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Abstract 

Summary: The integration of metabolomics with other omics (“multi-omics”) offers complementary insights into 
disease biology. However, this integration remains challenging due to the fragmented landscape of current 
methodologies, which often require programming experience or bioinformatics expertise. Moreover, existing 
approaches are limited in their ability to accommodate unidentified metabolites, resulting in the exclusion of a 
significant portion of data from untargeted metabolomics experiments. Here, we introduce iModMix - Integrative 
Module Analysis for Multi-omics Data, a novel approach that uses a graphical lasso to construct network modules for 
integration and analysis of multi-omics data. iModMix uses a horizontal integration strategy, allowing metabolomics 
data to be analyzed alongside proteomics or transcriptomics to explore complex molecular associations within 
biological systems. Importantly, it can incorporate both identified and unidentified metabolites, addressing a key 
limitation of existing methodologies. iModMix is available as a user-friendly R Shiny application that requires no 
programming experience (https://imodmix.moffitt.org), and it includes example data from several publicly available 
multi-omic studies for exploration. An R package is available for advanced users 
(https://github.com/biodatalab/iModMix).  

Availability and implementation: Shiny application: https://imodmix.moffitt.org. The R package and source code: 
https://github.com/biodatalab/iModMix. 

Introduction 

Integration of metabolomics with other omics modalities, such as proteomics and transcriptomics, is essential for a 
comprehensive understanding of complex biological systems and disease mechanisms. The scale and complexity of 
these so-called “multi-omics” data necessitate computational approaches for effective integration and analysis. 
However, multi-omics analysis presents several challenges. These include the need for computational tools that are 
adaptable to diverse experimental setups and data types, as well as user-friendly enough to be used without extensive 
programming experience (Jendoubi 2021). Moreover, many approaches are unable to incorporate unidentified 
metabolites, resulting in the exclusion of large portions of data from untargeted metabolomics experiments, thereby 
limiting the potential for novel discoveries. Current pathway tools often restrict the inclusion of metabolite 
identifications due to naming mismatches and inconsistent use of standard identifiers like KEGG or HMDB IDs. This 
results in exclusion of some identified metabolites which cannot be fully utilized for analysis and further narrowing 
and hindering comprehensive insights (Jendoubi 2021). 

In general, approaches for integrating metabolomics with other omics can be categorized into vertical or horizontal 
integration. Vertical integration takes multiple omics datasets as input and produces a single output, such as clustering 
assignments or a merged dataset, which no longer reflects the individual features of the original data. iClusterPlus 
(Qianxing et al. 2013) is an example of vertical integration: it takes multiple omics datasets from the same samples as 
input, extracts latent factors across omics datasets, clusters samples in latent space, and outputs the clustering 
assignments by sample. In contrast, horizontal integration utilizes multiple omics datasets in parallel while maintaining 
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the context of the original inputs. PIUmet (Benedetti et al. 2023) is an example of horizontal integration: it takes 
metabolomics and proteomics data as input, and the resulting network output contains both metabolites and proteins. 

iModMix is a horizontal integration framework that constructs network modules from two input omics datasets (e.g., 
metabolomics and proteomics, metabolomics and transcriptomics). It first uses graphical lasso to estimate a sparse 
Gaussian Graphical Model (GGM) (Friedman, Hastie, and Tibshirani 2008) for each input omics dataset. GGMs capture 
direct associations within the input omics datasets, which is an improvement over Weighted Gene Correlation Network 
Analysis (WGCNA) (Langfelder et al. 2008) module creation that includes both direct and indirect associations. Similar 
to WGCNA, a Topological Overlap Matrix (TOM) is next calculated (Yip et al. 2007), which quantifies the extent to 
which pairs of features share common neighbors. Hierarchical clustering is then performed on TOM dissimilarity (1 – 
TOM), using a dynamic tree cutoff to group related features into modules. iModMix next takes the first principal 
component of the abundances of the features in the module, called an eigenfeature (e.g., eigenmetabolites for 
metabolomics, eigenproteins for proteomics). These eigenfeatures are representative of the contents of the module, 
and they can be used in place of normal metabolite abundance or protein expression for testing for differential 
expression or association with experimental conditions. Finally, integration between omics types is achieved by 
correlating the eigenfeatures from different omics experiments. 

