31.98, 28.41, 27.22, 27.19, 23.00, 14.23.

HR-ESI-MS: *m*/*z* calculated for C₂₀₀H₁₇₆N₈Na₂O₂₄ [2M+2Na]²⁺; 1559.6291 found 1559.6321.

FT-IR (ATR) \tilde{v} [cm⁻¹]: 3072 (w), 2954 (m), 2928 (m), 2858 (m), 1725 (m), 1700 (s), 1657 (s), 1616 (w), 1589 (m), 1441 (w), 1386 (w), 1349 (s), 1300 (w), 1228 (s), 1179 (w), 1153 (w), 1095 (w), 1069 (m), 1003 (w), 843(w), 824 (w), 782 (s), 757 (m), 651 (w) 586 (w).

Compound C_{Br₂BY₂: A 10 mL *Schlenk* tube was charged with $C_{Br_{2}I_{2}}$ (63 mg, 1 equiv.), **BY-Bpin** (71 mg, 2.05 equiv.) and K₂CO₃ (70 mg, 7 equiv.). The solids were dispersed in a 5 mL mixture of THF/H₂O 4:1 and the solution was degassed with Argon for 15 minutes. PdCl₂(dppf) 12 mol% was added, the tube sealed and the mixture heated to 55°C for 4 hours. The mixture was}

cooled to r.t. and the orange precipitate was filtered and washed with water and methanol, yielding the product (85 mg, 90 %).

¹**H-NMR:** (500 MHz, CD₂Cl₂) δ 8.42 (d, *J* = 2.1 Hz, 2H), 7.76 (dd, *J* = 8.3, 2.1 Hz, 2H), 7.68 (dd, *J* = 7.9, 1.8 Hz, 2H), 7.51 (d, *J* = 8.3 Hz, 4H), 7.42 (dd, *J* = 8.1, 4.8 Hz, 6H), 7.26 (d, *J* = 1.3 Hz, 2H), 7.19 (d, *J* = 8.3 Hz, 2H), 6.06 (s, 4H), 5.83 (d, *J* = 14.2 Hz, 2H), 4.88 (d, *J* = 14.1 Hz, 2H), 2.53 (s, 12H), 1.51 (s, 12H).

¹³**C-NMR {1H}:** (151 MHz, CD₂Cl₂) δ 164.89, 155.92, 143.64, 141.82, 140.78, 139.81, 138.66, 135.53, 134.65, 134.28, 134.15, 132.80, 131.76, 130.76, 130.19, 128.73, 128.68, 125.50, 125.08, 121.64, 121.57, 64.26, 14.73, 14.69.

¹⁹**F-NMR {1H}:** (376 MHz, CD₂Cl₂, not referenced) -146.24 (dd, *J* = 66.3, 32.7 Hz)

¹¹**B NMR:** (128 MHz, CD_2Cl_2 , not referenced) 0.75 (t, J = 33.0 Hz)

HR-ESI-MS: *m*/*z* calculated for C₁₃₂H₁₀₅B₄Br₄F₈N₈O₈ [2M+H]⁺; 2441.5087 found 2441.5071.

FT-IR (ATR) \tilde{v} [cm⁻¹]: 2980 (m), 2920 (m), 1729 (s), 1545 (s), 1513 (s), 1468 (m), 1437 (w), 1409 (m), 1373 (w), 1307 (w), 1234 (m), 1192 (s), 1154 (m), 1077 (s), 1053 (m), 1003 (w), 976 (s), 899 (w), 822 (m), 787 (m), 773 (w), 718 (s), 643 (w), 582 (w), 478 (s).

Compound C_{BY4}: To a 5 mL *Schlenk* tube was added **C**_{Br2BY2} (21 mg, 1 equiv.), **BY-Bpin** (19 mg, 2.5 equiv.), K₂CO₃ (20 mg, 10 equiv.) and 2.5 mL dioxane/H₂O (4/1). The suspension was degassed with Argon, followed by the addition of PdCl₂(dppf) (10 mol%). The tube was sealed and heated at 90 °C for 24 hours. The mixture was cooled and partioned between CH₂Cl₂ and water. The organics were collected, dried over sodium sulphate and concentrated. The crude was purified by silica column chromatography (cyclohexane:CH₂Cl₂ 2:8 \rightarrow 0:10) obtaining the product (6 mg, 21 %) as a red solid. **TLC:** R_f = 0.15 (SiO₂, dichloromethane 100 %)

¹**H-NMR:** (500 MHz, CD₂Cl₂) δ 8.66 (d, J = 1.9 Hz, 2H), 8.01 (dd, J = 8.0, 2.0 Hz, 2H), 7.92 – 7.87 (m, 4H), 7.67 (dd, J = 7.9, 1.7 Hz, 2H), 7.53 – 7.49 (m, 6H), 7.45 – 7.39 (m, 10H), 7.34 (s, 2H), 6.04 (d, J = 13.9 Hz, 8H), 5.87 (d, J = 14.6 Hz, 2H), 4.96 (d, J = 14.4 Hz, 2H), 2.53 (s, 12H), 2.52 (s, 12H), 1.51 (s, 12H), 1.46 (s, 12H).

¹³**C-NMR {1H}:** (151 MHz, CD₂Cl₂) δ 165.93, 155.93, 155.87, 145.04, 143.70, 143.62, 141.83, 141.79, 140.84, 140.63, 139.82, 139.61, 138.46, 134.82, 134.65, 134.40, 132.16, 131.75, 131.72, 130.85, 130.74, 130.13, 129.74, 129.15, 128.73, 128.05, 127.60, 125.19, 124.95, 121.65, 121.57, 64.18, 14.75, 14.73, 14.71, 14.69.

¹⁹**F-NMR {1H}:** (376 MHz, CD₂Cl₂, not referenced) δ -146.25 (dd, *J* = 65.7, 32.1 Hz)

¹¹**B NMR:** (128 MHz, CD₂Cl₂, not referenced) δ 0.73 (t, *J* = 32.9 Hz)

HR-ESI-MS: m/z calculated for $C_{208}H_{176}B_8F_{16}N_{16}Na_2O_8[2M+2Na]^{2+}$; 1731.7104 found 1731.7131.

FT-IR (ATR) \tilde{v} [cm⁻¹]: 2972 (m), 2924 (m), 1719 (s), 1543 (s), 1511 (s), 1473 (m), 1442 (w), 1409 (m), 1372 (w), 1304 (s), 1229 (w), 1193 (m), 1158 (m), 1121 (w), 1076 (s), 1054 (m), 1006 (w), 976 (s), 821 (m), 797 (w), 770 (w), 715 (m), 643 (w), 582 (w), 479 (s).

Compound C_{N12BY2}: A 5 mL *Schlenk* tube was charged with C_{Br2BY2} (16 mg, 1 equiv.), **NI-Bpin** (17 mg, 2.5 equiv.) and K₂CO₃ (14 mg, 6 equiv.). The solids were dispersed in a mixture of dioxane (1.8 mL, DMF (0.2 mL) and H₂O (0.5 mL) and the solution was degassed with argon. PdCl₂(dppf) 10 mol% was added, the tube sealed and the mixture heated to 90°C for 16 hours. The mixture was cooled to r.t. diluted with EtOAC and water. The phases were separated and the organics were washed with brine two times, before dried over sodium sulphate and concentrated in vacuo. The crude was purified by silica column chromatography (cyclohexane:CH₂Cl₂:EtOAc 2:8:0 \rightarrow 0:9:1) obtaining the product as an orange solid (13 mg, 61 %).

TLC: $R_f = 0.38$ (SiO₂, dichloromethane 100 %)

¹**H-NMR:** (500 MHz, CD₂Cl₂) δ 8.65 (d, J = 7.5 Hz, 2H), 8.63 (dd, J = 7.3, 1.0 Hz, 2H), 8.52 (d, J = 1.9 Hz, 2H), 8.38 (dd, J = 8.5, 1.0 Hz, 2H), 7.88 – 7.85 (m, 4H), 7.77 (dd, J = 8.5, 1.0 Hz, 2H), 7.88 – 7.85 (m, 4H), 7.78 (m, 4H), 7.88 (m,

7.3 Hz, 2H), 7.69 (dd, J = 7.9, 1.6 Hz, 2H), 7.63 (d, J = 7.9 Hz, 2H), 7.50 (d, J = 8.1 Hz, 4H), 7.43 – 7.38 (m, 8H), 6.04 (s, 4H), 5.89 (d, J = 14.5 Hz, 2H), 4.92 (d, J = 14.4 Hz, 2H), 4.20 – 4.13 (m, 4H), 2.52 (s, 12H), 1.73 (p, J = 7.5 Hz, 4H), 1.48 (s, 12H), 1.46 – 1.31 (m, 12H), 0.93 – 0.86 (m, 6H).

¹³**C-NMR {1H}:** (101 MHz, CD₂Cl₂) δ 165.93, 164.42, 164.22, 145.55, 145.48, 143.62, 141.78, 140.77, 139.84, 139.81, 139.73, 138.64, 134.70, 134.43, 133.91, 132.72, 132.47, 131.88, 131.76, 131.37, 130.89, 130.82, 130.34, 130.14, 129.10, 128.76, 128.56, 127.61, 127.57, 125.51, 125.07, 123.63, 122.86, 121.67, 64.20, 40.79, 32.00, 28.42, 27.22, 23.00, 14.73, 14.68, 14.23.

¹⁹**F-NMR {1H}:** (376 MHz, CD₂Cl₂, not referenced) δ -146.26 (dd, *J* = 65.6, 30.5 Hz)

¹¹**B NMR:** (128 MHz, CD₂Cl₂, not referenced) δ 0.73 (t, *J* = 33.0 Hz)

HR-ESI-MS: m/z calculated for C₂₀₄H₁₇₆B₄F₈N₁₂Na₂O₁₆ [2M+2Na]²⁺; 1645.6713 found 1645.6731.

FT-IR (ATR) \tilde{v} [cm⁻¹]: 3037 (w), 2958 (m), 2928 (m), 2858 (m) 1734 (m), 1704 (s), 1663 (s), 1592 (m), 1546 (s), 1514 (s), 1477 (m), 1442 (w), 1410 (w), 1388 (w), 1360 (m), 1308 (m), 1236 (m), 1187 (s), 1158 (s), 1121 (w), 1077 (m), 1052 (w), 975 (s), 837 (w), 819 (w), 786 (s), 772 (m), 760 (m), 718 (m), 643 (w), 586 (w), 479 (s).

Procedure template cleavage

Chromophore $C_{Chromophore_4}$ was dissolved in a THF/MeOH (5/1) mixture [c~10⁻⁶]. To the solution 2M LiOH (20 vol %) solution was added and stirred at room temperature overnight. CH₂Cl₂ and conc. HCl were added and the phases were separated. The organics were collected, dried over sodium sulphate, and concentrated under reduced pressure. The obtained solids were taken up in CH₂Cl₂ and fluorescence spectra were recorded.

Physico-Chemical analysis

Characterization $C_{Br_2l_2}$

Figure S1: Dilution series of the absorption (left) and linear regression (right) of the absorption at 271 nm versus concentration of $C_{Br_2l_2}$ in CH₂Cl₂.

Figure S2: HPLC chromatogram of rac- $C_{Br_{2}l_{2}}$ (top) and its respective preparative isolated enantiomers (E1, middle and E2, bottom). IG-column, CH₂Cl₂/heptane 1/1, 20 °C.

Figure S3: Absorptivity and CD-spectra of the first eluting E1 and second eluting E2 enantiomer of $C_{Br_2l_{2'}}$ in CH₂Cl₂.

Figure S4. Calculated (dash-dot line, fitted with $\sigma = 0.2 \text{ eV}$, shifted by 0.7 eV) and experimental (black solid line) spectrum of E2/(*P*)- **C**_{Br₂l₂}. The computed transitions are indicated as bars (red).

Characterization chromophores

Table S1. Overview of the (chiro)-optical properties of the library of compounds, measured in CH_2CI_2 at 20 °C.

Compound	$\lambda_{abs}[nm]$	ε [L*mol ⁻¹ *cm ⁻¹]	$\lambda_{\text{em}}[nm]$	ф ғ*	τ _F [ns]	gabs
C _{Br2} l2	271	24446	1	1	1	1.5*10 ⁻³ (305 nm)
CBr ₂ Naph ₂	275; 302	42094; 36304	378	2.7 % (300 nm)	0.36; 4.63	1.1*10 ⁻⁴ (305 nm)
C _{Naph4}	264; 303	101009; 60934	432	43.3 % (300 nm)	1.76	3.49*10 ⁻⁴ (326 nm)
C _{Br2NI2}	344; 357	36368; 38971	441	51.8 % (357 nm)	1.74	8.59*10 ⁻⁴ (296 nm)
C _{NI4}	346; 357	75211; 80821	438	54.9 % (357 nm)	1.74	7.31*10 ⁻⁴ (250 nm) 1.8*10 ⁻⁴ (372 nm)
C _{Br2BY2}	280 ; 502	50455; 168551	513	56.5 % (280 nm)	3.96 (470 nm) 4.12 (280 nm)	1.9*10 ⁻⁴ (508 nm)
C _{BY4}	273; 502	66799; 208635	513	42.5 % (280 nm)	3.61 (280 nm) 3.70 (470 nm)	4.7*10 ⁻⁵ (508 nm)
C _{NI2} BY2	276; 357; 502	49435; 51053; 148036	513	57.5 % (280 nm)	3.73 (280 nm) 3.70 (365 nm) 3.76 (470 nm)	5.7*10 ⁻⁵ (508 nm)

Optical analysis

Figure S5: Top) Absorptivity (c ~ 5*10⁻⁶) and normalized fluorescence (c ~ 1*10⁻⁶, 300 nm) plot in CH₂Cl₂ of $C_{Br_2Naph_2}$. Bottom) Dilution series of the absorption and linear regression of the absorption value of $C_{Br_2Naph_2}$ at 275 nm in CH₂Cl₂ versus concentration.

Figure S6: Top) Absorptivity (c ~ 5*10⁻⁶) and normalized fluorescence (c ~ 1*10⁻⁶, 303 nm) plot in CH₂Cl₂ of C_{Naph_4} . Bottom) Dilution series of the absorption and linear regression of the absorption value of C_{Naph_4} at 303 nm in CH₂Cl₂ versus concentration.

Figure S7: Top) Absorptivity (c ~ 5*10⁻⁶) and normalized fluorescence (c ~ 1*10⁻⁶, 358 nm) plot in CH₂Cl₂ of $C_{Br_2Nl_2}$. Bottom) Dilution series of the absorption and linear regression of the absorption value of $C_{Br_2Nl_2}$ at 357 nm in CH₂Cl₂ versus concentration.

Figure S8: Absorptivity (c ~ 5*10⁻⁶) and normalized fluorescence (c ~ 1*10⁻⁶, 357 nm) plot in CH₂Cl₂ of C_{NI_4} . Bottom) Dilution series of the absorption and linear regression of the absorption value of C_{NI_4} at 357 nm in CH₂Cl₂ versus concentration.

Figure S9: Top) Absorptivity ($c \sim 5*10^{-6}$) and normalized fluorescence ($c \sim 0.5*10^{-6}$, 280 nm) plot in CH₂Cl₂ of **C**_{Br₂BY₂}. Bottom) Dilution series of the absorption and linear regression of the absorption value of **C**_{Br₂BY₂} at 502 nm in CH₂Cl₂ versus concentration.

Figure S10: Top) Absorptivity (c ~ $3*10^{-6}$) and normalized fluorescence (c ~ $0.5*10^{-6}$, 280 nm) plot in CH₂Cl₂ of **C**_{BY4}. Bottom) Dilution series of the absorption and linear regression of the absorption value of **C**_{BY4} at 501 nm in CH₂Cl₂ versus concentration.

Figure S11: Top) Absorptivity (c ~ 5*10⁻⁶) and normalized fluorescence (c ~ 0.5*10⁻⁶, 280 nm and 342 nm) plot in CH_2CI_2 of $C_{NI_2BY_2}$. Bottom) Dilution series of the absorption and linear regression of the absorption value of $C_{NI_2BY_2}$ at 502 nm in CH_2CI_2 versus concentration.

Chiral-analysis Naph-series

Figure S12: HPLC chromatogram of (left) rac- $C_{Br_2Naph_2}$, IC-column CH₂Cl₂/heptane/EtOH (49/49/2) and (right) rac- C_{Naph_4} , IA-column CH₂Cl₂/heptane (4/6). First eluting (E1) and second eluting (E2) enantiomer are depicted in blue and red respectively.

Figure S13: CD-spectra of the first eluting E1 (blue) and second eluting E2 (red) enantiomer of left) $C_{Br_2Naph_2}$ and right) $C_{Naph_{4'}}$ in CH₂Cl₂.

Assignment of CD-spectra

Figure S14: Calculated (dash-dot line, fitted with $\sigma = 0.2 \text{ eV}$, shifted by 0.2 eV) and experimental (black solid line) spectrum of E1/(*P*)- **C**_{Br₂Naph₂}. The computed transitions are indicated as bars (red).

Figure S15: Calculated (dash-dot line, fitted with $\sigma = 0.2$ eV, shifted by 0.5 eV) and experimental (black solid line) spectrum of E1/(*P*)- **C**_{Napha}. The computed transitions are indicated as bars (red).

NI-series ¹H-NMR full assignment of C_{Br2NI2}

Figure S16: Full assignment of ¹H-NMR of $C_{Br_2Nl_2}$ in CD₂Cl₂ at 20 °C, 600 MHz. Zoom in on the diastereotopic CH₂ ester protons reveals a set of 8 doublets. While in the aromatic region several signals of the **NI** split in two distinct regions.

