iScience, Volume 27

Supplemental information

Single-cell transcriptome analysis reveals

reciprocal epithelial and endothelial

cell evolution in ovarian cancer

Langchao Liang, Chaochao Chai, Anmin Liu, Aisha Shigna Nadukkandy, Sowmiya Kalaiselvan, Camilla Blunk Brandt, Wandong Zhao, Hanbo Li, Lin Lin, Jianmin Wu, and Yonglun Luo

Supplementary Information

This supplementary information file includes the following Supplementary Figures and Supplementary Tables:

- Supplementary Figure S1 to S5
- Supplementary Table S1-S4, S7-S8, S12-S14

Figure S1. Pseudo-time analysis of ovarian cancers epithelial cells, related to Figure 1

a. Pseudo-time analysis of ovarian cancers epithelial cells inferred by Monocle2. Each data point corresponds to a single cell. The colors of the data points represent pseudo time. **b.** Proportional changes of different tissue types along the ovarian cancer epithelial cell pseudotime trajectory. **c.** The proportion of ovarian cancer epithelia cell sub cluster on the pseudo-time trajectory. **d.** Feature plot displays the weights of module 3 and module 1.

Figure S2. NMF, GO and Pseudo-time analyses of epithelial subgroup cells from fallopian tube, related to Figure 2.

a. Dot plot displays the weights of NMF modules within each epithelial subgroup of the fallopian tube. **b.** The UMAP plots show fallopian tube epithelial cell, color-coded for the expression of indicated marker genes. **c.** Expression of CD44 and SRGN proteins in fallopian tubes. Images from The Human Protein Atlas. **d.** GO enrichment result of top 100 contribution genes of 8 gene modules. **e.** The heatmap shows the differentially enriched GO terms in each epithelial subgroup of the fallopian tube. **f.** Mean pathway activity scores of fallopian tubes epithelial cell sub cluster. **g.** Position of different epithelial cell sub cluster along the fallopian tubes epithelial cell pseudotime trajectory.

Figure S3. Marker and Hallmark analysis of endothelial cell clusters, related to Figure 3.

a. The UMAP plots of ovarian cancer endothelial cells, color-coded for the expression of indicated marker genes. **b.** Bubble plot displays expression patterns of selected genes across indicated clusters. **c.** Activation of Hallmark pathways (scored per cell by GSVA) in 11 endothelial cell sub clusters. **d.** Gene expression levels of top-ranking marker genes in different endothelial cell sub clusters. In this and all further heatmaps depicting marker genes, colors indicates row-wise scaled gene expression with a mean of 0 and an SD of 1 (Z scores).

Figure S4. Transcription factor and cox-ph analyses of endothelial cell clusters, related to Figure 3 and 4:

a. Heatmap of transcription factor (TF) activity in 11 endothelial cell sub clusters. **b.** Forest plot of multivariable Cox-PH regression model. Data are represented as Hazard Ratio (HR) with 95% Confidence Interval (CI).

Figure S5. Extended ligand-receptor analysis, related to Figure 5

a. EC3_Endo_ESM1 output signal pathway ligand receptor cell communication probability from EC3_Endo_ESM1 to epithelial cell sub cluster. **b.** The signaling role of each epithelial and endothelial cell cluster in HSPG (top) and TRAIL (bottom) signaling pathway network. **c.** The violin diagram shows the *ESM1* and *ANGPT2* expression in different pan-cancer endothelial cells. **d.** Expression of TGFB1 and TGFBR1 proteins in fallopian tubes. Image from The Human Protein Atlas. **e.** FTSEC3 output signal pathway intensity. Left side indicates outgoing signaling patterns, right side represents incoming signaling patterns. Color represents relative cell communication strength, with darker colors indicating greater intensity.