A major advantage of iModMix is its ability to generate network modules and their associated eigenfeatures 

independently of feature annotation. This allows iModMix to incorporate identified and unidentified metabolites into 

its results. Since this method does not rely on existing pathway databases like KEGG, it can uncover new associations 

among features. iModMix is available as an R Shiny application (https://imodmix.moffitt.org) that provides an easy to 

use graphical interface and detailed documentation for users without programming expertise, and it is available as an 

R package (https://github.com/biodatalab/iModMix). iModMix can run on standard desktop computers with at least 

8GB of RAM and a multi-core processor. The running time depends on the size and complexity of the dataset, but 

typical data sizes of 20,000 variables, the analysis can be completed in under an hour. 

Implementation 

Data Upload 

The iModMix workflow accepts two omics datasets at a time (Fig. 1A). If available, users can provide feature-level 

annotation corresponding to the input omics dataset. A separate metadata file containing sample IDs and at least one 

sample grouping column (e.g., treatment, control) are necessary for conducting PCA, heatmaps, and boxplots. Once 

uploaded, the tool scales the data by centering each feature to have a mean of zero and a standard deviation of one. 

Missing values are imputed using the k-nearest neighbors’ algorithm, or users can also provide their own imputed data 

if a different method is preferred. We provide ten datasets encompassing gene expression and metabolomics data to 

illustrate iModMix's capabilities. These datasets, from (Benedetti et al. 2023), have been formatted to meet iModMix 

specifications, with variable columns labeled as “Feature_ID” and sample columns labeled as “Samples”. These 

datasets are designed to facilitate user engagement with iModMix and are readily accessible for download on Zenodo 

(https://doi.org/10.5281/zenodo.13988161). We also provide an in-house dataset of 20 lung adenocarcinoma mouse 

samples (10 wild type, 10 knockout), with 7353 metabolomics features and 7928 protein groups, to highlight 

iModMix’s functionality in handling unidentified metabolites.  

Module Construction  

iModMix first estimates partial correlations using the glassoFast R package (Friedman, Hastie, and Tibshirani 2008) 

(Fig. 1B) to build a GGM. Next, the TOM is computed and TOM dissimilarity (1 – TOM) is used for hierarchical clustering 

(Yip et al. 2007). Modules are created using the dynamic tree cut method, specifically the ‘hybrid’ method, which 

refines assignments derived from a static cut height by analyzing the shape of each branch (Langfelder, Zhang, and 

Horvath 2008). Finally, iModMix calculates eigenfeatures for each module using the moduleEigengenes function from 

the WGCNA R package (Langfelder et al. 2008) (Fig. 1B) that are used for downstream omics analyses.  
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Figure 1: Overview of iModMix. (A) iModMix integrates transcriptomics, proteomics, metabolomics, and clinical data 

to understand biological systems comprehensively. (B) Co-expression network: The tool performs independent 

analyses of each omics dataset to identify biologically relevant modules, and it then integrates the datasets by 

correlating eigenfeatures. (C) iModMix evaluates associations between phenotype-related modules across different 

data types. (D) Results of the integrated analysis of transcriptomics and metabolomics data from normal and tumor 

samples using iModMix. The network interaction and most correlated modules are also visualized. 