Conformer analysis of $C_{Br_2Nl_2}$

CREST was used to preliminary identify possible conformers of $C_{Br_2Nl_2}$. Three isomers were identified as (S_a, P, S_a) -, (S_a, P, R_a) -, and (R_a, P, R_{a_r}) - $C_{Br_2Nl_2}$ further optimized by DFT calculations. We calculated the Boltzmann distribution where (S_a, P, S_a) - $C_{Br_2Nl_2}$ is significantly more stable than (R_a, P, R_{a_r}) - $C_{Br_2Nl_2}$. The geometries of $C_{Br_2Nl_2}$ were used to model the initial guesses of C_{Nl_4} and optimized the corresponding (S_a, P, S_a) -, (S_a, P, R_a) -, and (R_a, P, R_{a_r}) configurations and calculated their Boltzmann distribution. Interestingly, the (R_a, P, R_{a_r}) - C_{Nl_4} is dramatically less stable then the other configurations. All conformers are displayed in the 'Geometry optimized structures' section.

Table S2: Boltzmann distribution of (P)-CBr2NI2

Conformer	<i>SP E [Hartree]</i>	ZPC [Hartree]	corr E [Hartree]	Thermal corrections [Hartree]	G [Hartree]	$p_i = e^{\frac{G_i - G_1}{kT}}$	$rac{p_i}{p_{tot}}$	$\frac{p_i}{p_{tot}} \\ * 100$
(Ra, P, Ra,)	-7932.0942	0.731457	-7931.362743	0.78471	-7931.30949	0.319267592	0.171357475	17.13575
(Sa, P, Ra)	-7932.0948	0.731665	-7931.363135	0.784807	-7931.309993	0.543899403	0.291921982	29.1922
(S _a , P, S _a)	-7932.0954	0.731721	-7931.363679	0.784832	-7931.310568	1	0.536720542	53.67205

Table S3: Boltzmann distribution of (P)-C_{NI4}

Conformer	<i>SP E [Hartree]</i>	ZPC [Hartree]	<i>corr E [Hartree]</i>	Thermal corrections [Hartree]	<i>G [Hartree]</i>	$p_i = e^{\frac{G_i - G_1}{kT}}$	$rac{p_i}{p_{tot}}$	$\frac{p_i}{p_{tot}} \\ * 100$
(Ra, P, Ra,)	-4199.4675	0.603688	-4198.863812	0.648764	-4198.818736	2.49008E-06	1.54992E-06	0.000155
(Sa, P, Ra)	-4199.4674	0.592	-4198.8754	0.636953	-4198.830447	0.606590009	0.377563078	37.75631
(Sa, P, Sa)	-4199.4679	0.592037	-4198.875863	0.636981	-4198.830919	1	0.622435372	62.24354

VT-NMR of C_{Br_2NI_2}

Figure S17: Stacked ¹H-NMR of $C_{Br_2NI_2}$ in TCED₂ (600 MHz) at variable temperatures between 25 °C and 125 °C. Bottom is the zoom in on the aromatic (left) and ester (right) region respectively.

Chiral-separation

Figure S18: HPLC chromatogram of (left) rac- $C_{Br_2Nl_2}$, IA-column heptane/EtOAc (50/50) and (right) rac- C_{Nl_4} , IG-column CH₂Cl₂/heptane/EtOH (49/49/2). First eluting (E1) and second eluting (E2) enantiomer set are depicted in green and yellow respectively.

Figure S19: Screen shot of in-line CD-detection chromatogram corresponding to HPLC traces shown in Figure SX of (top) rac- $C_{Br_2Nl_2}$, 300 nm and (bottom) rac- C_{Nl_4} , 250 nm. Excluding the injection peak signal (3-4 minutes) in both cases the first set of conformers show a negative polarity at the corresponding wavelength while the second eluting set of conformers show a positive polarity.

Figure S20: HPLC chromatogram of (top) rac- $C_{Br_2Nl_2}$ and (bottom) enantiopure synthesis product (*P*)- $C_{Br_2Nl_2}$, IA-column heptane/EtOAc (50/50).

CD-spectra

Figure S21: CD-spectra in CH_2Cl_2 of left) the first eluting E1(green) and second eluting E2 (yellow) enantiomer of $C_{Br_2Nl_2}$ (top) and C_{Nl_4} (bottom) and right) the corresponding enantiopure synthesis product of (*P*)- $C_{Br_2Nl_2}$ and (*P*)- C_{Nl_4} respectively.

Assignment of CD-spectra

For (*P*)- $C_{Br_2NI_2}$ and (*P*)- C_{NI_4} we assumed Boltzmann distribution as presented above, neglecting kinetic contributions to the distribution during the Suzuki coupling.

Figure S22: Calculated (dash-dot line, fitted with $\sigma = 0.2$ eV, shifted by 0.8 eV) and experimental (black solid line) spectrum of E1/(*P*)- **C**_{Br₂NI₂}. The computed transitions are indicated as bars (red).

Figure S23: Calculated (dash-dot line, fitted with $\sigma = 0.2$ eV, shifted by 0.5 eV) and experimental (black solid line) spectrum of E2/(*P*)-**C**_{Nlq}. The computed transitions are indicated as bars (red).

BY-series

Figure S24: HPLC chromatogram of (left) rac- $C_{Br_2BY_2}$ IA-column CH₂Cl₂/heptane (40/60) and (right) rac- C_{BY_4} IA-column heptane/EtOAc (60/40). First eluting (E1) and second eluting (E2) enantiomer set are depicted in orange and purple respectively.

Figure S25: CD-spectra of the first eluting E1 (orange) and second eluting E2 (purple) enantiomer of left) $C_{Br_2BY_2}$ and right) $C_{BY_{4'}}$ in CH₂Cl₂.

Assignment of CD-spectra

Figure S26: Calculated (dash-dot line, fitted with $\sigma = 0.2$ eV, shifted by 0.5 eV) and experimental (black solid line) spectrum of E2/(*P*)- **C**_{Br₂BY₂}. The computed transitions are indicated as bars (red).

Figure S27: Calculated (dash-dot line, fitted with $\sigma = 0.2$ eV, shifted by 0.5 eV) and experimental (black solid line) spectrum of E2/(*P*)-**C**_{BY4}. The computed transitions are indicated as bars (red).

NI/BY chromophore

Figure S28: HPLC chromatogram of rac- $C_{Nl_2BY_{2'}}$ IBN-5-column heptane/EtOAc (50/50) First eluting (E1) and second eluting (E2) enantiomer set are depicted in cyan and dark-yellow respectively.

Figure S29: CD-spectra of the first eluting E1 (cyan) and second eluting E2 (dark-yellow) enantiomer of left) $C_{N_2BY_2}$ in CH₂Cl₂.

Assignment of CD-spectra

Figure S30: Calculated (dash-dot line, fitted with $\sigma = 0.2$ eV, shifted by 0.1 eV) and experimental (black solid line) spectrum of E2/(*P*)- **C**_{Nl₂BY₂}. The computed transitions are indicated as bars (red).

Comparison CD-spectra (P)- $C_{Naph_{4'}}$ (P)- C_{Nl_4} and (P)- C_{BY_4}

Figure S31: ECD-spectra of (P)-enantiomer of in blue $C_{Naph_{4'}}$ yellow C_{NI_4} and in purple C_{BY_4} bisignate signals are following a negative couplet indicated by integrated signals under the respective plots.

Geometry analysis $C_{Br_2BY_2}$

Figure S32: ECD-spectrum of (*P*)- $C_{Br_2BY_2}$ and geometry optimized structure (side view). The center 'twist' between the biphenyls colored in yellow and purple follow a R configuration, which results in that on average the **BY** motives will be oriented in R configuration. This results in a clockwise and therefore positive couplet, hence explains the CD signal.

FRET-System

Figure S33: Template removal and resulting fluorescence spectra. A,B) Scheme of template removal (C_{NI_4} and C_{BY_4} respectively). Fluorescence spectra of C) comparison of cleaved products of $C_{NI_2BY_2}$, C_{NI_4} and C_{BY_4} D,E) comparison of C_{NI_4} and C_{BY_4} and their cleaved products respectively, in CH₂Cl₂ at 20 °C with $\lambda_{em} = 360$ nm. F) Picture of a solution of the cleaved products of C_{NI_4} , $C_{NI_2BY_2}$ and C_{BY_4} (from left to right respectively) in a CH₂Cl₂ upon irradiation with $\lambda_{em} = 366$. G) Picture taken of the reaction mixtures from left to right C_{NI_4} , $C_{NI_2BY_2}$ and C_{BY_4} upon irradiation with $\lambda_{em} = 366$.

Crystallographic data

(*rac*)-C_{Br2l2}(CCDC – 2378892)

Table S4. Crystal data and structure refinement for (rac)- $C_{Br_2I_2}$

Identification code	(rac)-C _{Br2l2}
Empirical formula	$C_{29.17}H_{17}Br_2I_2O_4$
Formula weight	845.05
Temperature/K	150
Crystal system	triclinic
Space group	P-1
a/Å	12.6865(2)
b/Å	14.4512(2)
c/Å	23.5383(4)
α/°	78.8510(10)
β/°	80.2510(10)
γ/°	81.8160(10)
Volume/Å ³	4145.92(11)
Z	6
$\rho_{calc}g/cm^3$	2.031
μ/mm^{-1}	14.710
F(000)	2400.0
Crystal size/mm ³	$0.16 \times 0.117 \times 0.04$
Radiation	$GaK\alpha \ (\lambda = 1.34143)$
2Θ range for data collection/ ^c	° 5.458 to 111.432
Index ranges	$\text{-15} \leq h \leq \text{15}, \text{-17} \leq k \leq \text{16}, \text{-28} \leq \text{l} \leq \text{22}$
Reflections collected	68037
Independent reflections	15876 [$R_{int} = 0.0204, R_{sigma} = 0.0158$]
Data/restraints/parameters	15876/7/1022
Goodness-of-fit on F ²	1.027
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0333, wR_2 = 0.0917$
Final R indexes [all data]	$R_1 = 0.0362, wR_2 = 0.0935$
Largest diff. peak/hole / e Å ⁻³	3 1.61/-2.00

 $\label{eq:Figure S34.} Unit-cell of the solid-state structure of (rac)- C_{Br_2l_2}. Visualized as ORTEP representation with 50\% probability.$

Figure S35. Enantiopure layer packing of $(rac)-C_{Br_2l_2}$, visualized as ORTEP representation with 50 % probability. Top to bottom the horizontal layers contain only P, M, P, M enantiomers respectively.

(P)-C_{Br212} (CCDC – 2378893)

Table S5. Crystal data and structure refinement for (P)- $C_{Br_2I_2}$

Identification code	(P) - $C_{Br_2l_2}$
Empirical formula	$C_{32.15}H_{20.3}Br_2I_2O_4$
Formula weight	884.14
Temperature/K	150
Crystal system	monoclinic
Space group	I2
a/Å	37.2339(2)
b/Å	18.2754(2)
c/Å	28.1115(2)
a/°	90
β/°	90.1840(10)
$\gamma/^{\circ}$	90
Volume/Å ³	19128.8(3)
Z	24
$\rho_{calc}g/cm^3$	1.842
μ/mm^{-1}	18.709
F(000)	10108.0
Crystal size/mm ³	0.3 imes 0.243 imes 0.2
Radiation	Cu Ka ($\lambda = 1.54186$)
2Θ range for data collection/	^o 9.726 to 140.562
Index ranges	$-44 \leq h \leq 29, \ -21 \leq k \leq 22, \ -33 \leq l \leq 34$
Reflections collected	227119
Independent reflections	35522 [$R_{int} = 0.0348$, $R_{sigma} = 0.0205$]
Data/restraints/parameters	35522/823/2001
Goodness-of-fit on F ²	1.036
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0845, wR_2 = 0.2270$
Final R indexes [all data]	$R_1 = 0.0882, wR_2 = 0.2324$
Largest diff. peak/hole / e Å-2	3 6.78/-3.01
Flack parameter	0.026(6)

Figure S36. Unit-cell of the solid-state structure of (P)-C_{Br2l2}. Visualized as ORTEP representation with 50 % probability.

Figure S37. Layered packing of (*P*)- $C_{Br_2l_2}$, visualized as ORTEP representation with 50 % probability. Horizontal layers of (*P*)- $C_{BR_2l_2}$ with toluene molecules positioned in between the layers.

(rac)-C_{Br2BY2} (CCDC – 2378894)

Table S6. Crystal data and structure refinement for (rac)-C_{Br2BY2}

Identification code	$(rac)-C_{Br_2BY_2}$
Empirical formula	$C_{74.4}H_{71.2}B_2Br_2F_4N_4O_4$
Formula weight	1342.79
Temperature/K	150
Crystal system	monoclinic
Space group	I2/a
a/Å	13.8303(3)
b/Å	16.4157(3)
c/Å	28.8295(6)
α/°	90
β/°	103.133(2)
γ/°	90
Volume/Å ³	6374.1(2)
Z	4
$\rho_{calc}g/cm^3$	1.399
μ/mm^{-1}	2.154
F(000)	2774.0
Crystal size/mm ³	$0.25 \times 0.123 \times 0.05$
Radiation	Cu K α (λ = 1.54186)
2Θ range for data collection/ ^c	6.238 to 140.046
Index ranges	$\text{-16} \le h \le 11, \text{-19} \le k \le 19, \text{-31} \le l \le 35$
Reflections collected	54522
Independent reflections	5955 [$R_{int} = 0.0362$, $R_{sigma} = 0.0177$]
Data/restraints/parameters	5955/0/374
Goodness-of-fit on F ²	1.034
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0428, wR_2 = 0.1089$
Final R indexes [all data]	$R_1 = 0.0584, wR_2 = 0.1190$
Largest diff. peak/hole / e Å ⁻³	0.49/-0.58

Figure S38. Unit-cell of the solid-state structure of (rac)-C_{Br2BY2}. Visualized as ORTEP representation with 50 % probability.

Figure S39. Packing of (rac)- $C_{Br_2BY_2}$, visualized as ORTEP representation with 50 % probability.
Geometry optimized structures

Figure S40. Geometry optimized structure of (P)- $C_{Br_2l_2}$, displayed in front, side and top view.

Figure S41. Geometry optimized structure of (*P*)-**C**_{Br2Naph2}, displayed in front, side and top view.

Figure S42. Geometry optimized structure of (*P*)-C_{Naph4}, displayed in front, side and top view.

Figure S43. Geometry optimized structure of (*P*)-C_{Br2Nl2} configuration 1, displayed in front, side and top view.

Figure S44. Geometry optimized structure of (P)-C_{Br2Nl2} configuration 2, displayed in front, side and top view.

Figure S45. Geometry optimized structure of (P)-C_{Br2Nl2} configuration 3, displayed in front, side and top view.

Figure S46. Geometry optimized structure of (P)-C_{NI4}, displayed in front, side and top view.

Figure S47. Geometry optimized structure of (P)-C_{Br2BY2}, displayed in front, side and top view.

Figure S48. Geometry optimized structure of (P)-C_{BY4}, displayed in front, side and top view.

Figure S49. Geometry optimized structure of (P)- $C_{Nl_2BY_2}$, displayed in front, side and top view.

Coordinates (energies in kcal)

52 Н -0.95317 -0.96790 C_{Br2l2} С -0.60462 3.15806 Energy: -12722570.5715545 С -5.64864 -2.73140 0.72209 0.73953 -2.91360 L С 5.64854 -2.73176 -0.72133 0.60476 3.15916 L С -1.43315 -3.99528 Br -0.91807 3.20280 -5.40396 Н -0.89187 -4.87224 Br 0.91808 3.20439 5.40313 С 0 -2.67036 0.50009 -1.25895 3.51499 -2.78675 С 1.46482 -1.78690 Ο -2.30339 1.60267 0.72950 0 2.67026 0.50018 1.25903 Н 0.95309 -0.96784 С 0 2.30364 -0.72972 -0.14741 3.09961 1.60238 С С -0.64223 3.88954 -1.38565 2.35270 -2.69462 Н -1.45446 4.46371 Н -2.16287 1.73643 -3.11822 С 1 43297 -3.99541 С 1.38570 2.35339 2.69408 Н Н 2.16279 1.73713 3.11794 С С -0.73968 -2.91357 0.07360 С С 1.17869 2.32914 1.30628 С С -2.07691 1.49073 -0.46877 Н С 2.84642 -1.69816 0.15820 С Н -1.17856 -1.30681 2.32885 С С -2.84652 -1.69804 -0.15774 Н С 0.14770 3.09987 0.73485 С Н -0.41053 3.93326 2.94967 С Н -1.02304 4.55258 3.59060 Н С -1.46494 -1.78687 -0.33430 С

1.45257	5.22541
0.89167	-4.87238
2.07702	1.49071
-3.51512	-2.78653
-3.58027	-0.43171
-4.37414	-0.64280
-3.98314	0.06566
3.58022	-0.43183
4.37393	-0.64286
3.98329	0.06537
0.41088	3.93212
1.02348	4.55110
0.64265	3.88882