Table S1	Collected patients single cell I	RNA sequencing metao	lata.						
Patient_id	Stage	Tissue	Gender	Age	genotype	histological type	Inclusion criteria	hospital	Source
P1	Cancer-free	Normal Fallopian tube	Female	47	Absence	normal	surgery sample	Cedars-Sinai Medical Center	networks driving differentiation and tumorigenesis in the human fallopian tube
Р2	Cancer-free	Normal Fallopian tube	Female	35	Absence	normal	surgery sample	Cedars-Sinai Medical Center	Single-cell transcriptomics identifies gene expression networks driving differentiation and tumorigenesis in the human fallopian tube
Р3	Cancer-free	Normal Fallopian tube	Female	47	Absence	normal	surgery sample	Cedars-Sinai Medical Center	Single-cell transcriptomics identifies gene expression networks driving differentiation and tumorigenesis in the human fallopian tube
P4	Cancer-free	Normal Fallopian tube	Female	41	Absence	normal	surgery sample	Cedars-Sinai Medical Center	Single-cell transcriptomics identifies gene expression networks driving differentiation and tumorigenesis in the human fallopian tube
Р5	Cancer-free	Normal Fallopian tube	Female	33	Absence	normal	surgery sample	Cedars-Sinai Medical Center	Single-cell transcriptomics identifies gene expression networks driving differentiation and tumorigenesis in the human fallopian tube
Р5	Cancer-free	Normal Fallopian tube	Female	33	Absence	normal	surgery sample	Cedars-Sinai Medical Center	Single-cell transcriptomics identifies gene expression networks driving differentiation and tumorigenesis in the human fallopian tube
P6	Cancer-free	Normal Fallopian tube	Female	31	Absence	normal	surgery sample	Cedars-Sinai Medical Center	Single-cell transcriptomics identifies gene expression networks driving differentiation and tumorigenesis in the human fallopian tube
P6	Cancer-free	Normal Fallopian tube	Female	31	Absence	normal	surgery sample	Cedars-Sinai Medical Center	Single-cell transcriptomics identifies gene expression networks driving differentiation and tumorigenesis in the human fallopian tube
P6	Cancer-free	Normal Fallopian tube	Female	31	Absence	normal	surgery sample	Cedars-Sinai Medical Center	Single-cell transcriptomics identifies gene expression networks driving differentiation and tumorigenesis in the human fallopian tube
Ρ7	Cancer-free	Normal Fallopian tube	Female	46	Absence	normal	surgery sample	Cedars-Sinai Medical Center	Single-cell transcriptomics identifies gene expression networks driving differentiation and tumorigenesis in the human fallopian tube
Ρ7	Cancer-free	Normal Fallopian tube	Female	46	Absence	normal	surgery sample	Cedars-Sinai Medical Center	Single-cell transcriptomics identifies gene expression networks driving differentiation and tumorigenesis in the human fallopian tube
P8	Cancer-free	Normal Fallopian tube	Female	62	Absence	normal	surgery sample	Cedars-Sinai Medical Center	Single-cell transcriptomics identifies gene expression networks driving differentiation and tumorigenesis in the human fallopian tube
P9	IIIC	Omentum	Female	70-75	WT	HGSOC	surgery sample	University Hospital Leuven	A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling
P9	IIIC	Normal Omentum	Female	70-75	WT	HGSOC	surgery sample	University Hospital Leuven	A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling
P9	IIIC	Peritoneum	Female	70-75	WT	HGSOC	surgery sample	University Hospital Leuven	A pan-cancer blueprint of the heterogeneous tumor
P9	IIIC	Peritoneum	Female	70-75	WT	HGSOC	surgery sample	University Hospital Leuven	A pan-cancer blueprint of the heterogeneous tumor
PQ	IIIC	Ovarium	Famala	70.75	WT	HGSOC	euroary comple	University Hospital Leuven	A pan-cancer blueprint of the heterogeneous tumor
	me	Ovariani	T emaie	10-15			surgery sample	University Hospital Ecuven	microenvironment revealed by single-cell profiling A pan-cancer blueprint of the heterogeneous tumor
P10	IVB	Peritoneum	Female	50-55	WI	HGSOC	surgery sample	University Hospital Leuven	microenvironment revealed by single-cell profiling
P11	IVB	Peritoneum	Female	60-65	BRCA+	HGSOC	surgery sample	University Hospital Leuven	A pan-cancer blueprint of the neterogeneous tumor microenvironment revealed by single-cell profiling
P12	IVB	Peritoneum	Female	80-85	WT	HGSOC+CCC	surgery sample	University Hospital Leuven	A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling
P13	IA	Ovarium	Female	60-65	WT	HGSOC	surgery sample	University Hospital Leuven	A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling
P13	IA	Normal Ovarium	Female	60-65	WT	HGSOC	surgery sample	University Hospital Leuven	A pan-cancer blueprint of the heterogeneous tumor
							unilateral salpingo-		microenvironment revealed by single-cell profiling
P14	Cancer-free	Normal Ovarium	Female	55	Absence	normal	oophorectomy or BSO, respectively and/or hysterectomy because of benign gynecologic diseases	Women's Hospital of Zhejiang University	Single-Cell RNA Sequencing Reveals the Tissue Architecture in Human High-Grade Serous Ovarian Cancer
P15	Cancer-free	Normal Ovarium	Female	47	Absence	normal	oophorectomy or BSO, respectively and/or hysterectomy because of benign gynecologic diseases	Women's Hospital of Zhejiang University	Single-Cell RNA Sequencing Reveals the Tissue Architecture in Human High-Grade Serous Ovarian Cancer
P16	Cancer-free	Normal Ovarium	Female	46	Absence	normal	oophorectomy or BSO, respectively and/or hysterectomy because of benign gynecologic diseases	Women's Hospital of Zhejiang University	Single-Cell RNA Sequencing Reveals the Tissue Architecture in Human High-Grade Serous Ovarian Cancer
P17	Cancer-free	Normal Ovarium	Female	51	Absence	normal	unilateral salpingo- oophorectomy or BSO, respectively and/or hysterectomy because of benign gynecologic diseases	Women's Hospital of Zhejiang University	Single-Cell RNA Sequencing Reveals the Tissue Architecture in Human High-Grade Serous Ovarian Cancer
P18	Cancer-free	Normal Ovarium	Female	49	Absence	normal	unilateral salpingo- oophorectomy or BSO, respectively and/or hysterectomy because of benign gynecologic diseases hilterel enhines	Women's Hospital of Zhejiang University	Single-Cell RNA Sequencing Reveals the Tissue Architecture in Human High-Grade Serous Ovarian Cancer
P19	ШВ	Ovarium	Female	50	BRCA2+	HGSOC	ophorectomy (BSO)/hysterectomy + comprehensive staging or debulking hiltered exbinere	Women's Hospital of Zhejiang University	Single-Cell RNA Sequencing Reveals the Tissue Architecture in Human High-Grade Serous Ovarian Cancer
P20	IIB	Ovarium	Female	51	ATM/BRIP1	HGSOC	oophorectomy (BSO)/hysterectomy + comprehensive staging or debulking	Women's Hospital of Zhejiang University	Single-Cell RNA Sequencing Reveals the Tissue Architecture in Human High-Grade Serous Ovarian Cancer
P21	IC2	Ovarium	Female	41	WT	HGSOC	oophorectomy (BSO)/hysterectomy + comprehensive staging or debulking	Women's Hospital of Zhejiang University	Single-Cell RNA Sequencing Reveals the Tissue Architecture in Human High-Grade Serous Ovarian Cancer
P22	IC2	Ovarium	Female	47	WT	HGSOC	bilateral salpingo- oophorectomy (BSO)/hysterectomy + comprehensive staging or debulking	Women's Hospital of Zhejiang University	Single-Cell RNA Sequencing Reveals the Tissue Architecture in Human High-Grade Serous Ovarian Cancer
P23	ШВ	Ovarium	Female	57	BRCA1+	HGSOC	bilateral salpingo- oophorectomy (BSO)/hysterectomy + comprehensive staging or debulking	Women's Hospital of Zhejiang University	Single-Cell RNA Sequencing Reveals the Tissue Architecture in Human High-Grade Serous Ovarian Cancer
P24	IIIC	Ovarium	Female	48	WT	HGSOC	bilateral salpingo- oophorectomy (BSO)/hysterectomy + comprehensive staging or debulking hilateral or biological	Women's Hospital of Zhejiang University	Single-Cell RNA Sequencing Reveals the Tissue Architecture in Human High-Grade Serous Ovarian Cancer
P25	IC2	Ovarium	Female	53	WT	HGSOC	bilateral salpingo- oophorectomy (BSO)/hysterectomy + comprehensive staging or debulking	Women's Hospital of Zhejiang University	Single-Cell RNA Sequencing Reveals the Tissue Architecture in Human High-Grade Serous Ovarian Cancer
P26	шс	Omentum	Female	70-79	WT	HGSOC	pathologist experienced in gynaecological pathology (ASVR) and confirmed to be HGSTOC	University Hospitals Leuven	High-grade serous tubo-ovarian cancer refined with single-cell RNA sequencing: specific cell subtypes influence survival and determine molecular subtype classification
P26	шс	Peritoneum	Female	70-79	WT	HGSOC	pathologist experienced in gynaecological pathology (ASVR) and confirmed to be HGSTOC	University Hospitals Leuven	High-grade serous tubo-ovarian cancer refined with single-cell RNA sequencing: specific cell subtypes influence survival and determine molecular subtype classification