 

Module Exploration 

The phenotype analysis section provides a framework for classifying phenotypes based on eigenfeatures. Users can 

upload metadata, select phenotypes of interest, and set significance thresholds for statistical tests. The module 

performs classification using Student’s t-test, comparing selected phenotypes and generating results that include t-

statistics and p-values. Significant eigenfeatures are visualized through boxplots. Additionally, users can explore 

specific modules and view associated features, PCA loading, and heatmap plots to view feature behavior across 

different phenotypes (Fig. 1C). iModMix supports pathway enrichment analysis of genes or proteins by utilizing all 

available libraries in Enrichr (Kuleshov et al. 2016). This allows users to choose their preferred library, such as KEGG, 

GO, Human Gene Atlas, or WikiPathways. 
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Multi-omics analysis 

iModMix integrates modules across omics datasets by calculating the Spearman correlation between eigenfeatures. 

iModMix then constructs an interactive network, where protein/gene modules are represented as green triangles and 

metabolite modules as yellow diamonds, with correlation coefficients shown on connecting arrows. Users can select 

the number of top multi-omics module correlations to visualize and explore detailed correlations within these modules 

through corrplots and tables. Lists of metabolites and proteins/genes within highly correlated modules are provided, 

facilitating further pathway analysis and offering insights into the relationships between different omics layers. 

Additionally, classification between features of each layer and phenotypes using t-tests and boxplots is provided, 

enabling users to visualize and identify significant differences. (Fig. 1B).  

Case-Study: ccRCC Dataset with Identified Metabolites 

We used 24 normal and 52 tumor clear cell renal cell carcinoma (ccRCC) samples (Golkaram et al. 2022; Tang et al. 

2023; Benedetti et al. 2023) as a case study. It contained 23001 genes from RNA-seq and 904 identified metabolites 

from untargeted metabolomics. Applying iModMix identified 751 gene modules and 34 metabolite modules. 

Differential expression analysis of the modules through t-test confirmed changes in metabolite abundance between 

groups recapitulated those from prior work (Benedetti et al. 2023) highlighting reduced levels of gamma-

glutamyltyrosine (module ME#BA3241, P-value: 0.0003), creatinine/C00791 (module ME#C06162 P-value: 4.2681E- 

15), xanthosine/C01762 (module ME#66628D P-value: 0.0015), docosahexaenoate (DHA; 22:6n3)/C06429 (module 

ME#904A67 P-value: 4.6906E-12), and 1-methyladenosine/C02494 (module ME#E1C62F P-value: 8.1847E-14) in 

tumors compared to normal tissue. Conversely, metabolites with increased abundance in tumors compared to normal 

tissues included proline/C00148, glutamine/C00064 (module ME#6C856F, P-value: 0.006), maltose/C00208 and 1-

methylnicotinamide/C02918 (module ME#904A67  P-value: 4.6906E-12) (Benedetti et al. 2023). The top five most 

correlated metabolomic and transcriptomic module pairs included pathways such as Inflammatory Response (P-value: 

0.0001), Protein Polyubiquitination (P-value: 0.0001), tRNA Aminoacylation For Mitochondrial Protein Translation (P-

value: 0.0084), and Sphingosine-1-Phosphate Receptor Signaling Pathway (P-value: 0.0068). The inflammatory 

response plays a crucial role in the development and prognosis of ccRCC. Research indicates that inflammation is 

involved at all stages of the disease, influencing tumor progression and treatment responses (Zhong et al. 2023).  

   

Case-Study: Lung Adenocarcinoma Dataset with Unidentified Metabolites 

Matched proteomics and metabolomics dataset was generated using two mouse models for lung adenocarcinoma 

(LUAD) (10 wild type, 10 knockout), with 7353 metabolomics features (identified and unidentified) and 7928 protein 

groups. Applying iModMix generated 412 gene modules, and 287 metabolite modules. Strong correlations were 

observed between these modules, with correlations as high as 0.93. The most correlated pair (protein module 

ME#FFDA24 with metabolite module ME#5E985E; correlation of 0.93), included 16 genes (Hsd11b1, Cavin2, Ehd2, 