-0.81970

-3.50232

-0.07309

3.50147

0.63178

0.96672

-0.41047

0.33471

0.81998

-0.73569

1.57870

1.15252

-0.63113

-0.96601

0.46854

0.41109

-0.56731

-1.28572

0.31983

0.56768

1.28629

-0.31946

-2.95084

-3.59201

-1.57987

C 2.81681 -3.93138 -0.79420 H -1.21092 5.34662 1.17997 H 3.34769 -4.76400 -1.23661 C -2.86130 -3.48244 -0.61403 H -3.34789 -4.76371 1.23743 C 2.86132 -3.48244 -0.61403 H -3.34789 -4.76371 1.23743 C 2.86132 -3.48244 -0.61403 C 5.4812 -3.07743 0.17759 C 5.88512 -3.07743 0.17759 G 2.70271 1.09596 1.12809 C 5.46214 -1.32300 -1.42265 O -1.97972 2.01510 0.84209 C 8.16908 -3.90266 -1.75500 O -1.97972 2.01518 0.84210 C 7.8147 -2.1332 -0.99744 C -1.48067 2.97507 2.64002 H 7.41147 -0.70911 -2.51413 C -1.48068 2.97511 -2.63999 H 7.7446 -4.55777 1.48981 C -1.48068 2.97511 -2.63999	Н	1.45504	4.46294	-1.15393	С	-0.44615	4.69130	1.58334
H 3.34769 -4.76400 -1.23661 C -2.86130 -3.48245 0.61399 C -2.81698 -3.93116 0.79490 H -3.41474 -4.35081 0.95951 C -2.86139 -4.76371 1.23743 C 2.86132 -3.48244 -0.61403 Participac Energy: -4718790.1902745 C 5.562801 -1.39005 -1.52298 Participac Energy: -4718790.1902745 C 5.562801 -3.90734 -1.01224 Br -1.22779 3.89728 -5.36033 H 5.46251 -3.39090 0.92989 O 2.70271 1.09596 -1.12800 C 8.99034 -1.36256 -1.75500 O -2.70271 1.09596 -1.12810 C 8.16908 3.90266 0.74241 O -1.97720 2.01508 0.84210 C 7.8714 -2.01332 -0.99744 C 1.48068 2.97517 2.63999 H 7.7446 4.56777 1.48981 L -2.2150 2.31025 -3.04341 C 9.27492	С	2.81681	-3.93138	-0.79420	Н	-1.21092	5.34662	1.17997
C -2.81698 -3.93116 0.79490 H -3.41474 -4.35081 0.95947 H -3.34789 4.76371 1.23743 C 2.266132 -3.48244 -0.61403 P C 5.04725 -2.25298 -0.55921 C 5.04725 -2.25298 -0.55921 C 5.04727 3.89719 5.36038 C 7.29678 -3.0714 -0.1224 Br -1.22779 3.89719 5.36033 H 5.46206 -7.4764 -3.5500 O 2.70271 1.09596 1.12809 C 6.99034 -1.36256 -1.75500 O -1.97920 2.01508 0.84210 C 7.87014 -2.19332 -0.99744 C 1.48067 2.97507 2.64002 H 7.41147 -4.45677 1.48981 H -2.23150 2.31021 3.04341 C 9.33830 -3.87950 0.54345 C -1.48068 2.97517 2.64902 H 7.4144 -4.2524 1.13474 C 1.48066 2.07517 2.6	Н	3.34769	-4.76400	-1.23661	С	-2.86130	-3.48245	0.61399
H -3.34789 -4.76371 1.23743 C 2.86132 -3.48244 -0.61403 H -3.41476 -4.35079 -0.95951 C 5.04725 -2.25288 -0.55921 P2 C 5.868512 -3.07743 0.17759 C 5.62801 -3.3005 1.124296 Br 1.22778 3.89719 5.36038 C 7.29678 -3.07114 -0.01224 O 2.70271 1.09596 1.12809 C 6.99034 -1.36256 -1.75500 O -1.97917 2.01511 -0.84209 H 4.97487 -0.76883 -2.14923 O -1.97902 2.01508 0.84210 C 7.87014 -2.19322 -0.99744 C -1.48067 2.97507 2.64002 H 7.41147 -0.70911 -2.51413 H -2.23150 2.31025 -3.04341 C 9.27492 -2.18361 -1.18774 C -1.48067 2.9751 -2.63999 H 7.74496 4.56771 1.48981 L	С	-2.81698	-3.93116	0.79490	Н	-3.41474	-4.35081	0.95947
H 3.41476 4.35079 -0.95951 C 5.04725 -2.5298 -0.55921 C 5.8812 -3.07743 0.17759 Br 1.22778 3.89719 5.36038 C 7.29678 -3.07114 -0.01224 Br -1.22779 3.89728 -5.36033 H 5.46251 -3.7309 0.92289 O 2.70271 1.09596 1.12809 C 6.99034 -1.36256 -1.75500 O -1.97920 2.01508 0.84210 C 7.87014 -2.19332 -0.99744 C -1.48068 2.97511 -2.63999 H 7.4496 -5.6777 1.48981 H -2.23150 2.31025 -3.04341 C 9.27892 -1.38064 -0.39351 C -1.48068 2.97511 -2.63999 H 7.7496 -4.56777 1.48981 H -2.23150 2.31025 -3.04341 C 9.27492 -2.18361 -1.18774 0.23365 <t< td=""><td>Н</td><td>-3.34789</td><td>-4.76371</td><td>1.23743</td><td>С</td><td>2.86132</td><td>-3.48244</td><td>-0.61403</td></t<>	Н	-3.34789	-4.76371	1.23743	С	2.86132	-3.48244	-0.61403
Q2 C 5.04725 -2.25298 -0.55921 Q2 C 5.86812 -3.07743 0.17759 Gammaph: Energy: -4718790.1902745 C 5.2601 -1.39005 -1.54296 Br 1.22778 3.89719 5.36033 H 5.46251 -3.7390 9.99989 O 2.70271 1.09596 -1.12809 C 6.9034 -1.36256 -1.75500 O -1.97917 2.01518 0.84209 H 4.97487 -0.76883 -2.14923 O -2.70271 1.09596 -1.28100 C 8.16908 -3.90266 0.99744 C 1.48067 2.97507 2.64002 H 7.74496 -4.56777 1.48981 H -2.23150 2.31025 -3.04341 C 9.27492 -2.18361 -1.18774 C -1.4307 O.05937 C 10.09222 -3.0084 -0.43351 C -1.32150 2.03643 -1.25173 H 10.17674					Н	3.41476	-4.35079	-0.95951
92 C 5.88512 -3.07743 0.17759 Cmentepic Energy: 4718790.190 5.36038 C 5.62801 -1.39005 -1.54296 Br 1.22778 3.89719 5.36038 H 5.46251 -3.73909 0.92989 0 2.70271 1.09596 -1.12800 C 6.99034 -1.36256 -1.75500 0 -9.70271 1.09596 -1.12810 C 8.16908 -3.90266 0.74241 0 -1.97920 2.01508 0.84210 C 7.87014 -2.19322 0.99744 1 2.23149 2.31021 3.04343 C 9.53830 -3.87950 0.54345 C -1.48068 2.97511 -2.63399 H 7.74496 -4.56777 1.48981 1 -2.23150 2.31024 -3.04341 C 9.72492 -2.18351 1.1874 1 -1.18517 0.95937 C 10.09222 -3.00894 -0.43351 C -7.43071					С	5.04725	-2.25298	-0.55921
Carshaphs Energy:-4718790.1902745 C 5.62801 -1.39005 -1.54296 Br 1.22778 3.89719 5.36038 C 7.29678 -3.07114 -0.01224 Br -1.22778 3.89719 5.36033 H 5.46251 -3.73909 0.92989 O 2.70271 1.09596 1.12809 C 6.99034 -1.36256 -1.75500 O -1.97920 2.01508 0.84210 C 8.16908 -3.90266 0.74241 C -1.48067 2.97507 2.64002 H 7.41147 -0.70911 -2.51413 H -2.23150 2.31025 -3.04341 C 9.27892 -2.18361 -1.1874 C 0.74030 -2.43279 -0.05937 C 1.09222 -3.0894 -0.43351 C -1.9531 2.93643 -1.26173 H 10.17674 -4.52524 1.13413 C 1.96506 2.00517 0.39711 H 9.729677 -3.07115 <	92				С	5.88512	-3.07743	0.17759
Br 1.22778 3.89719 5.36038 C 7.29678 -3.07114 -0.01224 Br -1.22779 3.89728 -5.36033 H 5.46251 -3.73909 0.92989 0 2.70271 1.09596 1.12809 C 6.99034 -1.36256 -1.75500 0 -1.97917 2.01511 -0.84209 H 4.97487 -0.76883 -2.14923 0 -2.70271 1.09596 -1.12810 C 8.16908 -3.90266 0.74241 0 -1.97910 2.01518 0.84210 C 7.87014 -2.09974 C -1.48067 2.97507 2.64002 H 7.4147 -0.70911 -2.51113 1 -2.3149 2.31025 -3.04341 C 9.27492 -3.0894 -0.456777 1.49981 1 -2.23150 2.31025 -3.04341 C 9.27492 -1.30080 0.55819 C -1.9531 2.93641 1.26175 C 5.04724		Naph ₂ Ener	gy: -4718790).1902745	С	5.62801	-1.39005	-1.54296
Br -1.22779 3.89728 -5.36033 H 5.46251 -3.73909 0.92989 O 2.70271 1.09596 1.12809 C 6.99034 -1.36256 -1.75500 O -2.70271 1.09596 -1.12810 C 8.16908 -3.90266 0.74241 O -2.70271 1.09596 -1.12810 C 8.16908 -3.90266 0.74241 C -1.47920 2.01508 0.84210 C 7.87014 -2.19322 0.99744 C -1.48068 2.97511 -2.63999 H 7.74496 -4.56777 1.48981 H -2.23102 3.04341 C 9.53830 -3.30894 -0.43351 C -1.48068 2.97511 -2.63999 H 7.74496 -4.56777 1.48981 C 0.74030 -2.43279 -0.05937 C 10.0922 -3.0894 -0.43351 C -1.95638 -1.15710 0.03711 H 9.72617 -3.0743 -0.1763 C -2.83628 -1.15779 0.07658 C	Br	1.22778	3.89719	5.36038	С	7.29678	-3.07114	-0.01224
0 2.70271 1.09596 1.12809 C 6.99034 -1.36256 -1.75500 0 1.97917 2.01511 -0.84209 H 4.97487 -0.76883 -2.14923 0 -1.97920 2.01508 0.84210 C 8.16908 -3.90266 0.74241 0 -1.97920 2.01508 0.84210 C 7.87014 -2.19332 -0.99744 C 1.48067 2.97507 2.64002 H 7.41147 -0.70911 -2.51413 H 2.23150 2.31025 -3.04341 C 9.27492 -2.18361 -1.18774 C -1.48068 2.97511 2.63999 H 7.74496 -4.56777 1.48981 H -2.23150 2.31025 -3.04341 C 9.27492 -2.18361 -1.18774 C -0.74030 -2.43279 -0.05937 C 10.09222 -3.0084 -0.43351 C -1.95506 2.0517 0.39711 H 9.72511 -1.5932 -1.92668 C -2.83628 -1.15779 0.07658	Br	-1.22779	3.89728	-5.36033	Н	5.46251	-3.73909	0.92989
O 1.97917 2.01511 -0.84209 H 4.97487 -0.76883 -2.14923 O -2.70271 1.09596 -1.12810 C 8.16908 -3.9026 0.74241 C 1.48067 2.97507 2.64002 H 7.41147 -0.70911 -2.51413 H 2.23149 2.31021 3.04343 C 9.53830 -3.87950 0.54345 C -1.48068 2.97511 -2.63999 H 7.74496 -4.56777 1.48981 H -2.23150 2.31023 -3.04341 C 9.27492 -2.18361 1.18774 C 0.74030 -2.43279 -0.05937 C 10.09222 -3.00894 -0.43351 C -1.9550 2.00517 0.39711 H 9.72511 -1.52923 -1.92668 C -2.83628 -1.15780 -0.07658 C -5.62799 -1.39008 1.54295 C 0.14787 4.7309 -2.94644 H -5.46251	0	2.70271	1.09596	1.12809	С	6.99034	-1.36256	-1.75500
O -2.70271 1.09596 -1.12810 C 8.16908 -3.90266 0.74241 O -1.97920 2.01508 0.84210 C 7.87014 -2.19322 -0.99744 C 1.48067 2.97507 2.64002 H 7.41147 -0.70911 -2.51133 C -1.48068 2.97511 -2.63999 H 7.74496 4.56777 1.48981 C 0.74030 -2.43279 -0.05937 C 10.07674 4.55224 1.18774 C 1.95506 2.00517 0.39711 H 9.72511 -1.52932 -1.9268 C -2.83628 -1.15770 0.07652 C -5.4279 -1.3008 1.54295 C -0.1634 3.78532 -0.72376 C -7.26777 -3.07115 0.01221 C 0.1477 4.44209 -2.94644 H -5.46251 -3.73908 -0.9294 H 0.65719 5.44256 -3.59856 C -6.9031 <th< td=""><td>0</td><td>1.97917</td><td>2.01511</td><td>-0.84209</td><td>Н</td><td>4.97487</td><td>-0.76883</td><td>-2.14923</td></th<>	0	1.97917	2.01511	-0.84209	Н	4.97487	-0.76883	-2.14923
0 -1.97920 2.01508 0.84210 C 7.87014 -2.19332 -0.99744 C 1.48067 2.97507 2.64002 H 7.41147 -0.70911 -2.51413 H 2.23149 2.31021 3.04343 C 9.53830 -3.87950 0.54345 C -1.48068 2.97511 -2.63999 H 7.74496 -4.56777 1.48981 H -2.23150 2.31025 -3.04341 C 9.27492 -2.18361 -1.18774 C 0.74030 -2.43279 -0.05937 C 10.09222 -3.08944 -0.43351 C -1.95506 2.00517 0.39711 H 9.72511 -1.52932 -1.72668 C -2.83628 -1.15780 -0.07658 C -5.62799 -1.3008 1.54295 C 0.14787 4.7309 -2.94644 H -5.46251 -3.73908 -0.9294 H 0.95719 5.44256 -3.59856 C -6.99031 -1.36261 1.75500 C -0.14787 4.7309 -2.94644 <td>0</td> <td>-2.70271</td> <td>1.09596</td> <td>-1.12810</td> <td>С</td> <td>8.16908</td> <td>-3.90266</td> <td>0.74241</td>	0	-2.70271	1.09596	-1.12810	С	8.16908	-3.90266	0.74241
C 1.48067 2.97507 2.64002 H 7.41147 -0.70911 -2.51413 H 2.23149 2.31021 3.04343 C 9.53830 -3.87950 0.54345 C -1.48068 2.97511 -2.63999 H 7.74496 -4.56777 1.48981 H -2.23150 2.31025 -3.04341 C 9.27492 -2.18361 -1.18774 C 0.74030 -2.43279 -0.05937 C 10.09222 -3.0894 -0.43351 C -1.19531 2.93643 -1.26173 H 10.17674 4.52224 1.131413 C -2.83628 -1.15780 -0.07662 C -5.04724 -2.25300 0.59191 C 1.19529 2.93641 1.26175 C -5.88511 -3.0743 -0.1763 C -0.14787 4.7309 -2.94644 H -5.46251 -3.7308 -0.9294 H 0.65719 5.44256 -3.59856 C -6.99031 -1.36261 1.75500 C 0.14787 4.7309 -2.94644	0	-1.97920	2.01508	0.84210	С	7.87014	-2.19332	-0.99744
H 2.23149 2.31021 3.04343 C 9.53830 -3.87950 0.54345 C -1.48068 2.97511 -2.63999 H 7.74496 4.66777 1.48981 H -2.23150 2.31025 -3.04341 C 9.27492 -3.0884 -0.43351 C -1.19531 2.93643 -1.26173 H 10.17674 -4.52524 1.13413 C 1.96506 2.00517 0.39711 H 9.72511 -1.52932 -1.92668 C -2.83628 -1.15779 0.07662 C -5.62799 -1.39008 1.54295 C -0.19634 3.78532 -0.72376 C -7.29677 -3.07115 0.01221 C 0.14787 4.74309 -2.94644 H -5.46251 -3.37988 0.99994 H 0.65719 5.44256 -3.59856 C -6.99031 -1.36261 1.75500 C 0.80602 3.86674 -3.45965 C -9.78701 -2.21335 0.99244 C 0.80602 3.86674 -3.45965 <td>С</td> <td>1.48067</td> <td>2.97507</td> <td>2.64002</td> <td>Н</td> <td>7.41147</td> <td>-0.70911</td> <td>-2.51413</td>	С	1.48067	2.97507	2.64002	Н	7.41147	-0.70911	-2.51413
C -1.48068 2.97511 -2.63999 H 7.74496 -4.56777 1.48981 H -2.23150 2.31025 -3.04341 C 9.27492 -2.18361 -1.18774 C 0.74030 -2.43279 -0.05937 C 10.09222 -3.00894 -0.43351 C -1.95506 2.00517 0.39711 H 9.72511 -1.52932 -1.92668 C -2.83628 -1.15780 -0.07662 C -5.04724 -2.25300 0.55919 C 1.19529 2.93641 1.26175 C -5.88511 -3.07115 0.01221 C 0.14787 4.74309 -2.94644 H -5.46251 -3.73908 -0.92994 C 0.14787 4.74309 -2.94644 H -5.46251 -3.73908 -0.92994 L 0.65719 5.44256 -3.59856 C -6.99031 -1.36261 1.75500 C 0.14787 4.74309 -2.94644 H -5.46251 -3.73908 -0.92445 C 0.145272 -1.25476 0.2	Н	2.23149	2.31021	3.04343	C	9.53830	-3.87950	0.54345
H -2.23150 2.31025 -3.04341 C 9.27492 -2.18361 -1.18774 C 0.74030 -2.43279 -0.05937 C 10.09222 -3.08944 -0.43351 C -1.19531 2.93643 -1.26173 H 10.17674 -4.52524 1.13413 C -2.83628 -1.15779 0.07662 C -5.04724 -2.25300 0.55919 C -1.19529 2.93641 1.26175 C -5.88511 -3.07743 -0.1763 C 0.14787 4.74309 -2.94644 H -5.46251 -3.39008 1.5292 C 0.14787 4.74309 -2.94644 H -5.46251 -3.73908 -0.9294 H 0.65719 5.44256 -3.59856 C -6.99031 -1.36261 1.75500 C 1.45272 -1.25476 0.23493 H -4.97485 -0.76888 2.14923 H 0.90969 -0.40604 0.62826 C -8.16908 -3.90255 -0.4245 C -0.80604 3.86674 -3.459	С	-1.48068	2.97511	-2.63999	H	7.74496	-4.56777	1.48981
C 0.74030 -2.43279 -0.05937 C 10.09222 -3.00894 -0.43351 C -1.19531 2.93643 -1.26173 H 10.17674 -4.52524 1.13413 C 1.96506 2.00517 0.39711 H 9.72511 -1.52932 -1.92668 C -2.83628 -1.15770 0.07652 C -5.04724 -2.25300 0.55919 C -2.83628 -1.15779 0.07658 C -5.62799 -1.39008 1.54295 C -0.19634 3.78532 -0.72376 C -7.29677 -3.07115 0.01221 C 0.47787 4.74309 -2.94644 H -5.46251 -3.73908 -0.2994 H 0.65719 5.44256 -3.59856 C -6.99031 -1.36261 1.75500 C 1.45272 -1.25476 0.23493 H -4.97485 -0.76888 2.14923 H 0.90969 -0.40604 0.62826 C -8.16908 -3.90265 -0.74245 C 0.80602 3.86674 -3.459	Н	-2.23150	2.31025	-3.04341	C	9.27492	-2.18361	-1.18774
C -1.19531 2.93643 -1.26173 H 10.7674 4.52524 1.13413 C 1.96506 2.00517 0.39711 H 9.72511 -1.52932 -1.92668 C -2.83628 -1.15780 -0.07652 C -5.04724 -2.23300 0.55919 C 1.19529 2.93641 1.26175 C -5.88511 -3.07743 -0.17763 C 0.14787 4.7309 -2.94644 H -5.46279 -1.3008 1.54295 C 0.14787 4.74309 -2.94644 H -5.46251 -3.73908 -0.92994 H 0.65719 5.44256 -3.59856 C -6.99031 -1.36261 1.75500 C 1.45272 -1.25476 0.23493 H -4.97485 -0.76888 2.14923 H 0.90969 -0.40604 0.62826 C -8.16908 -3.90265 -0.74245 C -0.80604 3.86674 -3.45965 C -9.53829 -3.87950 -0.54348 C 1.45272 -1.25477 -0.23497<	С	0.74030	-2.43279	-0.05937	Ċ	10.09222	-3.00894	-0.43351
C 1.96506 2.00517 0.39711 H 9.72511 -1.52932 -1.92668 C -2.83628 -1.15780 -0.07662 C -5.04724 -2.25300 0.55919 C 1.19529 2.93641 1.26175 C -5.88511 -3.07743 -0.17763 C 2.83628 -1.15779 0.07658 C -5.62799 -3.07115 0.01221 C 0.14787 4.74309 -2.94644 H -5.46251 -3.73908 -0.9294 H 0.65719 5.44256 -3.59856 C -6.99031 -1.36261 1.75500 C 1.45272 -1.25476 0.23493 H -4.97485 -0.76888 2.14923 H 0.90969 -0.40604 0.62826 C -8.16908 -3.90265 -0.74245 C -0.74029 -2.43280 0.05932 H -7.41144 -0.7016 2.51415 C -0.80604 3.86674 -3.45965 C -9.27490 -2.18364 1.18774 C -1.45272 -1.25477 -0.234	С	-1.19531	2.93643	-1.26173	H	10.17674	-4.52524	1.13413
C -2.83628 -1.15780 -0.07662 C -5.04724 -2.25300 0.55919 C 1.19529 2.93641 1.26175 C -5.88511 -3.07743 -0.17763 C 2.83628 -1.15779 0.07658 C -5.62799 -1.39008 1.54295 C -0.19634 3.78532 -0.72376 C -7.29677 -3.07115 0.01221 C 0.14787 4.74309 -2.94644 H -5.46251 -3.73908 -0.92994 H 0.65719 5.44256 -3.59856 C -6.9031 -1.36261 1.75500 C 1.45272 -1.25476 0.23493 H -4.97485 -0.76888 2.14923 H 0.90969 -0.40604 0.62826 C -8.16908 -3.90265 -0.74245 C -0.80604 3.86674 -3.45965 C -9.53829 -3.87950 -0.54348 C 1.47218 -3.55796 -0.47644 H -7.74496 -4.56775 -1.48986 H 0.95825 4.48050 -0.	С	1.96506	2.00517	0.39711	Н	9.72511	-1.52932	-1.92668
C 1.19529 2.93641 1.26175 C -5.88511 -3.07743 -0.17763 C 2.83628 -1.15779 0.07658 C -5.62799 -1.39008 1.54295 C -0.19634 3.78532 -0.72376 C -7.29677 -3.07115 0.01221 C 0.14787 4.74309 -2.94644 H -5.46251 -3.73908 -0.9294 H 0.65719 5.44256 -3.59856 C -6.99031 -1.36261 1.75500 C 1.45272 -1.25476 0.23493 H -4.97485 -0.76888 2.14923 H 0.90969 -0.40604 0.62826 C -8.16908 -3.90265 -0.74245 C -0.74029 -2.43280 0.05932 H -7.41144 -0.70916 2.51415 C -0.80604 3.86679 -0.72888 C -9.53829 -3.87950 -0.54348 C -1.47218 -3.55796 -0.47644 H -7.74496 -4.56775 -1.48986 C -1.45272 -1.25477 -	С	-2.83628	-1.15780	-0.07662	C	-5.04724	-2.25300	0.55919
C 2.83628 -1.15779 0.07658 C -5.62799 -1.39008 1.54295 C -0.19634 3.78532 -0.72376 C -7.29677 -3.07115 0.01221 C 0.14787 4.74309 -2.94644 H -5.46251 -3.73908 -0.92994 H 0.65719 5.44256 -3.59856 C -6.99031 -1.36261 1.75500 C 1.45272 -1.25476 0.23493 H -4.97485 -0.76888 2.14923 H 0.90969 -0.40604 0.62826 C -8.16908 -3.90265 -7.4245 C -0.74029 -2.43280 0.05932 H -7.41144 -0.70916 2.51415 C -0.80604 3.86674 -3.45965 C -9.53829 -3.87950 -0.54348 C 1.47218 -3.55796 -0.47644 H -7.74496 4.56775 -1.48986 H 0.95825 -4.48050 -0.72858 C -9.27490 -2.18364 1.18774 C -3.56672 -2.29026 0.	С	1.19529	2.93641	1.26175	Ċ	-5.88511	-3.07743	-0.17763