P26	IIIC	Ovarium	Female	70-79	WT	HGSOC	pathologist experienced in gynaecological pathology (ASVR) and confirmed to be HGSTOC	University Hospitals Leuven	High-grade serous tubo-ovarian cancer refined with single-cell RNA sequencing: specific cell subtypes influence survival and determine molecular subtype classification
P27	IVB	Peritoneum	Female	60-69	BRCA1+	HGSOC	pathologist experienced in gynaecological pathology (ASVR) and confirmed to be HGSTOC	University Hospitals Leuven	High-grade serous tubo-ovarian cancer refined with single-cell RNA sequencing: specific cell subtypes influence survival and determine molecular subtype classification
P28	IVB	Peritoneum	Female		WT	HGSOC+CCC	pathologist experienced in gynaecological pathology (ASVR) and confirmed mixed ovarian epithelial carcinoma consisting of clear cell and high-	University Hospitals Leuven	High-grade serous tubo-ovarian cancer refined with single-cell RNA sequencing: specific cell subtypes influence survival and determine molecular subtype classification
				80-89			grade serous components pathologist experienced in		
P29	IC1	Ovarium	Female	60-69	WT	HGSOC	gynaecological pathology (ASVR) and confirmed to be HGSTOC	University Hospitals Leuven	High-grade serous tubo-ovarian cancer refined with single-cell RNA sequencing: specific cell subtypes influence survival and determine molecular subtype classification
P30	IVB	Peritoneum	Female	80-89	WT	HGSOC	pathologist experienced in gynaecological pathology (ASVR) and confirmed to be HGSTOC	University Hospitals Leuven	High-grade serous tubo-ovarian cancer refined with single-cell RNA sequencing: specific cell subtypes influence survival and determine molecular subtype classification
P31	IIIC	Peritoneum	Female	70-79	WT	HGSOC	pathologist experienced in gynaecological pathology (ASVR) and confirmed to be HGSTOC	University Hospitals Leuven	High-grade serous tabo-ovarian cancer refined with single-cell RNA sequencing: specific cell subtypes influence survival and determine molecular subtype classification
P32	IVB	Peritoneum	Female	60-69	WT	HGSOC	pathologist experienced in gynaecological pathology (ASVR) and confirmed to be HGSTOC	University Hospitals Leuven	High-grade serous tubo-ovarian cancer refined with single-cell RNA sequencing: specific cell subtypes influence survival and determine molecular subtype classification
P33	3C	Ovarium	Female	74	Absence	HGSOC	surgery sample	Tumor Tissue Repository (BC Cancer, Victoria, BC)	Single-cell Profiles and Prognostic Impact of Tumor- Infiltrating Lymphocytes Coexpressing CD39, CD103, and
P34	3C	Ovarium	Female	54	Absence	HGSOC	surgery sample	Tumor Tissue Repository (BC Cancer, Victoria, BC)	PD-1 in Ovarian Cancer Single-cell Profiles and Prognostic Impact of Tumor- Infiltrating Lymphocytes Coexpressing CD39, CD103, and PD.1 in Ovarian Cancer
P35	3C	Ovarium	Female	68	Absence	HGSOC	surgery sample	Tumor Tissue Repository (BC	Single-cell Profiles and Prognostic Impact of Tumor- Infiltrating Lymphocytes Coexpressing CD39, CD103, and
P36	3C	Ovarium	Female	68	Absence	HGSOC	surgery sample	Tumor Tissue Repository (BC	PD-1 in Ovarian Cancer Single-cell Profiles and Prognostic Impact of Tumor- Infiltrating Lymphocytes Coexpressing CD39, CD103, and
								Tumor Tissue Repository (BC	PD-1 in Ovarian Cancer Single-cell Profiles and Prognostic Impact of Tumor-
P37	30	Ovarium	Female	70	Absence	HGSOC	surgery sample	Cancer, Victoria, BC)	Infiltrating Lymphocytes Coexpressing CD39, CD103, and PD-1 in Ovarian Cancer Single-cell Profiles and Prognostic Impact of Tumor-