Myh10, Clic5, Msn, Myo1c, Epb41l2, Pakap, Sptan1, Akap12, Cyp2b10, Cav1, Cav3, Sptbn1, Ace, Ace3, Cavin1) and 26 

metabolites, one of which was identified as gamma-linolenic acid/C06426. Pathway analysis of these 16 genes and the 

identified metabolite using MetaboAnalyst (Pang et al. 2024) revealed significant enrichment in Proteoglycans in 

cancer (P-value: 7.9492E-4) and Renin-angiotensin system (P-value: 7.9861E-4). Similarly, the third most correlated 

modules (protein module ME#FFDD25 and metabolite module ME#FFB214; correlation of 0.93) comprised 16 genes 

(Myl6, Tmod1, Vsnl1, Ppp1r14a, Aldh1a1, Myl12b, Dlc1, Tgfb1i1, Plscr4, Macf1, Pcdh18, Limch1, Lims1, Ilk, Specc1l, 

Vcl, Rasip1) and 21 metabolites, seven of which are identified metabolites (Phenylpyruvic acid/C00166, Indoleacetic 

acid/C00954, Homovanillic/C05582, Hydroxyphenyllactic acid/C03672, 4-Hydroxyphenylpyruvic/C01179, 

Deoxyuridine/C00526, Thymine/C00178). Pathway analysis using MetaboAnalyst highlighted significant enrichment in 

Phenylalanine, tyrosine and tryptophan biosynthesis (P-value: 8.0031E-4) and Focal adhesion (P-value: 8.9650E-4). 

Proteoglycans are critical in LUAD, influencing tumor progression, metastasis, and microenvironment. Their 

dysregulation impacts essential cellular processes such as epithelial-to-mesenchymal transition and cancer stemness, 

which are key to cancer cell plasticity and aggressiveness (Karagiorgou et al. 2022). Besides, focal adhesions play a 

significant role in LUAD progression by mediating cell adhesion, migration, and signaling pathways essential for 
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tumorigenesis. Studies highlight the involvement of focal adhesion kinase (FAK) in LUAD, suggesting potential 

therapeutic targets and biomarkers for this cancer type (Zhou et al. 2018). 

 

Benchmarking 

 

We benchmark iModMix to identify the optimal parameters for gene network construction using the iModMix 

algorithm. The process considers three input parameters: num_genes, num_fold, and lambda. Expression data from 

RC20 and lung adenocarcinoma mouse samples were used, and genes with the highest variance were selected, 

constrained by num_genes. To identify the best sparsity parameter (lambda), we applied five-fold cross-validation 

using the Graphical Lasso (Glasso) algorithm, which calculates a sparse Gaussian Graphical Model (GGM) for each input 

omics dataset. The Glasso model was fitted using the glassoFast function with lambda, and metrics such as the number 

of non-zero partial correlations, log-likelihood, and execution time were evaluated. Hierarchical clustering analysis was 

then used to identify gene modules. Stability was achieved in both datasets with an alpha value of 0.25 (Fig. S1A, Fig. 

S1B), allowing for efficient and accurate model evaluation across various configurations. This benchmarking process 

demonstrates that IModMix offers a refined approach to network construction by focusing on direct associations, 

making it a robust alternative to WGCNA for complex omics data. 

 

Summary: 

The iModMix pipeline provides an empirical framework for uncovering novel associations between multi-omics data, 

with the unique capability to incorporate both identified and unidentified metabolites. By generating de novo network 

modules independent of pathway databases, iModMix enables the discovery of previously unrecognized interactions 

between features. Unlike methods that rely on predefined biological functions or annotations, iModMix leverages 

feature matrices alone, making it highly adaptable to a wide range of omics combinations, including those with limited 

annotation or poorly characterized interactions. This flexibility highlights its potential for expanding multi-omics 

integration to novel and challenging datasets, advancing our understanding of complex biological systems. 
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