C -0.19634 3.78532 -0.72376 C -7.29677 -3.07115 0.01221 C 0.14787 4.74309 -2.94644 H -5.46251 -3.73908 -0.92994 H 0.65719 5.44256 -3.59856 C -6.99031 -1.36261 1.75500 C 1.45272 -1.25476 0.23493 H -4.97485 -0.76888 2.14923 H 0.90969 -0.40604 0.62826 C -8.16908 -3.90265 -0.74245 C 0.74029 -2.43280 0.05932 H -7.41144 -0.70916 2.51415 C -0.80604 3.86674 -3.45965 C -9.53829 -3.87950 -0.54348 C 1.47218 -3.55796 -0.47644 H -7.74496 -4.56775 -1.48986 H 0.95825 -4.48050 -0.72858 C -9.27490 -2.18364 1.18774 C -3.56672 -2.29026 0.36188 C -10.09220 -3.00896 0.43351 C -1.45272 -1.25477 <td< td=""><td>С</td><td>2.83628</td><td>-1.15779</td><td>0.07658</td><td>Ċ</td><td>-5.62799</td><td>-1.39008</td><td>1.54295</td></td<>	С	2.83628	-1.15779	0.07658	Ċ	-5.62799	-1.39008	1.54295
C 0.14787 4.74309 -2.94644 H -5.46251 -3.73908 -0.92994 H 0.65719 5.44256 -3.59856 C -6.99031 -1.36261 1.75500 C 1.45272 -1.25476 0.23493 H -4.97485 -0.76888 2.14923 H 0.90969 -0.40604 0.62826 C -8.16908 -3.90265 -0.74245 C 0.80602 3.86669 3.45969 C -7.87013 -2.19335 0.99743 C -0.74029 -2.43280 0.05932 H -7.41144 -0.70916 2.51415 C -0.80604 3.86674 -3.45965 C -9.53829 -3.87950 -0.54348 H 0.95825 -4.48050 -0.72858 C -9.27490 -2.18364 1.18774 C -3.56672 -2.29026 0.36188 C -10.09220 -3.00896 0.43351 C -1.45272 -1.25477 -0.23497 H -10.17673 -4.52522 -1.13416 H -0.90969 -0.40605 <td< td=""><td>С</td><td>-0.19634</td><td>3.78532</td><td>-0.72376</td><td>Ċ</td><td>-7.29677</td><td>-3.07115</td><td>0.01221</td></td<>	С	-0.19634	3.78532	-0.72376	Ċ	-7.29677	-3.07115	0.01221
H 0.65719 5.44256 -3.59856 C -6.99031 -1.36261 1.75500 C 1.45272 -1.25476 0.23493 H -4.97485 -0.76888 2.14923 H 0.90969 -0.40604 0.62826 C -8.16908 -3.90265 -0.74245 C 0.80602 3.86669 3.45969 C -7.87013 -2.19335 0.99743 C -0.74029 -2.43280 0.05932 H -7.41144 -0.70916 2.51415 C -0.80604 3.86674 -3.45965 C -9.53829 -3.87950 -0.54348 C 1.47218 -3.55796 -0.47644 H -7.74496 -4.56775 -1.48986 H 0.95825 -4.48050 -0.72858 C -9.27490 -2.18364 1.18774 C -3.56672 -2.29026 0.36188 C -10.07673 -4.52522 -1.13416 H -0.9069 -0.40605 -0.62831 H -9.75909 -1.52937 1.92670 C 0.14613 4.69133 -1	Ċ	0.14787	4.74309	-2.94644	H	-5.46251	-3.73908	-0.92994
C 1.45272 -1.25476 0.23493 H -4.97485 -0.76888 2.14923 H 0.90969 -0.40604 0.62826 C -8.16908 -3.90265 -0.74245 C 0.80602 3.86669 3.45969 C -7.87013 -2.19335 0.99743 C -0.74029 -2.43280 0.05932 H -7.41144 -0.70916 2.51415 C -0.80604 3.86674 -3.45965 C -9.53829 -3.87950 -0.54348 C 1.47218 -3.55796 -0.47644 H -7.74496 -4.56775 -1.48986 H 0.95825 -4.48050 -0.72858 C -9.27490 -2.18364 1.18774 C -3.56672 -2.29026 0.36188 C -10.07673 -4.52522 -1.13416 H -0.90969 -0.40605 -0.62831 H -9.72509 -1.52937 1.92670 C 0.19632 3.78531 0.72381 O 11.45984 -2.92470 0.69603 H 1.21089 5.34664 -1	н	0.65719	5.44256	-3.59856	C	-6.99031	-1.36261	1.75500
H0.90969-0.406040.62826C-8.16908-3.90265-0.74245C0.806023.866693.45969C-7.87013-2.193350.99743C-0.74029-2.432800.05932H-7.41144-0.709162.51415C-0.806043.86674-3.45965C-9.53829-3.87950-0.54348C1.47218-3.55796-0.47644H-7.74496-4.56775-1.48986H0.95825-4.48050-0.72858C-9.27490-2.183641.18774C-3.56672-2.290260.36188C-10.09220-3.008960.43351C-1.45272-1.25477-0.23497H-10.17673-4.52522-1.13416H-0.90969-0.40605-0.62831H-9.72509-1.529371.92670C0.196323.785310.72381O11.45985-2.92468-0.69602C0.446134.69133-1.58328O-11.45984-2.924700.69603H1.210895.34664-1.17990C12.38690-3.759090.05442C-1.47217-3.557970.47639H12.18588-4.82354-0.11408H-0.95823-4.480500.72853H13.37040-3.50290-0.33775C-1.965082.00517-0.39711H12.34605-3.532351.12615C3.56673-2.29025-0.36192C-12.38689-	С	1.45272	-1.25476	0.23493	H	-4.97485	-0.76888	2.14923
C 0.80602 3.86669 3.45969 C -7.87013 -2.19335 0.99743 C -0.74029 -2.43280 0.05932 H -7.41144 -0.70916 2.51415 C -0.80604 3.86674 -3.45965 C -9.53829 -3.87950 -0.54348 C 1.47218 -3.55796 -0.47644 H -7.74496 -4.56775 -1.48986 H 0.95825 -4.48050 -0.72858 C -9.27490 -2.18364 1.18774 C -3.56672 -2.29026 0.36188 C -10.09220 -3.00896 0.43351 C -1.45272 -1.25477 -0.23497 H -10.17673 -4.52522 -1.13416 H -0.90969 -0.40605 -0.62831 H -9.72509 -1.52937 1.92670 C 0.19632 3.78531 0.72381 O 11.45984 -2.92468 -0.69602 C -1.47217 -3.55777 0.47639 H 12.18588 -4.82354 -0.11408 H -0.95823 -4.48050	Н	0.90969	-0.40604	0.62826	C	-8.16908	-3.90265	-0.74245
C -0.74029 -2.43280 0.05932 H -7.41144 -0.70916 2.51415 C -0.80604 3.86674 -3.45965 C -9.53829 -3.87950 -0.54348 C 1.47218 -3.55796 -0.47644 H -7.74496 -4.56775 -1.48986 H 0.95825 -4.48050 -0.72858 C -9.27490 -2.18364 1.18774 C -3.56672 -2.29026 0.36188 C -10.09220 -3.00896 0.43351 C -1.45272 -1.25477 -0.23497 H -10.17673 -4.52522 -1.13416 H -0.90969 -0.40605 -0.62831 H -9.72509 -1.52937 1.92670 C 0.19632 3.78531 0.72381 O 11.45985 -2.92468 -0.69602 C -1.47217 -3.55797 0.47639 H 12.18588 -4.82354 -0.11408 H -0.95823 -4.48050 0.72853 H 13.37040 -3.50290 -0.33775 C -1.96508 2.00517	С	0.80602	3.86669	3.45969	Ċ	-7.87013	-2.19335	0.99743
C -0.80604 3.86674 -3.45965 C -9.53829 -3.87950 -0.54348 C 1.47218 -3.55796 -0.47644 H -7.74496 -4.56775 -1.48986 H 0.95825 -4.48050 -0.72858 C -9.27490 -2.18364 1.18774 C -3.56672 -2.29026 0.36188 C -10.09220 -3.0896 0.43351 C -1.45272 -1.25477 -0.23497 H -10.17673 -4.52522 -1.13416 H -0.90969 -0.40605 -0.62831 H -9.72509 -1.52937 1.92670 C 0.19632 3.78531 0.72381 O 11.45985 -2.92468 -0.69602 C 0.44613 4.69133 -1.58328 O -11.45984 -2.92470 0.69603 H 1.21089 5.34664 -1.17990 C 12.38690 -3.75909 0.05442 C -1.47217 -3.55797 0.47639 H 12.18588 -4.82354 -0.11408 H -0.95823 -4.48050	С	-0.74029	-2.43280	0.05932	Н	-7.41144	-0.70916	2.51415
C 1.47218 -3.55796 -0.47644 H -7.74496 -4.56775 -1.48986 H 0.95825 -4.48050 -0.72858 C -9.27490 -2.18364 1.18774 C -3.56672 -2.29026 0.36188 C -10.09220 -3.00896 0.43351 C -1.45272 -1.25477 -0.23497 H -10.17673 -4.52522 -1.13416 H -0.90969 -0.40605 -0.62831 H -9.72509 -1.52937 1.92670 C 0.19632 3.78531 0.72381 O 11.45985 -2.92468 -0.69602 C 0.44613 4.69133 -1.58328 O -11.45984 -2.92470 0.69603 H 1.21089 5.34664 -1.17990 C 12.38690 -3.75909 0.05442 C -1.47217 -3.55797 0.47639 H 12.18588 -4.82354 -0.11408 H -0.95823 -4.48050 0.72853 H 13.37040 -3.50290 -0.33775 C -1.96508 2.00517	С	-0.80604	3.86674	-3.45965	С	-9.53829	-3.87950	-0.54348
H0.95825-4.48050-0.72858C-9.27490-2.183641.18774C-3.56672-2.290260.36188C-10.09220-3.008960.43351C-1.45272-1.25477-0.23497H-10.17673-4.52522-1.13416H-0.90969-0.40605-0.62831H-9.72509-1.529371.92670C0.196323.785310.72381O11.45985-2.92468-0.69602C0.446134.69133-1.58328O-11.45984-2.924700.69603H1.210895.34664-1.17990C12.38690-3.759090.05442C-1.47217-3.557970.47639H12.18588-4.82354-0.11408H-0.95823-4.480500.72853H13.37040-3.50290-0.33775C-1.965082.00517-0.39711H12.34405-3.532351.12615C3.56673-2.29025-0.36192C-12.38689-3.75910-0.05443C3.557500.141430.39205H-12.18587-4.823550.11405H3.901900.64172-0.51629H-12.34405-3.53233-1.12615C-3.557500.14141-0.39209H-12.34405-3.53233-1.12615C-3.557500.14141-0.39209H-12.34405-3.53233-1.12615C-3.557500.14141-0.39209H-12.34405 <td>С</td> <td>1.47218</td> <td>-3.55796</td> <td>-0.47644</td> <td>H</td> <td>-7.74496</td> <td>-4.56775</td> <td>-1.48986</td>	С	1.47218	-3.55796	-0.47644	H	-7.74496	-4.56775	-1.48986
C -3.56672 -2.29026 0.36188 C -10.09220 -3.00896 0.43351 C -1.45272 -1.25477 -0.23497 H -10.17673 -4.52522 -1.13416 H -0.90969 -0.40605 -0.62831 H -9.72509 -1.52937 1.92670 C 0.19632 3.78531 0.72381 O 11.45985 -2.92468 -0.69602 C 0.44613 4.69133 -1.58328 O -11.45984 -2.92470 0.69603 H 1.21089 5.34664 -1.17990 C 12.38690 -3.75909 0.05442 C -1.47217 -3.55797 0.47639 H 12.18588 -4.82354 -0.11408 H -0.95823 -4.48050 0.72853 H 13.37040 -3.50290 -0.33775 C -1.96508 2.00517 -0.39711 H 12.38689 -3.75910 -0.05443 C 3.56673 -2.29025 -0.36192 C -12.38689 -3.75910 -0.05443 C 3.55750 0.14143	Н	0.95825	-4.48050	-0.72858	С	-9.27490	-2.18364	1.18774
C -1.45272 -1.25477 -0.23497 H -10.17673 -4.52522 -1.13416 H -0.90969 -0.40605 -0.62831 H -9.72509 -1.52937 1.92670 C 0.19632 3.78531 0.72381 O 11.45985 -2.92468 -0.69602 C 0.44613 4.69133 -1.58328 O -11.45984 -2.92470 0.69603 H 1.21089 5.34664 -1.17990 C 12.38690 -3.75909 0.05442 C -1.47217 -3.55797 0.47639 H 12.18588 -4.82354 -0.11408 H -0.95823 -4.48050 0.72853 H 13.37040 -3.50290 -0.33775 C -1.96508 2.00517 -0.39711 H 12.34405 -3.53235 1.12615 C 3.56673 -2.29025 -0.36192 C -12.38689 -3.75910 -0.05443 C 3.55750 0.14143 0.39205 H -12.18587 -4.82355 0.11405 H 4.40441 -0.02246	С	-3.56672	-2.29026	0.36188	С	-10.09220	-3.00896	0.43351
H-0.90969-0.40605-0.62831H-9.72509-1.529371.92670C0.196323.785310.72381O11.45985-2.92468-0.69602C0.446134.69133-1.58328O-11.45984-2.924700.69603H1.210895.34664-1.17990C12.38690-3.759090.05442C-1.47217-3.557970.47639H12.18588-4.82354-0.11408H-0.95823-4.480500.72853H13.37040-3.50290-0.33775C-1.965082.00517-0.39711H12.34405-3.532351.12615C3.56673-2.29025-0.36192C-12.38689-3.75910-0.05443C3.557500.141430.39205H-12.18587-4.823550.11405H4.40441-0.022461.06072H-13.37039-3.502910.33776H3.901900.64172-0.51629H-12.34405-3.53233-1.12615C-3.557500.14141-0.39209H-12.34405-3.53233-1.12615H-3.901920.641690.51626132	С	-1.45272	-1.25477	-0.23497	Н	-10.17673	-4.52522	-1.13416
C 0.19632 3.78531 0.72381 O 11.45985 -2.92468 -0.69602 C 0.44613 4.69133 -1.58328 O -11.45984 -2.92470 0.69603 H 1.21089 5.34664 -1.17990 C 12.38690 -3.75909 0.05442 C -1.47217 -3.55797 0.47639 H 12.18588 -4.82354 -0.11408 H -0.95823 -4.48050 0.72853 H 13.37040 -3.50290 -0.33775 C -1.96508 2.00517 -0.39711 H 12.34405 -3.53235 1.12615 C 3.56673 -2.29025 -0.36192 C -12.38689 -3.75910 -0.05443 C 3.55750 0.14143 0.39205 H -12.18587 -4.82355 0.11405 H 4.40441 -0.02246 1.06072 H -12.34405 -3.53233 -1.12615 C -3.55750 0.14141 -0.39209 H -12.34405 -3.53233 -1.12615 H -3.90192 0.64169 <	Н	-0.90969	-0.40605	-0.62831	Н	-9.72509	-1.52937	1.92670
C 0.44613 4.69133 -1.58328 O -11.45984 -2.92470 0.69603 H 1.21089 5.34664 -1.17990 C 12.38690 -3.75909 0.05442 C -1.47217 -3.55797 0.47639 H 12.18588 -4.82354 -0.11408 H -0.95823 -4.48050 0.72853 H 13.37040 -3.50290 -0.33775 C -1.96508 2.00517 -0.39711 H 12.38689 -3.75910 -0.05443 C 3.56673 -2.29025 -0.36192 C -12.38689 -3.75910 -0.05443 C 3.55750 0.14143 0.39205 H -12.18587 -4.82355 0.11405 H 4.40441 -0.02246 1.06072 H -13.37039 -3.50291 0.33776 H 3.90190 0.64172 -0.51629 H -12.34405 -3.53233 -1.12615 C -3.55750 0.14141 -0.39209 H -12.34405 -3.53233 -1.12615 H -3.90192 0.64169	С	0.19632	3.78531	0.72381	0	11.45985	-2.92468	-0.69602
H1.210895.34664-1.17990C12.38690-3.759090.05442C-1.47217-3.557970.47639H12.18588-4.82354-0.11408H-0.95823-4.480500.72853H13.37040-3.50290-0.33775C-1.965082.00517-0.39711H12.34405-3.532351.12615C3.56673-2.29025-0.36192C-12.38689-3.75910-0.05443C3.557500.141430.39205H-12.18587-4.823550.11405H4.40441-0.022461.06072H-13.37039-3.502910.33776H3.901900.64172-0.51629H-12.34405-3.53233-1.12615C-3.557500.14141-0.39209H-12.34405-3.53233-1.12615C-3.557500.14141-0.39209H-12.34405-3.53233-1.12615C-3.557500.14141-0.39209H-12.34405-3.53233-1.12615C-3.557500.14141-0.39209H-12.34405-3.53233-1.12615H-3.901920.641690.51626132	С	0.44613	4.69133	-1.58328	0	-11.45984	-2.92470	0.69603
C -1.47217 -3.55797 0.47639 H 12.18588 -4.82354 -0.11408 H -0.95823 -4.48050 0.72853 H 13.37040 -3.50290 -0.33775 C -1.96508 2.00517 -0.39711 H 12.34405 -3.53235 1.12615 C 3.56673 -2.29025 -0.36192 C -12.38689 -3.75910 -0.05443 C 3.55750 0.14143 0.39205 H -12.18587 -4.82355 0.11405 H 4.40441 -0.02246 1.06072 H -13.37039 -3.50291 0.33776 H 3.90190 0.64172 -0.51629 H -12.34405 -3.53233 -1.12615 C -3.55750 0.14141 -0.39209 H -12.34405 -3.53233 -1.12615 C -3.55750 0.14141 -0.39209 H -12.34405 -3.53233 -1.12615 C -3.590192 0.64169 0.51626 132 - - C -0.14789 4.74303 2.94650 C <td>Н</td> <td>1.21089</td> <td>5.34664</td> <td>-1.17990</td> <td>С</td> <td>12.38690</td> <td>-3.75909</td> <td>0.05442</td>	Н	1.21089	5.34664	-1.17990	С	12.38690	-3.75909	0.05442
H-0.95823-4.480500.72853H13.37040-3.50290-0.33775C-1.965082.00517-0.39711H12.34405-3.532351.12615C3.56673-2.29025-0.36192C-12.38689-3.75910-0.05443C3.557500.141430.39205H-12.18587-4.823550.11405H4.40441-0.022461.06072H-13.37039-3.502910.33776H3.901900.64172-0.51629H-12.34405-3.53233-1.12615C-3.557500.14141-0.39209H-12.34405-3.53233-1.12615C-3.557500.14141-0.39209H-12.34405-3.53233-1.12615C-3.591920.641690.51626132I32I32C-0.147894.743032.94650CNaphsEnergy: -2118523.8924662H-0.657215.442503.59863O-2.856420.63854-0.10930	С	-1.47217	-3.55797	0.47639	Н	12.18588	-4.82354	-0.11408
C -1.96508 2.00517 -0.39711 H 12.34405 -3.53235 1.12615 C 3.56673 -2.29025 -0.36192 C -12.38689 -3.75910 -0.05443 C 3.55750 0.14143 0.39205 H -12.18587 -4.82355 0.11405 H 4.40441 -0.02246 1.06072 H -13.37039 -3.50291 0.33776 H 3.90190 0.64172 -0.51629 H -12.34405 -3.53233 -1.12615 C -3.55750 0.14141 -0.39209 H -12.34405 -3.53233 -1.12615 C -3.55750 0.14141 -0.39209 H -12.34405 -3.53233 -1.12615 C -3.590192 0.64169 0.51626 132	Н	-0.95823	-4.48050	0.72853	Н	13.37040	-3.50290	-0.33775
C 3.56673 -2.29025 -0.36192 C -12.38689 -3.75910 -0.05443 C 3.55750 0.14143 0.39205 H -12.18587 -4.82355 0.11405 H 4.40441 -0.02246 1.06072 H -13.37039 -3.50291 0.33776 H 3.90190 0.64172 -0.51629 H -12.34405 -3.53233 -1.12615 C -3.55750 0.14141 -0.39209 H -12.34405 -3.53233 -1.12615 C -3.55750 0.14141 -0.39209 H -12.34405 -3.53233 -1.12615 H -3.90192 0.64169 0.51626 132	С	-1.96508	2.00517	-0.39711	Н	12.34405	-3.53235	1.12615
C 3.55750 0.14143 0.39205 H -12.18587 -4.82355 0.11405 H 4.40441 -0.02246 1.06072 H -13.37039 -3.50291 0.33776 H 3.90190 0.64172 -0.51629 H -12.34405 -3.53233 -1.12615 C -3.55750 0.14141 -0.39209 H -12.34405 -3.53233 -1.12615 C -3.55750 0.14141 -0.39209 H -12.34405 -3.53233 -1.12615 H -3.90192 0.64169 0.51626 132	С	3.56673	-2.29025	-0.36192	С	-12.38689	-3.75910	-0.05443
H 4.40441 -0.02246 1.06072 H -13.37039 -3.50291 0.33776 H 3.90190 0.64172 -0.51629 H -12.34405 -3.53233 -1.12615 C -3.55750 0.14141 -0.39209 H -12.34405 -3.53233 -1.12615 H -4.40440 -0.02248 -1.06078 H -12.34405 -3.53233 -1.12615 H -3.90192 0.64169 0.51626 132 -1.12615 -1.12615 C -0.14789 4.74303 2.94650 H Energy: -2118523.8924662 -0.10930 H -0.65721 5.44250 3.59863 O -2.85642 0.63854 -0.10930	С	3.55750	0.14143	0.39205	Н	-12.18587	-4.82355	0.11405
H 3.90190 0.64172 -0.51629 H -12.34405 -3.53233 -1.12615 C -3.55750 0.14141 -0.39209 H -4.40440 -0.02248 -1.06078 H -3.90192 0.64169 0.51626 132 C -0.14789 4.74303 2.94650 C Naph4 Energy: -2118523.8924662 H -0.65721 5.44250 3.59863 O -2.85642 0.63854 -0.10930	Н	4.40441	-0.02246	1.06072	Н	-13.37039	-3.50291	0.33776
C -3.55750 0.14141 -0.39209 H -4.40440 -0.02248 -1.06078 H -3.90192 0.64169 0.51626 C -0.14789 4.74303 2.94650 H -0.65721 5.44250 3.59863	Н	3.90190	0.64172	-0.51629	Н	-12.34405	-3.53233	-1.12615
H -4.40440 -0.02248 -1.06078 H -3.90192 0.64169 0.51626 132 C -0.14789 4.74303 2.94650 C H -0.65721 5.44250 3.59863 O -2.85642 0.63854 -0.10930	С	-3.55750	0.14141	-0.39209				
H -3.90192 0.64169 0.51626 132 C -0.14789 4.74303 2.94650 C H -0.65721 5.44250 3.59863 O -2.85642 0.63854 -0.10930	Н	-4.40440	-0.02248	-1.06078				
C -0.14789 4.74303 2.94650 C _{Naph4} Energy: -2118523.8924662 H -0.65721 5.44250 3.59863 O -2.85642 0.63854 -0.10930	Н	-3.90192	0.64169	0.51626	132			
H -0.65721 5.44250 3.59863 O -2.85642 0.63854 -0.10930	С	-0.14789	4.74303	2.94650	C _{Naph}	Eneray: -	2118523.892	24662
	Н	-0.65721	5.44250	3.59863	0	-2.85642	0.63854	-0.10930