P38	3C	Ovarium	Female	66	Absence	HGSOC	surgery sample	Cancer, Victoria, BC)	Infiltrating Lymphocytes Coexpressing CD39, CD103, and PD-1 in Ovarian Cancer
P39	Absence	Omentum	Female	Absence	Absence	HGSOC	surgery sample of primary debulking surgery	Brigham and Women's Hospital (BWH) and Dana-Farber Cancer Institute (DFCI)	Enhanced efficacy of simultaneous PD-1 and PD-L1 immune checkpoint blockade in high grade serous ovarian cancer
P40	Absence	Ovarium	Female	Absence	Absence	HGSOC	surgery sample	Dartmouth-Hitchcock Medical Center	Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells
P41	Absence	Ovarium	Female	Absence	Absence	HGSOC	surgery sample	Dartmouth–Hitchcock Medical Center	Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells
P42	Absence	Ovarium	Female	Absence	Absence	HGSOC	surgery sample	Dartmouth–Hitchcock Medical Center	Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells
P43	Absence	Ovarium	Female	Absence	Absence	HGSOC	surgery sample	Dartmouth–Hitchcock Medical Center	Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells
P44	Absence	Ovarium	Female	Absence	Absence	HGSOC	surgery sample	Dartmouth–Hitchcock Medical Center	Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells
P45	Absence	Ovarium	Female	Absence	Absence	HGSOC	surgery sample	Dartmouth–Hitchcock Medical Center	Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells
P46	Absence	Ovarium	Female	Absence	Absence	HGSOC	surgery sample	Dartmouth–Hitchcock Medical Center	Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells
P47	Absence	Ovarium	Female	Absence	Absence	HGSOC	surgery sample	Dartmouth–Hitchcock Medical Center	Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells
P48	Absence	Ovarium	Female	Absence	Absence	HGSOC	surgery sample	Dartmouth–Hitchcock Medical Center	Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells
P49	Absence	Ovarium	Female	Absence	Absence	Absence	surgery sample	Brigham and Women's Hospital	A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors
P50	Absence	Ovarium	Female	Absence	Absence	Absence	surgery sample	Brigham and Women's Hospital	A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors
P51	Absence	Ascites	Female	Absence	Absence	Absence	surgery sample	Brigham and Women's Hospital	A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors
P52	IIB	Ovarium	Female	61	Absence	HGSOC	surgery sample	Brigham and Women's Hospital	A multi-omic single-cell landscape of human gynecologic malignancies
P53	IIIC	Ovarium	Female	59	Absence	HGSOC	surgery sample	Brigham and Women's Hospital	a nun-ome single-cen iandscape of numan gynecologic malignancies
P54	IIIC	Peritoneum	Female	68	Absence	HGSOC	specimens were collected from IDS	Hospital District of Southwest Finland	Longitudinal single-cell RNA-seq analysis reveals stress- promoted chemoresistance in metastatic ovarian cancer
P55	IVA	Omentum	Female	54	Absence	HGSOC	Prospective HGSOC tumor specimens were collected from IDS Prospective HGSOC tumor	Hospital District of Southwest Finland	Longitudinal single-cell RNA-seq analysis reveals stress- promoted chemoresistance in metastatic ovarian cancer
P56	IIIC	Omentum	Female	62	Absence	HGSOC	specimens were collected from IDS	Hospital District of Southwest Finland	Longitudinal single-cell RNA-seq analysis reveals stress- promoted chemoresistance in metastatic ovarian cancer