0	-1.11354	1.82208	-1.01041	Н	-2.96456	4.58130	1.79243
0	2.85642	-0.63854	-0.10929	С	-7.16921	3.91576	4.99514
0	1.11354	-1.82208	-1.01041	С	-5.98803	5.21193	3.27388
С	-2.77482	-1.25067	-2.05625	Н	-4.79366	6.23095	1.77439
Н	-3.63035	-1.10743	-1.40902	С	-8.20019	4.83886	4.99664
С	2.77483	1.25067	-2.05625	Н	-7.21753	3.05384	5.65520
Н	3.63035	1.10743	-1.40902	С	-7.05311	6.14753	3.28964
С	-0.57801	0.46659	3.42912	Ċ	-8.13647	5.96519	4.13272
Ċ	1.72049	0.32237	-1.97582	H	-9.04741	4.69521	5.65622
Ċ	-1.83039	0.81073	-1.02395	Н	-7.03097	7.01663	2.64079
Ċ	2.37646	-1.55722	2.15605	C	3.87635	-3.28549	3.28416
c	-1 72049	-0 32237	-1 97582	C	4 96834	-3 12975	4 1 2 6 1 9
c	-2 37646	1 55722	2 15605	C	3 83251	-4 43190	2 4 2 7 8 4
c	0 58749	0.46685	-2.15005	C	6.03954	-4.06814	4 14505
c	1 63638	2/3888	-3 81023	С	5 02130	-2 26426	4.78220
Ц	1.05050	3 26802	-4 50825	C II	1 85097	-5 36172	7.70220 2.72301
\hat{c}	1,37,309	0.64947	- 1 .30023		2.05057	-5.50172	2. 4 2391 1 70242
с ц	1.02013	0.04847	2.24073		2.90430	2 01576	1./9243
п С	-1.00330	0.03073	1.50505	C	7.10920	-5.91370	4.99514
Ċ	-2./5/90	-2.31770	-2.90001		3.90002	-5.21195	3.2/300 1 77/20
Ċ	0.57600	-0.40059	2.42912	П	4.79500	-0.23093	1.//459
C	2./5/98	2.31779	-2.90001		0.20010	-4.0300/	4.99004
	-0.96232	1.20108	4.50482		7.21752	-3.03363	3.05520
п С	-0.40502	1.10500	5.49160	C	7.05310	-0.14/55	3.28904
C	2./5231	-2.30176	3.30219	C U	8.13040	-5.96519	4.13273
C	1.32015	-0.64847	2.24673	н	9.04741	-4.69522	5.65623
H	1.08336	-0.03874	1.38565	н	7.03096	-7.01663	2.64079
C	-0.58749	-0.46684	-2.81538	0	-9.13229	6.94126	4.07305
C	0.58135	1.53087	-3./32/0	0	9.13228	-6.94126	4.07306
н	-0.28665	1.66231	-4.37097	C	-10.304/3	6.82190	4.92701
C	0.96231	-1.20109	4.56482	н	-10.02567	6.84277	5.98/04
Н	0.40502	-1.10566	5.49160	н	-10.91188	7.69436	4.68828
C	1.83039	-0.81073	-1.02395	H	-10.86562	5.90692	4./0306
Ć	-2./5232	2.30176	3.30219	C	10.304/2	-6.82191	4.92/01
C	-3.12506	1./3134	0.84563	н	10.02567	-6.84278	5.98/04
Н	-4.20582	1.69481	0.99424	Н	10.91187	-7.69437	4.68828
Н	-2.85662	2.67008	0.35414	Н	10.86562	-5.90692	4.70307
C	3.12506	-1.73134	0.84563	C	-3.88812	-3.28064	-3.03783
Н	4.20582	-1.69481	0.99424	С	-4.31932	-3.80079	-4.25099
Н	2.85662	-2.67008	0.35414	C	-4.56042	-3.69443	-1.84332
С	-1.63637	-2.43887	-3.81023	C	-5.39920	-4.72402	-4.32936
Н	-1.57508	-3.26802	-4.50825	Н	-3.84579	-3.48379	-5.17665
С	-0.58135	-1.53087	-3.73270	C	-5.60967	-4.58705	-1.88405
Н	0.28666	-1.66230	-4.37097	Н	-4.21563	-3.31421	-0.88686
С	2.03708	-2.09173	4.49720	C	-5.85412	-5.25869	-5.56631
Н	2.31189	-2.66851	5.37561	C	-6.06701	-5.13125	-3.12189
С	-2.03709	2.09173	4.49720	Н	-6.09788	-4.89655	-0.96404
Н	-2.31190	2.66850	5.37561	C	-6.90801	-6.15379	-5.62141
С	-3.87636	3.28549	3.28416	Н	-5.35807	-4.95479	-6.48425
С	-4.96834	3.12975	4.12619	С	-7.14430	-6.04929	-3.19753
С	-3.83251	4.43190	2.42784	C	-7.55654	-6.55041	-4.42099
С	-6.03954	4.06813	4.14505	Н	-7.22995	-6.54454	-6.57911
Н	-5.02139	2.26425	4.78219	Н	-7.65842	-6.36869	-2.29724
С	-4.85097	5.36172	2.42392	0	-8.62606	-7.44702	-4.38894

С	-9.12156	-8.01547	-5.63345	Н	0.88757	-4.36410	-0.86573
Н	-8.34498	-8.60340	-6.13676	C	-3.52110	-2.20529	0.57043
Н	-9.94135	-8.66745	-5.33390	C	-1.46475	-1.18429	-0.18676
Н	-9.49564	-7.23313	-6.30432	Н	-0.94382	-0.34036	-0.62421
С	3.88812	3.28064	-3.03782	С	0.25221	3.79712	0.70646
С	4.31932	3.80079	-4.25099	C	0.32477	4.71171	-1.59718
С	4.56042	3.69443	-1.84331	Н	1.13755	5.34245	-1.24720
С	5.39921	4.72402	-4.32936	С	-1.42590	-3.45384	0.61341
Н	3.84580	3.48379	-5.17665	Н	-0.88756	-4.36411	0.86568
С	5.60967	4.58705	-1.88404	С	-1.99492	2.01709	-0.26013
н	4.21563	3.31422	-0.88686	С	3.52110	-2.20528	-0.57046
С	5.85413	5.25869	-5.56631	C	3.56890	0.22061	0.18182
Ċ	6.06702	5.13126	-3.12188	H	4.48176	0.06296	0.76258
H	6.09788	4.89656	-0.96403	Н	3.83635	0.67334	-0.77961
C	6.90802	6,15379	-5.62141	C	-3.56890	0.22061	-0.18182
H	5,35808	4.95478	-6.48424	H	-4.48176	0.06296	-0.76259
c	7 14430	6 04930	-3 19752	н	-3 83636	0.67332	0 77962
c	7 55655	6 55041	-4 42098	C	0 10488	4 82432	2 91643
н	7 22996	6 54454	-6 57911	н	-0 35880	5 53940	3 58875
н	7 65842	6 36869	-2 29724	C	-0 32477	4 71170	1 59723
0	8.62606	7 44702	-4 38894	н	-1 13756	5 34244	1.33723
ĉ	9 1 2 1 5 7	8 01547	-5 63345	C	-2 79980	-3 37804	0.83692
н	8 34499	8 60340	-6 13675	н	-3 32907	-4 23834	1 24010
н	9 94136	8 66745	-5 33389	C	2 79980	-3 37803	-0.83696
н	9.04150	7 23313	-6 30431	Ч	3 3 2 9 0 8	-4 23833	-1 24014
	2.42505	7.23313	0.50451	C	4 98687	-2 16091	-0.87390
90				C	5 96550	-2 33066	0.16080
<i>c</i> .	" (conf1) En	orav: _19771	64 1027304	C	5 41028	-1 97322	-7 18181
⊂sr₂r Rr		/ 13030	5 16027	C	5 62210	-2 55376	1 52217
Br	-1 74072	4.13930	-5 16027	C	7 35236	-2 28495	-0.18605
0	2 80448	1 16756	0 0/052	C	6 77882	-1 93301	-2 51543
0	1 86608	1.10750	-0.04231	Ч	4 66603	-1 84914	-2.91343
0	-2 80448	1.9/109	-0.94251	C II	6 50027	-2 70890	2.20447
0	1 96609	1.10/3/	-0.94951		4 57208	-2 60660	1 706/12
C C	-1.00000	2 00056	2.50500	C II	933936	-2.00009	0.92116
с u	1./3/99	2.00020	2.30399	C	7 7/108	-2.44021	-1 53/37
п С	2.34393	2.43030	2.03711		7.74108	1 79204	2 5/172
с ц	-1.73000	2.00020	-2.30390	II C	7.10000	-7.65462	2 1 2 7 5 5
п С	-2.54595	2.43030	-2.63709		6 2 1 6 2 7	-2.03 4 02 2.07051	2.13733
Ċ	0.73428	-2.34008	-0.10474		0.51052	-2.07031	2.22122
C	-1.30887	2.96572	-1.1/200	П	0.74243	-2.//3//	2.00495
C	1.99492	2.01709	0.26014	C	-4.90000	-2.10095	0.07000
C	-2.83337	-1.08/32	0.05224	C	-5.90549	-2.33005	-0.10002
C	1.30887	2.98372	1.17269	C	-5.41027	-1.9/32/	2.10100
C	2.83337	-1.08/31	-0.05225	C	-5.62210	-2.55572	-1.52220
C	-0.25221	3./9/12	-0.70643	C	-7.35230	-2.28495	0.18603
C	-0.10489	4.82434	-2.91639	C U	-0.//881	-1.93307	2.51542
H	0.35879	5.53944	-3.58870	H	-4.66602	-1.84921	2.90445
C	1.46475	-1.18428	0.18675	C	-6.59927	-2.70884	-2.48592
H	0.94382	-0.34036	0.62420	H	-4.5/208	-2.00664	-1./9645
C	1.13865	4.00250	3.36292	C	-8.33836	-2.44818	-0.82118
C	-0./3428	-2.34668	0.10471	C	-/./410/	-2.08254	1.53436
C	-1.13865	4.00253	-3.36289	H	-7.10087	-1./8213	3.541/1
C	1.42591	-3.45383	-0.61345	C	-7.96393	-2.65456	-2.13758

Н	-6.31632	-2.87842	-3.52156	C	-	-1.11471	3.86125	2.55150
Н	-8.74245	-2.77570	-2.88496	F	ł	-1.93608	4.52574	2.29717
С	9.17733	-2.03304	-1.90627	C	-	1.84686	-2.95295	-1.79902
С	9.78595	-2.40207	0.48259	F	ł	1.45188	-3.77834	-2.38610
С	-9.17732	-2.03308	1.90626	C	-	1.69147	1.97643	0.81873
С	-9.78595	-2.40205	-0.48261	C	-	-3.32722	-2.37436	-1.14447
0	-9.56009	-1.86093	3.05211	C	-	-3.51138	0.16022	-1.22706
0	9.56010	-1.86085	-3.05211	F	ł	-4.24097	0.13199	-2.04245
0	10.65669	-2.53562	1.32672	F	ł	-4.04836	0.28899	-0.28189
0	-10.65669	-2.53559	-1.32674	C	-	3.44864	0.41382	0.40297
Ν	-10.10750	-2.19508	0.86969	F	ł	4.29120	0.11824	1.03493
Ν	10.10750	-2.19506	-0.86970	F	ł	3.78501	1.19205	-0.28976
C	11.52228	-2.14226	-1.25528	Ċ	-	-0.21007	5.60531	-1.52554
Ĥ	12.11818	-2.28044	-0.35503	F	4	0.26621	6.53770	-1.81218
н	11.73756	-2.92878	-1.98406	(0.01821	5.05105	-0.26929
н	11,74400	-1.17733	-1.71976	F		0.68762	5.55706	0.42121
c	-11 52227	-2 14229	1 25528	, C		3 22332	-2 74346	-1 74018
Н	-12 11817	-2 28043	0 35502	F		3 89331	-3 41838	-2 26792
н	-11 73756	-2 92883	1 98402			-2 53568	-3 53251	-1 14958
н	-11 74399	-1 17737	1.50402	L	-	-3 02747	-4 50168	-1 11088
	11.74355	1.17757	1.71575	ſ	-	-4 81622	-2 51358	-1 11310
98					-	-5 57378	-2 20034	0.06427
c .	" (conf2) Eng	xav107716	4 6102172		-	-5.37370	-2.20034	-2 2376/
CBr ₂ N	1 29776	5 69126	1 1 2 2 1 0		-	-/ 07685	-1 75353	1 275/0
DI Dr	-1.36220	2.00120	-4.13310 6.01226		-	-6.00/08	-7 36002	0.03315
	0.44049	2.10234	0.01550		-	6 97000	-2.30092	2 25011
0	-2.72595	1.33932	-1.4///4	Ľ	J	4 00220	-2.14222 2.14222	2.2.2011
0	-2.24148	1.48800	0.72351	Г	1 -	-4.90230 E 74764	-3.22097	-2.12010
0	2.48539	0.98533	1.30757			-5./4/04	-1.40303	2.38400
0	1.74896	2.35972	-0.32788	F	1	-3.89/13	-1.04203	1.52205
C	-1.67290	3./5225	-2.04923		-	-/./0484	-2.05636	1.18539
H	-2.33462	3.24534	-2.74043	L L	1	-/.033/5	-2.83155	-1.14225
C	0.96944	2.14577	3.20807	F	1	-/.3885/	-3.50629	-3.14593
Н	1./8366	1.4/830	3.46131	Ĺ		-/.14861	-1.61123	2.34156
C	-0.50152	-2.21952	-1.19145	F	1	-5.2/048	-1.12023	3.29831
C	0.76341	2.50564	1.86596	F	1	-/./6/34	-1.38683	3.20551
C	-2.15979	1.94062	-0.39647	(-	5.25041	-1.43619	-1.056/3
C	2.89969	-0.77807	-0.36293	(-	6.13522	-2.28862	-0.31659
С	-1.44934	3.20075	-0.77685	C	-	5.78429	-0.40253	-1.81452
С	-2.68833	-1.11614	-1.19931	C	-	5.67883	-3.35453	0.50667
С	-0.30193	3.36756	1.52260	C	-	7.54470	-2.05287	-0.39281
С	-0.90655	3.51461	3.88335	C	-	7.17252	-0.17644	-1.88133
Н	-1.55025	3.90909	4.66337	F	ł	5.11380	0.23487	-2.38600
С	-1.29764	-1.06408	-1.24014	C	-	6.56922	-4.14850	1.20237
Н	-0.80929	-0.10095	-1.33437	F	ł	4.61130	-3.53776	0.58390
С	-1.05755	4.94317	-2.41255	C	-	8.43924	-2.88444	0.32911
С	0.97371	-2.07773	-1.13885	C	-	8.04754	-0.98921	-1.18402
С	0.14009	2.65013	4.20128	F	ł	7.57952	0.63039	-2.48372
С	-1.14372	-3.46420	-1.16353	C	-	7.95671	-3.91764	1.11271
Н	-0.55878	-4.37935	-1.11576	F	ł	6.19911	-4.95743	1.82692
С	3.77067	-1.65585	-1.04195	F	ł	8.66879	-4.53479	1.65281
С	1.52803	-1.01502	-0.40938	C	-	-9.10921	-3.00263	-1.19467
Н	0.86159	-0.37461	0.15621	C	-	-9.24154	-2.21407	1.16583
C	-0 58040	3 84866	0 1 2 9 1 1	C	-	9 50802	-0 72993	-1 27757

С	9.90475	-2.65463	0.25514	(2	3.54843	-2.53644	0.36442
0	9.96685	0.17876	-1.95040	(2	3.37770	-0.13547	1.18860
0	-9.68373	-3.40379	-2.19375	ŀ	H	4.05838	-0.33521	2.02189
0	-9.94814	-1.96026	2.12780	H	-	3.94114	0.34857	0.38440
0	10.71462	-3.34391	0.85360	(2	-3.37771	-0.13551	-1.18854
Ν	10.34342	-1.59058	-0.54607	ŀ	-	-4.05841	-0.33528	-2.02181
Ν	-9.81769	-2.67682	-0.02628	ŀ	4	-3.94112	0.34858	-0.38435
С	-11.27728	-2.82632	-0.02481	(2	-0.74142	4.44872	2.82464
Н	-11.74835	-1.86300	0.18991	ŀ	4	-1.38141	5.16081	3.33624
Н	-11.57578	-3.18881	-1.00675	(2	-0.77366	4.33753	1.43759
Н	-11.57692	-3.53323	0.75401	ŀ	-	-1.45457	4.96575	0.86960
C	11.79424	-1.37971	-0.60542	(-	-2.92334	-3.71780	0.06241
H	12.28372	-2.27796	-0.99211	ŀ	-	-3.54306	-4.57590	0.31195
н	11 98061	-0 52973	-1 25924		-	2 92332	-3 71781	-0.06221
н	12 18224	-1 18557	0 39849	F	-	3 54304	-4 57591	-0 31173
	12.10221	1.10557	0.55015	(-	5.03874	-2 50732	0.48815
98					~	5 85344	-1 77478	-0.43838
<i>c</i> .	" (conf3) End	oray: 107716	\$4 0622059		~	5 65154	-3 22224	1 50/0/
Sr ₂ r D⊮	0 10011	2 76222	E 44220		-	5 21767	1 0/955	1.50494
DI Du	0.10211	3.70322	5.44520		~	J.J1707	1 70727	-1.33737
DI	-0.18207	3./0280	-5.44540		-	7.27373	-1./0/3/	-0.20775
0	2.41887	0.80161	1./1145		-	7.05110	-3.23708	1.00311
0	2.07875	1.61990	-0.36645	F	7	5.03167	-3./8080	2.20098
0	-2.41887	0.80153	-1./1145	C	-	6.14231	-0.35675	-2.40272
0	-2.0/8/3	1.61994	0.36640	F	-	4.24260	-1.04475	-1.69447
C	0.94/95	2./19/9	2.89880	(-	8.10078	-1.06883	-1.16989
Н	1.62156	2.08956	3.46594	(-	7.85603	-2.52348	0.79484
С	-0.94793	2.71961	-2.89893	ŀ	-	7.52057	-3.79715	2.46665
Н	-1.62155	2.08935	-3.46603	(-	7.53965	-0.36190	-2.21910
С	0.73563	-2.69241	0.09279	ŀ	-	5.71153	0.19373	-3.23486
С	-0.92101	2.61707	-1.49818	ŀ	-	8.19936	0.17782	-2.89202
С	1.84709	1.65672	0.82126	(2	-5.03876	-2.50733	-0.48802
С	-2.74337	-1.42362	-0.69266	(2	-5.85346	-1.77476	0.43848
С	0.92104	2.61716	1.49806	(2	-5.65155	-3.22729	-1.50479
С	2.74335	-1.42360	0.69277	(2	-5.31770	-1.04849	1.53745
С	-0.03901	3.42738	-0.74917	(2	-7.27377	-1.78735	0.26784
С	0.74147	4.44853	-2.82489	(2	-7.05111	-3.23713	-1.66297
Н	1.38146	5.16057	-3.33653	ŀ	H	-5.03168	-3.78693	-2.20080
С	1.36068	-1.52836	0.56677	(2	-6.14234	-0.35665	2.40276
Н	0.73831	-0.69348	0.86733	ŀ	H	-4.24264	-1.04469	1.69456
С	0.12361	3.62927	3.54848	(2	-8.10081	-1.06877	1.16994
С	-0.73565	-2.69241	-0.09262	(2	-7.85604	-2.52349	-0.79473
Ċ	-0.12357	3.62903	-3.54867	H	4	-7.52057	-3.79723	-2.46650
Ċ	1.53940	-3.80005	-0.20601	(2	-7.53968	-0.36180	2.21913
Н	1.08964	-4.71483	-0.58400	ŀ	4	-5.71158	0.19386	3.23488
C	-3.54845	-2.53645	-0.36427	ŀ	4	-8.19940	0.17795	2.89202
c	-1 36069	-1 52838	-0 56664	(-	9.32830	-2.54215	0.98324
н	-0 73832	-0.69352	-0.86724	(~	9.57906	-1.06420	-1.00776
C	0.03905	3 42743	0 74899	(~	-9.32831	-2.54216	-0.98315
Ċ	0 77370	Δ 33742	_1 <u>4</u> 3783	(~	-9.57909	-1.06414	1.00779
с н	1/5/67	4.557 4 2 1.06567	-0 86088	c c	- ר	-9 87363	-3 15056	-1 88371
\hat{c}	-1 520/7	-3 80001	0.00900	()	้า	9 87363	_3 15051	1 88282
с µ	-1.55942	_/ 71/Q1	0.20022	((ן ר	10 31551	-0 45005	-1 76787
\hat{c}	1 9/707	-4.7 1401 1 65660	0.20424		ך ר	-10 3155/	-0 /5082	1.70207
L	-1.0 4 /U/	1.02002	-0.02132	(,	-10.51554	-0.40000	1./ 0200

Ν	-10.09474	-1.80725	-0.06811	
Ν	10.09472	-1.80727	0.06817	
С	11.54771	-1.83551	0.27023	
Н	12.00388	-1.22552	-0.50725	
Н	11.79182	-1.44250	1.26118	
Н	11.91006	-2.86584	0.21352	
С	-11.54773	-1.83549	-0.27018	
H	-12.00391	-1.22551	0.50729	
н	-11 79183	-1 44749	-1 26114	
н	-11 91007	-2 86582	-0 21348	
	11.91007	2.00502	0.21540	
144				
C	(conf1) F	neray: -2634	5205 1885973	
	-2 85783	-0 76003	_0 13028	
0	-2.03703	-0.70995	0.66832	
0	-1.02743	0.76002	0.00032	
0	2.03703	1 92040	-0.13920	
C	1.02/45	1.02049	0.00052	
	-2.83067	1.12509	1.78245	
H	-3.69474	0.95886	1.14903	
C	2.83067	-1.12570	1./8244	
Н	3.69475	-0.95886	1.14902	
C	-0.55176	-0.49569	-3.65256	
С	1.73900	-0.25038	1.67587	
С	-1.80225	-0.89144	0.71207	
С	2.32489	1.62037	-2.39320	
С	-1.73899	0.25037	1.67587	
С	-2.32489	-1.62038	-2.39319	
С	0.60240	-0.44671	2.49147	
С	1.71389	-2.36207	3.51209	
Н	1.68147	-3.18925	4.21659	
С	-1.32086	-0.66008	-2.49017	
Н	-1.13154	-0.00671	-1.64624	
С	-2.84270	2.18521	2.69552	
С	0.55175	0.49568	-3.65257	
Ċ	2.84271	-2.18521	2.69551	
Ċ	-0.84323	-1 30325	-4 75972	
H	-0 25557	-1 21322	-5 66999	
c	2 60783	2 43367	-3 51118	
c	1 32085	0.66008	-2 49017	
н	1 13154	0.00671	-1 64625	
c	-0 60230	0.00071	2 /01/7	
c	0.60239	1 50795	2.49147	
с u	0.02133	1 67420	4.02164	
п С	-0.25102	-1.07450	4.05104	
	0.84322	1.30325	-4./59/2	
П	0.25555	1.21322	-5.00998	
C	1.80226	0.89143	0./120/	
C	-2.60/84	-2.4336/	-3.5111/	
	-3.06580	-1.83449	-1.08488	
Н	-4.14/48	-1.86082	-1.24233	
Н	-2.75247	-2.78152	-0.63127	
С	3.06580	1.83448	-1.08489	
Н	4.14748	1.86081	-1.24234	
Н	2.75248	2.78151	-0.63128	