P57	IVA	Omentum	Female	67	Absence	HGSOC	Prospective HGSOC tumor specimens were collected from IDS	Hospital District of Southwest Finland	Longitudinal single-cell RNA-seq analysis reveals stress- promoted chemoresistance in metastatic ovarian cancer
P57	IVA	Peritoneum	Female	67	Absence	HGSOC	specimens were collected from IDS	Hospital District of Southwest Finland	Longitudinal single-cell RNA-seq analysis reveals stress- promoted chemoresistance in metastatic ovarian cancer
P58	IIIC	Omentum	Female	62	Absence	HGSOC	Prospective HGSOC tumor specimens were collected from IDS	Hospital District of Southwest Finland	Longitudinal single-cell RNA-seq analysis reveals stress- promoted chemoresistance in metastatic ovarian cancer
P58	IIIC	Peritoneum	Female	62	Absence	HGSOC	Prospective HGSOC tumor specimens were collected from IDS	Hospital District of Southwest Finland	Longitudinal single-cell RNA-seq analysis reveals stress- promoted chemoresistance in metastatic ovarian cancer
P59	IVA	Omentum	Female	64	Absence	HGSOC	Prospective HGSOC tumor specimens were collected from IDS	Hospital District of Southwest Finland	Longitudinal single-cell RNA-seq analysis reveals stress- promoted chemoresistance in metastatic ovarian cancer
P59	IVA	Mesentery	Female	64	Absence	HGSOC	Prospective HGSOC tumor specimens were collected from IDS	Hospital District of Southwest Finland	Longitudinal single-cell RNA-seq analysis reveals stress- promoted chemoresistance in metastatic ovarian cancer
P60	IVA	Peritoneum	Female	73	Absence	HGSOC	Prospective HGSOC tumor specimens were collected from IDS	Hospital District of Southwest Finland	Longitudinal single-cell RNA-seq analysis reveals stress- promoted chemoresistance in metastatic ovarian cancer
P60	IVA	Ovarium	Female	73	Absence	HGSOC	Prospective HGSOC tumor specimens were collected from IDS	Hospital District of Southwest Finland	Longitudinal single-cell RNA-seq analysis reveals stress- promoted chemoresistance in metastatic ovarian cancer
P61	IVA	Peritoneum	Female	72	Absence	HGSOC	Prospective HGSOC tumor specimens were collected from IDS	Hospital District of Southwest Finland	Longitudinal single-cell RNA-seq analysis reveals stress- promoted chemoresistance in metastatic ovarian cancer
P61	IVA	Omentum	Female	72	Absence	HGSOC	Prospective HGSOC tumor specimens were collected from IDS	Hospital District of Southwest Finland	Longitudinal single-cell RNA-seq analysis reveals stress- promoted chemoresistance in metastatic ovarian cancer
P62	IVA	Omentum	Female	78	Absence	HGSOC	Prospective HGSOC tumor specimens were collected from IDS	Hospital District of Southwest Finland	Longitudinal single-cell RNA-seq analysis reveals stress- promoted chemoresistance in metastatic ovarian cancer
P63	IVB	Omentum	Female	67	Absence	HGSOC	Prospective HGSOC tumor specimens were collected from IDS	Hospital District of Southwest Finland	Longitudinal single-cell RNA-seq analysis reveals stress- promoted chemoresistance in metastatic ovarian cancer
P63	IVB	Peritoneum	Female	67	Absence	HGSOC	Prospective HGSOC tumor specimens were collected from IDS	Hospital District of Southwest Finland	Longitudinal single-cell RNA-seq analysis reveals stress- promoted chemoresistance in metastatic ovarian cancer
P64	IVA	Omentum	Female	74	Absence	HGSOC	Prospective HGSOC tumor specimens were collected from	Hospital District of Southwest Finland	Longitudinal single-cell RNA-seq analysis reveals stress-
							IDS		promoted enemoresistance in metastatic ovarian cancer