С	-1.71388	2.36206	3.51209
Н	-1.68146	3.18924	4.21660
С	-0.62134	1.50784	3.40610
Н	0.25163	1.67438	4.03164
С	1.86025	2.25362	-4.68392
Н	2.07557	2.88316	-5.54422
С	-1.86026	-2.25361	-4.68392
Н	-2.07559	-2.88316	-5.54422
С	-3.65671	-3.50157	-3.46680
С	-5.04564	-3.18662	-3.63654
С	-3.28053	-4.82384	-3.27912
С	-5.51805	-1.86446	-3.85963
С	-6.00481	-4.24667	-3.59083
С	-4.23184	-5.86271	-3.23891
Н	-2.22661	-5.05985	-3.15504
С	-6.86626	-1.60767	-4.01477
Н	-4.79833	-1.05221	-3.91256
С	-7.38456	-3.95866	-3.75408
С	-5.57731	-5.58321	-3.38840
Н	-3.92826	-6.89464	-3.08814
С	-7.80614	-2.65660	-3.96049
Н	-7.20759	-0.58979	-4.18437
Н	-8.86891	-2.46898	-4.08164
С	3.65670	3.50157	-3.46681
С	5.04563	3.18662	-3.63654
С	3.28051	4.82385	-3.27915
С	5.51804	1.86447	-3.85961
С	6.00479	4.24668	-3.59084
С	4.23182	5.86271	-3.23894
Н	2.22659	5.05985	-3.15508
С	6.86625	1.60767	-4.01474
Н	4.79833	1.05221	-3.91254
С	7.38454	3.95866	-3.75408
С	5.57729	5.58321	-3.38842
Н	3.92818	6.89460	-3.08799
С	7.80613	2.65661	-3.96047
Н	7.20758	0.58979	-4.18433
Н	8.86890	2.46899	-4.08161
С	-6.56356	-6.69155	-3.33894
С	-8.39878	-5.04563	-3.70794
С	6.56354	6.69156	-3.33896
С	8.39876	5.04564	-3.70794
0	6.24380	7.85657	-3.16680
0	-6.24383	-7.85656	-3.16676
0	-9.59200	-4.82895	-3.84150
0	9.59199	4.82897	-3.84148
Ν	7.91326	6.34809	-3.50096
Ν	-7.91328	-6.34808	-3.50095
С	-8.87407	-7.45585	-3.44815
Н	-9.87019	-7.03958	-3.58633
Н	-8.64731	-8.18113	-4.23467
Н	-8.79976	-7.96514	-2.48322
С	8.87404	7.45586	-3.44817

Н	9.87017	7.03959	-3.58632
Н	8.64730	8.18112	-4.23471
Н	8.79972	7.96517	-2.48325
С	4.00217	-3.11795	2.74460
С	4.70592	-3.40160	3.96453
С	4.41049	-3.73814	1.56998
С	4.42101	-2.76238	5.20236
С	5.77881	-4.34968	3.93454
Ċ	5.47387	-4.65840	1.54950
Н	3.87120	-3.52800	0.65000
C	5.12855	-3.07190	6.34734
Н	3.64119	-2.00850	5.24088
C	6.48756	-4.65644	5.12556
Ċ	6.14635	-4.97329	2.71562
H	5,77467	-5.14685	0.62724
C	6.16040	-4.03003	6.31513
н	4 89352	-2 56718	7 28086
C	7 59708	-5 64721	5 11938
c	7 25375	-5 96002	2 67247
н	6 7 7 2 9 9 9 9	-4 28596	7 20802
$^{\prime\prime}$	8 21454	-5 93895	6 13060
N	7 00/7/	-6.23750	3 88738
\cap	7 60337	-6.51077	1 64560
c	8 00356	-7.21013	2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
с ц	0.20202	-7.21913	1 0 2 0 2 0
	9.59505	-7.33300	4.02039
	0.01179	-0.17510	2.44047 2.12601
п С	9.77007	-0.07024	274461
C	-4.00210	3.11/94	2.74401
C	-4./0590	3.40159	3.90454
C	-4.41048	3./3814	1.56999
C	-4.42099	2.76238	5.20237
C	-5.//8/9	4.34967	3.93456
C	-5.4/386	4.65840	1.54952
H	-3.8/119	3.52/99	0.65001
C	-5.12853	3.0/189	6.34/36
H	-3.64118	2.00850	5.24089
C	-6.48/54	4.65644	5.12558
C	-6.14633	4.9/329	2./1564
Н	-5.//466	5.14685	0.62/26
C	-6.16038	4.03003	6.31515
Н	-4.89350	2.56718	7.28088
C	-7.59706	5.64720	5.11940
С	-7.25374	5.96002	2.67249
Н	-6.72297	4.28595	7.20804
0	-8.21451	5.93895	6.13062
Ν	-7.90472	6.23749	3.88240
0	-7.60336	6.51977	1.64571
С	-8.99354	7.21914	3.82280
Н	-9.39381	7.33388	4.82841
Н	-8.61177	8.17310	3.44850
Н	-9.77066	6.87024	3.13684

134			
C _{Br2} E	_{aγ₂} Energy:-	-5433859.73	05435
0	2.60718	1.63600	1.35218
0	2.01021	2.49269	-0.65205
0	-2.60718	1.63601	-1.35218
Õ	-2.01021	2 49269	0.65205
ĉ	1 32743	3 56305	2 74165
н	2 06518	2 92352	3 21011
Ċ	-1 32744	3 56306	-2 7/165
ц	-2.06510	2 02353	-3 21011
Ċ	-2.00519	-1 87560	-3.21011
Ċ	1 1 1 0 1 1	2 46609	1 25750
Ċ	1 02204	3.40090 3.50971	-1.55750
Ċ	1.95204	2.30671	0.33390
C	-2.81400	-0.00054	-0.34085
C	1.11011	3.40098	1.35/51
C	2.81460	-0.60654	0.34082
C	-0.14223	4.28/74	-0./3664
(0.33789	5.30953	-2.90128
Н	0.89508	6.02598	-3.496/6
C	1.42526	-0.69926	0.35887
Н	0.84753	0.15855	0.68135
С	0.60818	4.47832	3.49921
С	-0.74116	-1.87569	-0.01396
С	-0.60818	4.47833	-3.49920
С	1.50440	-3.00699	-0.30593
Н	1.01446	-3.93279	-0.59666
С	-3.57631	-1.74923	-0.00731
С	-1.42526	-0.69926	-0.35888
Н	-0.84753	0.15855	-0.68135
С	0.14223	4.28774	0.73665
С	0.55963	5.20360	-1.53113
Н	1.30575	5.83979	-1.06261
С	-1.50440	-3.00699	0.30591
Н	-1.01446	-3.93280	0.59664
С	-1.93284	2.50871	-0.55598
С	3.57631	-1.74923	0.00730
С	3.49183	0.70706	0.69556
Н	4.31102	0.54531	1.40236
Н	3.89030	1.19098	-0.20118
C	-3.49183	0.70706	-0.69556
Н	-4.31102	0.54532	-1.40236
н	-3.89030	1,19098	0.20118
Ċ	-0 33789	5 30952	2 90129
н	-0.89508	6.02597	3 49677
Ċ	-0 55963	5 20359	1 53114
н	-1 30575	5 83078	1.06262
Ċ	-2 80511	-2 03052	0.20403
с ц	-2.09511	-2.95952	0.29403
C	-3.47000 2 80511	-2 02022	-U 20102
с Ц	2.07211 2 17600	-2.227277 _2 01021	-0.29403
n C	3.4/00U _5 06770	-2.01221 _1 71612	10,55501 0 0 0 1 7
C C	5 700/70	-1./4042 265010	0.02017
	-3./9043	-2.03010	-0./0/33
C	-2./9139	-0.0/039	0.03154

С	-7.18431	-2.69165	-0.73459	С	9.54262	-3.57240	-2.06543
Н	-5.25038	-3.33899	-1.42132	Ν	11.52363	-1.07298	0.75213
С	-7.18536	-0.90819	0.88745	С	9.71368	-0.13597	1.79610
Н	-5.25841	-0.18474	1.50040	В	12.41539	-1.91950	-0.19949
С	-7.89887	-1.81493	0.09245	С	11.81636	-3.58158	-2.07343
H	-7.72528	-3.40044	-1.35715	Ċ	10.66276	-4.12130	-2.68109
н	-7 72664	-0.23110	1 54405	C	8 12481	-3 89867	-2 43264
Ċ	-9 39320	-1 84909	0 12870	C	11 98311	-0.23218	1 69784
c	-10.04356	-2 67724	1 05963	C	10 88564	0.25210	2 35799
c	-10 12466	-1 05265	-0 76958	C	8 33113	0.25618	2.337.33
N	-11 //1/3	-2 72184	1 10782	F	13 22037	-1.08126	_0 07700
C	0 5 4 2 6 1	2 572104	2.06541	F	12 21510	2 70571	0.5/196
C N	11 5 2 6 2	-3.37242	2.00341	ſ	12 25041	-2./95/1	0.04100 1 20216
	-11.52505	-1.07298	-0.75212		13.25041	-3.83927	-2.30320
	-9.71369	-0.13596	-1./9609	н	10.66251	-4.84105	-3.49033
B	-12.41539	-1.91950	0.19949	н	7.56450	-4.31417	-1.58/58
C	-11.81636	-3.58160	2.07343	Н	7.57217	-3.01534	-2.//203
C	-10.66275	-4.12131	2.68108	Н	8.11340	-4.63581	-3.24189
C	-8.12480	-3.89868	2.43262	С	13.44150	-0.02172	1.93956
С	-11.98311	-0.23217	-1.69782	Н	10.95668	1.07941	3.16509
С	-10.88564	0.36015	-2.35798	Н	7.75429	0.70020	1.40865
С	-8.33113	0.25620	-2.22792	Н	7.75355	-0.60114	2.59186
F	-13.22037	-1.08126	0.97801	Н	8.39149	0.99124	3.03692
F	-13.21510	-2.79571	-0.54186	Н	13.76438	-2.93248	-2.66196
С	-13.25040	-3.85928	2.38325	Н	13.76236	-4.24497	-1.49448
Н	-10.66250	-4.84167	3.49033	Н	13.33678	-4.58352	-3.19740
Н	-7.56449	-4.31418	1.58756	Н	13.92465	-0.97188	2.19358
Н	-7.57217	-3.01536	2.77202	Н	13.92828	0.34203	1.02768
Н	-8.11339	-4.63583	3.24187	Н	13.59958	0.69593	2.74878
С	-13.44150	-0.02171	-1.93954	Br	0.92479	4.60503	5.36895
Н	-10.95669	1.07943	-3.16508	Br	-0.92479	4.60505	-5.36894
Н	-7.75429	0.70020	-1.40865				
Н	-7.75355	-0.60113	-2.59186	216			
н	-8 39150	0.99125	-3 03691	C _{RV} .	Energy	-3547998 64	55443
н	-13 76437	-7 93749	2 66196		-2 88078	-0 51174	0 15360
н	-13 76236	-4 74498	1 49448	0	-1 10672	_1 73763	1 01 21 8
н	-13 33677	-4 58354	3 10730	0	-1.19072	-1.75705	0.15260
Ц	12 02/65	0 07197	2 10256	0	2.00970	1 72762	1 01 21 7
ц	12 07979	0.37107	1 02766	0 C	1.19072	1.75705	1.01217
	-13.92020	0.54204	-1.02700		-2.71620	1.37324	
п С	-15.59959	0.09594	-2.74670	H	-3.58990	1.27157	1.45304
C	5.06770	-1.74042	-0.02018	C	2.71620	-1.3/324	2.08685
C	5.79043	-2.65818	0.76752	Н	3.58991	-1.2/15/	1.45303
C	5./9139	-0.8/539	-0.85155	C	-0.59693	-0.43955	-3.35/83
C	7.18431	-2.69165	0./3458	C	1.70542	-0.40612	1.98612
Н	5.25037	-3.33900	1.42131	С	-1.86950	-0.73093	1.03018
С	7.18536	-0.90819	-0.88746	C	2.44036	1.44274	-2.08747
Н	5.25841	-0.18473	-1.50040	С	-1.70542	0.40612	1.98612
С	7.89887	-1.81493	-0.09246	C	-2.44036	-1.44275	-2.08747
Н	7.72528	-3.40045	1.35714	С	0.56208	-0.49638	2.81205
Н	7.72664	-0.23109	-1.54405	С	1.51179	-2.49756	3.83011
С	9.39320	-1.84909	-0.12871	Н	1.40965	-3.31585	4.53863
С	10.04357	-2.67724	-1.05963	С	-1.34816	-0.58381	-2.18063
С	10.12466	-1.05266	0.76958	Н	-1.08425	0.02113	-1.32160
Ν	11.44143	-2.72183	-1.10782	С	-2.64278	2.43065	3.00069

С	0.59693	0.43955	-3.35783	F	10.81681	7.61320	-4.28772
С	2.64279	-2.43066	3.00069	С	9.06086	9.95700	-5.33925
С	-1.01016	-1.15573	-4.48976	Н	6.33063	9.26338	-6.31518
Н	-0.44589	-1.08737	-5.41638	н	5.03270	5.86697	-5.79583
С	2.84426	2.16852	-3.23098	н	4.32204	6.80519	-4.49017
Ċ	1.34815	0.58380	-2.18064	Н	4.45941	7.51475	-6.10802
H	1.08425	-0.02114	-1.32160	C	11.85684	6.63021	-1.52286
C	-0.56208	0.49638	2.81205	H	10.63560	4,14088	-0.42722
Ċ	0.49897	-1.54977	3.73319	Н	7.02438	3.58627	-0.79448
H	-0.37777	-1.63465	4.36985	Н	7,73839	2.65316	-2.10325
c	1 01016	1 1 5 7 3	-4 48976	н	8 52244	2 68103	-0 51411
H	0 44589	1 08737	-5 41638	н	9 30261	10 48747	-4 41138
c	1 86950	0 73093	1 03018	н	10,00650	9 56473	-5 72998
c	-2 84426	-2 16853	-3 23098	н	8 63123	10 65826	-6.05929
c	-3 18975	-1 57388	-0 77155	н	12 30143	6 7 2 6 2 0	-7 47457
н	-// 27069	-1 51810	-0.031/12	н	11 68035	7 64868	-1 15/181
н	-2 95/01	-2 52610	-0.28684	н	12/177/0	6 08181	_0 200/1
Ċ	3 18075	1 57388	-0.20004	C II	-4 01174	-3 00682	-0.00941
ц	1 27060	1.57500	-0.77133	C	-5.06048	-2.09002	-3.22910
ц	2 05/01	2 5 2 6 1 0	-0.93142	C	-4.08503	-2.91440	-7.25/27
\hat{c}	-1 51178	2.32010	3 83011	C	-6 14697	-4.19303	-2.55457
L L	1 40064	2.49750	1 52962		5 02622	-3.76050	4.10100
п С	-1.40904	3.31365	4.33002	n C	-3.02032	-2.00901	-4.03022 2.20002
С Ц	-0.49897	1.54977	3./3319		-5.10909	-5.00987	-2.38892
п С	0.3////	1.03404	4.30984	П	-3.27070	-4.38214	-1.00909
	2.12157	1.99170	-4.42201		-0.21555	-4.8/01/	-3.30120
	2.42308	2.554/5	-5.30235		-0.95159	-3.02300	-4.89481
	-2.12158	-1.99170	-4.42200	П	-5.20332	-5.91/74	
п С	-2.42509	-2.554/4	-5.50255	C	-7.37920	-5.81407	-3.33/03
C	4.01173	3.09681	-3.22918	C	-7.32587	-6.95120	-4.1011/
C	5.06047	2.91448	-4.14637	C	-8.50921	-5.54360	-2.54554
C	4.08502	4.19363	-2.35437	N	-8.40554	-7.84038	-4.2064/
C	6.14687	3./8830	-4.18166	C	-6.31328	-7.44728	-5.05154
H	5.02632	2.06961	-4.83021	N	-9.60847	-6.40896	-2.56657
C	5.16968	5.06987	-2.38892	C	-8.81138	-4.47541	-1.63428
Н	3.2/0/5	4.38214	-1.65909	В	-9./3352	-/./103/	-3.40823
C	6.21532	4.87617	-3.30127	С	-8.11257	-8.83746	-5.06205
Н	6.95159	3.62559	-4.89481	С	-6.82557	-8.61919	-5.59834
Н	5.20331	5.91774	-1.70881	С	-4.96391	-6.87658	-5.37548
C	7.37919	5.81407	-3.33703	C	-10.55186	-5.93507	-1.73118
С	7.32586	6.95120	-4.16118	C	-10.08511	-4.74094	-1.14186
С	8.50920	5.54360	-2.54554	C	-7.97885	-3.28950	-1.24402
Ν	8.40553	7.84038	-4.20647	F	-9.89955	-8.81469	-2.56591
С	6.31327	7.44728	-5.05155	F	-10.81681	-7.61319	-4.28773
Ν	9.60846	6.40896	-2.56657	C	-9.06087	-9.95700	-5.33924
С	8.81137	4.47542	-1.63427	Н	-6.33063	-9.26339	-6.31517
В	9.73351	7.71037	-3.40823	Н	-5.03270	-5.86697	-5.79582
С	8.11256	8.83745	-5.06206	Н	-4.32204	-6.80519	-4.49016
С	6.82556	8.61918	-5.59835	Н	-4.45941	-7.51476	-6.10801
С	4.96390	6.87657	-5.37549	C	-11.85685	-6.63020	-1.52287
С	10.55185	5.93508	-1.73118	Н	-10.63561	-4.14087	-0.42723
С	10.08510	4.74095	-1.14185	Н	-7.02439	-3.58627	-0.79448
С	7.97884	3.28951	-1.24401	Н	-7.73840	-2.65315	-2.10326
F	9.89954	8.81469	-2.56591	Н	-8.52245	-2.68103	-0.51412

Н	-9.30263	-10.48747	-4.41137	C	-5.41198	4.83986	2.02109
Н	-10.00650	-9.56473	-5.72998	Н	-4.09445	3.51414	0.96381
Н	-8.63124	-10.65826	-6.05928	C	-5.79558	5.37035	3.26014
Н	-12.39144	-6.72619	-2.47458	Н	-5.42741	5.32327	5.38313
Н	-11.68936	-7.64867	-1.15481	Н	-5.90923	5.18120	1.11623
Н	-12.47741	-6.08180	-0.80942	С	-6.88650	6.38860	3.34934
C	3,72732	-3.44064	3.09050	Ċ	-6.56811	7,75379	3.24737
Ĉ	4,11817	-3.97728	4.32902	Ċ	-8.21424	5.96491	3,53366
Ċ	4 39402	-3 89138	1 93839	N	-7 57636	8 72094	3 32717
c	5 13509	-4 92689	4 41361	C	-5 31871	8 43867	3.06371
н	3 63807	-3 62943	5 24043	N	-9 24840	6 90352	3 62040
c	5.05007	-// 83086	2 02100	C	-8 70736	4 65866	3 66304
ц	1 00111	-3 51/15	0.06381	B	-0.00352	8 44786	3 5 2 9 2 9
\hat{c}	5 70558	-5 37035	3 26013	C	-7.03332	0.44700	3 20368
с ц	5.79550	-5.57055	5.20015	C	-7.02012	9.94001	2 02064
	5.42742	-3.32327	1 11672	C	-3.02013	9.79510	2.02904
п С	5.90925	-5.10121	1.11025	C	-3.93449	/.0//4/	2.92000
C	0.88051	-0.38860	3.34934	C	-10.41390	0.25233	3./9305
Ć	6.56812	-7.75379	3.24/3/	C	-10.16398	4.86396	3.82368
C	8.21424	-5.96491	3.53364	C	-8.13655	3.31169	3.63931
N	/.5/63/	-8./2094	3.32/18	F	-9.82136	8.94181	2.44151
C	5.318/2	-8.43867	3.06373	F	-9.53/66	9.04/46	4./1259
N	9.24841	-6.90352	3.62038	C	-7.82843	11.19539	3.24617
С	8.79737	-4.65866	3.66302	Н	-4.92362	10.61080	2.91691
В	9.09353	-8.44786	3.52929	H	-3.63829	7.28215	3.79182
С	7.02013	-9.94061	3.20370	Н	-3.84203	7.22255	2.04717
С	5.62614	-9.79518	3.03966	Н	-3.21461	8.69451	2.80846
С	3.93450	-7.87748	2.92090	C	-11.71767	6.96859	3.92343
С	10.41391	-6.25233	3.79362	Н	-10.91818	4.09658	3.95082
С	10.16399	-4.86395	3.82365	Н	-7.60034	3.13103	2.70094
С	8.13656	-3.31169	3.63928	Н	-7.40411	3.19647	4.44625
F	9.82136	-8.94181	2.44150	Н	-8.89212	2.52784	3.75430
F	9.53768	-9.04744	4.71259	Н	-8.58602	11.18531	2.45451
С	7.82844	-11.19539	3.24619	Н	-8.37043	11.26514	4.19599
Н	4.92363	-10.61080	2.91695	Н	-7.18720	12.07253	3.12659
Н	3.63830	-7.28215	3.79184	Н	-11.68833	7.65826	4.77447
Н	3.84203	-7.22256	2.04719	Н	-11.90499	7.57931	3.03309
Н	3.21462	-8.69451	2.80849	Н	-12.53741	6.25803	4.05765
С	11.71769	-6.96858	3.92340				
Н	10.91819	-4.09657	3.95078	18	0		
Н	7.60034	-3.13103	2.70091	C	Eneray:	-3091600.81	70855
Н	7.40411	-3.19647	4.44622	0	2,72797	-1.08186	0.45054
н	8.89212	-2.52784	3.75426	Ő	1 93255	0.85157	1 30854
н	8 58603	-11 18532	2 4 5 4 5 3	Ő	-2 72799	1 08242	0 44883
н	8 37045	-11 26513	4 19601	0	-1 93274	-0.84981	1 30969
н	7 18721	-12 07253	3 12662	C	1.53274	-2 59509	2 38006
н	11 68835	-7 65825	4 77444	Ц	2 372/1/	-2.99909	1 73065
н	11 90500	-7 57031	3 03306	C II	-1 58570	2.57001	1.75905
Ц	12 53742	-6 25802	1 05761	L L	-1.50570	2.39030	1 72510
\hat{c}	12,JJ/42 _2 77721	3 11061	3 00050		-2.3/249	2.30033 0.05200	2 06 272
Ċ	-2.72721 _7 11012	2 07770	7.02020		U./ JOYZ	U.UJ/88 1 34344	-2.002/2
C	-4.11010 1 20102	2.7//20 2.00120	4.JZYUZ 1.02040		-1.23831	1.24244	2.2/930
C	-4.394UZ	2.07120	1.93840	C	1.9/660	-0.35851	1.52455
	-2.13208	4.92089	4.41301	C	-2.8346/	0.05460	-1./9309
н	-3.63805	3.02943	5.24043	C	1.23816	-1.23930	2.28120

С	2.83474	-0.05727	-1.79285	C	-11.55434	-3.24043	-4.76116
С	-0.21588	0.72052	3.10293	C	-10.34613	-3.73538	-5.29677
С	0.03746	2.92374	4.11620	С	-7.84512	-3.23727	-5.07580
Н	0.55503	3.56882	4.82160	С	-12.09358	0.52000	-1.43890
С	1.45402	-0.21329	-1.88540	С	-11.06671	1.28873	-0.85085
н	0.91129	-0.58848	-1.02618	С	-8.51169	1.40879	-0.95256
C	0.96493	-3.45231	3.29470	F	-13.06044	-2.27121	-2.26752
Ĉ	-0.73879	-0.06243	-3.06267	F	-13.20413	-0.77085	-3.99318
Ĉ	-0.96510	3.45688	3.28970	C	-12.95075	-3.69133	-5.03724
Ĉ	1.46694	0.44878	-4.19500	H	-10.26592	-4.54523	-6.01197
Ĥ	0.95095	0.68662	-5.12174	Н	-7.36993	-2.34323	-5.49485
C	-3.55986	-0.35057	-2.93649	Н	-7.26260	-3.51725	-4.19081
Ċ	-1.45394	0.21047	-1.88578	Н	-7.75393	-4.04469	-5.80938
H	-0.91126	0.58692	-1.02709	C	-13.56887	0.61928	-1.23098
C	0 21570	-0 71620	3 10397	н	-11 21739	2 09036	-0 13775
c	0 39962	1 58437	4 01814	н	-7 85687	0.65275	-0 50445
н	1 19466	1 19670	4 64961	н	-7 97266	1 82370	-1 81185
Ċ	-1 46674	-0.45499	-4 19441	н	-8 65193	2 21171	-0.22174
н	-0.95071	-0 69419	-5 12077	н	-13 43621	-4 01172	-4 10855
c	-1 97673	0.36030	1 32392	н	-13 54673	-2 86001	-5 43031
Ċ	3 55008	0.30030	-2 03681	н Н	-12.05602	-2.00001	-5 75505
Ċ	3 54245	-0.33875	-2.95001	н Н	-14 07334	0.81864	-2 18310
L L	7 4242	-0.33073	0.63680		12 06/55	0.31304	-2.10310
и Ц	2 94520	-0.93720	-0.03089		12 90620	1 / 1 2 9 1	-0.80130
C C	2 5 4 2 4 6	0.39401	0.00397	п С	-13.00029	0.52000	2 02524
с ц	-3.54240	0.55602	-0.47020	C	5.04140	0.52000	-2.95554
	-4.45059	0.95050	-0.03654	C	5.050 4 0 5.69163	-0.19056	-3.05032
п С	-3.64340	-0.59462	4 1 2 0 2 5	C	2.00100	1.41575	-2.002/9
	-0.05709	-2.91797	4.12055		7.22037	-0.02136	-3.00327
п С	-0.55534	-3.30203	4.82003	П	2.30218	-0.89229	-4.55241
	-0.39984	-1.5/8/3	4.02040	C U	7.00534	1.58/90	-2.09/14
H	-1.19491	-1.19017	4.65127	Н	5.08894	2.00773	-1.36972
C	-2.85175	-0.58123	-4.12/00	Ľ	7.85194	0.86910	-3.00695
H	-3.40410	-0.90175	-5.00/36	н	7.81859	-0.58612	-4.59646
C	2.85194	0.57512	-4.12//0	Н	7.54083	2.29254	-1.41890
H	3.40434	0.89435	-5.00850	C	9.33553	1.05141	-3.04229
C	-5.04127	-0.52434	-2.93484	C	9.89053	2.04607	-3.86557
C	-5.83631	0.18493	-3.85087	C	10.15225	0.22445	-2.25141
C	-5.68155	-1.41883	-2.06103	N	11.2/688	2.23145	-3.91038
C	-7.22020	0.01569	-3.88565	C	9.29256	3.00230	-4./5565
H	-5.36197	0.88566	-4.53395	N	11.54270	0.37888	-2.27245
C	-7.06526	-1.59107	-2.09520	C	9.84486	-0.84264	-1.34048
Н	-5.08890	-2.00982	-1.36708	В	12.33607	1.41879	-3.11324
С	-7.85181	-0.87352	-3.00607	C	11.55454	3.23347	-4.76531
Н	-7.81838	0.57941	-4.59767	C	10.34635	3.72764	-5.30168
Н	-7.54078	-2.29467	-1.41596	C	7.84534	3.22986	-5.08010
С	-9.33541	-1.05588	-3.04121	C	12.09364	-0.52212	-1.43755
С	-9.89037	-2.05173	-3.86308	C	11.06674	-1.28999	-0.84842
С	-10.15215	-0.22776	-2.25158	C	8.51173	-1.41020	-0.95007
Ν	-11.27671	-2.23717	-3.90768	F	13.06055	2.26787	-2.27022
С	-9.29236	-3.00925	-4.75174	F	13.20428	0.76499	-3.99368
Ν	-11.54261	-0.38222	-2.27246	C	12.95096	3.68396	-5.04198
С	-9.84481	0.84066	-1.34220	Н	10.26618	4.53645	-6.01806
В	-12.33593	-1.42336	-3.11176	Н	7.37016	2.33521	-5.49787

Н	7.26278	3.51111	-4.19554
Н	7.75417	4.03621	-5.81484
С	13.56892	-0.62109	-1.22942
Н	11.21739	-2.09057	-0.13415
Н	7.85690	-0.65352	-0.50308
Н	7.97273	-1.82634	-1.80879
н	8.65194	-2.21207	-0.21810
Н	13.43639	4.00567	-4.11374
Н	13.54695	2.85208	-5.43385
н	12 95626	4 50726	-5 76098
н	14 07343	-0.82184	-2 18122
н	13 96458	0 33221	-0.86138
н	13,80631	-1 41457	-0 51608
Ċ	1 33194	-4 89458	3 33686
c	1.55154	-5 5/810	4 55250
c	1.75009	-5 63175	7 15008
c	1.27 900	4 97002	5 70161
c	1.09430	-4.87003	J.79101 4 51642
Ċ	2.010/3	-0.95059	4.31043
	1.57000	-7.00624	2.13349
П С	0.97035	-5.130/8	1.24311
C II	2.28036	-5.54616	6.93234
H	1./2416	-3./9899	5.83443
C	2.40771	-7.62540	5./031/
C	1.93106	-7.66597	3.29562
H C	1.51885	-7.57415	1.20949
C	2.52927	-6.93191	6.89433
н	2.40097	-5.00442	7.86691
H C	2.83023	-7.47740	7.78378
C	-1.33211	4.89917	3.329/5
C	-1./3003	5.55504	4.54411
C	-1.28041	5.03409	2.15187
C	-1.89365	4.87920	5./84/3
C	-2.01849	6.95736	4.50556
C	-1.5//32	7.00906	2.12324
H	-0.97145	5.13853	1.23551
C	-2.2/930	5.55692	6.92473
H	-1./234/	3.80824	5.82922
C	-2.40687	7.63276	5.69173
C	-1.93149	7.67212	3.28392
H	-1.51949	/.5/459	1.19/92
C	-2.52832	6.94267	6.88451
Н	-2.39944	5.01640	7.86008
Н	-2.82909	7.49053	7.77270
C	-2.22178	9.12793	3.22434
0	-2.15367	9.76445	2.18532
Ν	-2.58254	9.74343	4.43452
C	2.69947	-9.08392	5.69073
0	3.02397	-9.69126	6.69818
Ν	2.58334	-9.73674	4.45244
С	-2.69680	9.08956	5.66903
0	-3.02251	9.71526	6.66498
С	2.22268	-9.11998	3.24636
0	2.15966	-9.77463	2.21813

С	2.86315	-11.17548	4.38672
Н	1.98240	-11.70734	4.01616
Н	3.68967	-11.36166	3.69506
Н	3.12024	-11.51085	5.38976
С	-2.87473	11.18120	4.43261
Н	-3.90036	11.35203	4.77181
Н	-2.19825	11.69750	5.11944
Н	-2.74184	11.54642	3.41592

References

- [1] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, n.d.
- [2] G. Pescitelli, T. Bruhn, *Chirality* **2016**, *28*, 466–474.
- [3] T. Bruhn, A. Schaumlöffel, Y. Hemberger, G. Bringmann, Chirality 2013, 25, 243–249.

NMR, IR and HR-ESI-MS spectra

¹H-NMR spectrum of **5** in CD₂Cl₂

HR-ESI-MS spectrum of 5

HR-ESI-MS spectrum of 3

HR-ESI-MS spectrum of 1

HR-ESI-MS spectrum of CBr2Boc2

¹**H-NMR** spectrum of C_{Br2l2} in CD_2Cl_2

$\textbf{COSY} \text{ spectrum of } \textbf{C}_{\textbf{Br212}} \text{ in } \textbf{CD}_2 \textbf{Cl}_2$

HMBC spectrum of C_{Br212} in CD_2CI_2

FT-IR spectrum of C_{Br2l2} (neat)

HR-ESI-MS spectrum of CBr212

$^1\text{H-NMR}$ spectrum of NI-Br in CD_2Cl_2

HR-ESI-MS spectrum of NI-Br

$^1\text{H-NMR}$ spectrum of NI-BPin in CD_2Cl_2

HR-ESI-MS spectrum of NI-BPIN

S68

¹**H-NMR** spectrum of **BY-Br** in CD_2CI_2

HR-ESI-MS spectrum of BY-Br

¹**H-NMR** spectrum of **BY-BPin** in CD_2CI_2

HR-ESI-MS spectrum of BY-BPin

$^1\text{H-NMR}$ spectrum of $\textbf{C}_{\text{Br2Naph2}}$ in CD_2Cl_2

 $\textbf{COSY} \text{ spectrum of } \textbf{C}_{\textbf{Br2Naph2}} \text{ in } \textbf{CD}_2\textbf{CI}_2$

HMBC spectrum of $C_{Br2Naph2}$ in CD_2CI_2

FT-IR spectrum of **C**_{Br2Naph2}(neat)

HR-ESI-MS spectrum of CBr2Naph2

High Resolution Mass Spectrometry Report

$^1\text{H-NMR}$ spectrum of $\textbf{C}_{\texttt{Naph4}}$ in THF-d8

 $\textbf{COSY} \text{ spectrum of } \textbf{C}_{\textbf{Naph4}} \text{ in THF-d8}$

HMBC spectrum of C_{Naph4} in THF-d8

HR-ESI-MS spectrum of C_{Naph4}

¹**H-NMR** spectrum of C_{Br2NI2} in CD_2CI_2

¹³**C-Dept** spectrum of C_{Br2NI2} in CD_2CI_2

---- 53.84 CD2Cl2

HMQC spectrum of C_{Br2NI2} in CD_2CI_2

NOESY spectrum of C_{Br2NI2} in CD_2CI_2

FT-IR spectrum of C_{Br2NI2} (neat)

HR-ESI-MS spectrum of CBr2NI2

High Resolution Mass Spectrometry Report

¹**H-NMR** spectrum of C_{NI4} in CD_2CI_2

 $^{13}\text{C-Dept}$ spectrum of \textbf{C}_{NI4} in CD_2CI_2

140 1125 1120 1125 1120 1115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 fl(prom)

 $\textbf{COSY} \text{ spectrum of } \textbf{C}_{\textbf{NI4}} \text{ in } \text{CD}_2\text{Cl}_2$

HMQC spectrum of C_{NI4} in CD_2Cl_2

NOESY spectrum of C_{NI4} in CD_2CI_2

FT-IR spectrum of C_{NI4} (neat)

HR-ESI-MS spectrum of C_{NI4}

¹**H-NMR** spectrum of C_{Br2BY2} in CD_2CI_2

 $^{13}\text{C-Dept}$ spectrum of $\textbf{C}_{\texttt{Br2BY2}} in\ \text{CD}_2 Cl_2$

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 fl(ppm)

---- 53.84 CD2Cl2

¹⁹**F-NMR** spectrum of C_{Br2BY2} in CD_2CI_2

-30 -40 -50

20 10 0 -10 -20

 $^{11}\textbf{B-NMR}$ spectrum of $\textbf{C}_{\textbf{Br2BY2}}$ in CD_2Cl_2

HMQC spectrum of C_{Br2BY2} in CD_2CI_2

NOESY spectrum of C_{Br2BY2} in CD_2CI_2

FT-IR spectrum of C_{Br2BY2} (neat)

HR-ESI-MS spectrum of CBr2BY2

1 H-NMR spectrum of C_{BY4} in CD₂Cl₂

 $^{13}\text{C-Dept}$ spectrum of $\textbf{C}_{\text{BY4}}\text{in }\text{CD}_2\text{Cl}_2$

 $^{11}\text{B-NMR}$ spectrum of \textbf{C}_{BY4} in CD_2Cl_2

 $\underbrace{<}_{0.74}^{0.99}$

HMQC spectrum of C_{BY4} in CD_2CI_2

NOESY spectrum of C_{BY4} in CD_2CI_2

FT-IR spectrum of C_{BY4} (neat)

HR-ESI-MS spectrum of C_{BY4}

¹**H-NMR** spectrum of C_{N12BY2} in CD_2CI_2

7-90 f1 (ppm) 80 $^{13}\text{C-Dept}$ spectrum of $\textbf{C}_{\textbf{NI2BY2}} in \ CD_2 CI_2$

 $^{11}\textbf{B-NMR}$ spectrum of $\textbf{C_{N12BY2}}$ in CD_2Cl_2

 $\underbrace{<}_{0.73}^{0.99}$

COSY spectrum of C_{NI2BY2} in CD_2Cl_2

0 f1 (ppm)

HMQC spectrum of C_{NI2BY2} in CD_2CI_2

NOESY spectrum of C_{NI2BY2} in CD_2CI_2

FT-IR spectrum of C_{NI2BY2} (neat)

HR-ESI-MS spectrum of C_{NI2BY2}