P65	Healthy	Normal Fallopian tube	Female	52	Absence	normal	surgery sample of female subjects of premenopausal ages	University of Michigan	Cellular heterogeneity of human fallopian tubes in normal and hydrosalpinx disease states identified using scRNA- seq
P66	Healthy	Normal Fallopian tube	Female	30	Absence	normal	surgery sample of female subjects of premenopausal ages	University of Michigan	Cellular heterogeneity of human fallopian tubes in normal and hydrosalpinx disease states identified using scRNA- seq
P67	Healthy	Normal Fallopian tube	Female	46	Absence	normal	surgery sample of female subjects of premenopausal ages	University of Michigan	Cellular heterogeneity of human fallopian tubes in normal and hydrosalpinx disease states identified using scRNA- sen
P68	Healthy	Normal Fallopian tube	Female	31	Absence	normal	surgery sample of female subjects of premenopausal ages	University of Michigan	Cellular heterogeneity of human fallopian tubes in normal and hydrosalpinx disease states identified using scRNA- seq
P69	IV	Ovarium	Female	Absence	Absence	HGSOC	surgery sample	University of Minnesota	Multiomic Analysis of Subtype Evolution and Heterogeneity in High- Grade Serous Ovarian Carcinoma
P70	IIIC	Ovarium	Female	Absence	Absence	HGSOC	surgery sample	University of Minnesota	Multiomic Analysis of Subtype Evolution and Heterogeneity in High- Grade Servue Operion Carring Carrier
P71	IVB	Ovarium	Female	Absence	Absence	HGSOC	surgery sample	University of Minnesota	Multiomic Analysis of Subtype Evolution and Heterogeneity in High- Grade Servue Operion Carring Carrier
P72	IV	Ovarium	Female	Absence	Absence	HGSOC	surgery sample	University of Minnesota	Multiomic Analysis of Subtype Evolution and Heterogeneity in High- Grade Servue Operion Carring Carrier
P73	IVA	Ovarium	Female	Absence	Absence	HGSOC	surgery sample	University of Minnesota	Multiomic Analysis of Subtype Evolution and Heterogeneity in High- Grade Serous Ovarian Carcinoma
P74	Absence	Ovarium	Female	Absence	Absence	HGSOC	surgery sample of untreated primary tumors	West China Second Hospital, Sichuan University	Identification of the immune subtype of ovarian cancer patients by integrated analyses of transcriptome and single- cell sequencing data
P75	Absence	Ovarium	Female	Absence	Absence	HGSOC	surgery sample of untreated primary tumors	West China Second Hospital, Sichuan University	Identification of the immune subtype of ovarian cancer patients by integrated analyses of transcriptome and single- cell sequencing data
P76	Absence	Ovarium	Female	Absence	Absence	HGSOC	surgery sample of untreated primary tumors	West China Second Hospital, Sichuan University	Identification of the immune subtype of ovarian cancer patients by integrated analyses of transcriptome and single- cell sequencing data
P77	Absence	Ovarium	Female	Absence	Absence	Endometrioid	surgery sample of untreated primary tumors	West China Second Hospital, Sichuan University	Identification of the immune subtype of ovarian cancer patients by integrated analyses of transcriptome and single- cell sequencing data
P78	Absence	Peritoneum	Female	Absence	Absence	HGSOC	surgery sample of untreated primary tumors	West China Second Hospital, Sichuan University	Identification of the immune subtype of ovarian cancer patients by integrated analyses of transcriptome and single- cell sequencing data
P79	Absence	Peritoneum	Female	Absence	Absence	LGSOC		West China Second Hospital, Sichuan University	Identification of the immune subtype of ovarian cancer patients by integrated analyses of transcriptome and single- cell sequencing data
P80	Absence	Relapse tumors	Female	Absence	Absence	HGSOC	surgery sample of untreated primary tumors	West China Second Hospital, Sichuan University	Identification of the immune subtype of ovarian cancer patients by integrated analyses of transcriptome and single- cell sequencing data
P81	Absence	Relapse tumors	Female	Absence	Absence	LGSOC	surgery sample of untreated primary tumors	West China Second Hospital, Sichuan University	Identification of the immune subtype of ovarian cancer patients by integrated analyses of transcriptome and single- cell sequencing data
P82	Absence	Ovarium	Female	Absence	Absence	Absence	surgery sample	Huntsman Cancer Institute, Utah, USA and at University of Helsinki, Finland	miQC: An adaptive probabilistic framework for quality control of single-cell RNA-sequencing data
P83	Absence	Ovarium	Female	Absence	Absence	Absence	surgery sample	Huntsman Cancer Institute, Utah, USA and at University of Helsinki, Finland	miQC: An adaptive probabilistic framework for quality control of single-cell RNA-sequencing data
P84	Absence	Ovarium	Female	Absence	Absence	Absence	surgery sample	Huntsman Cancer Institute, Utah, USA and at University of Helsinki, Finland	miQC: An adaptive probabilistic framework for quality control of single-cell RNA-sequencing data

in the original text is labeled as "surgery sample". tial public data pathology info d as "Absence". The In

	GSVA enrichm	ent result
Table S2	of cancerSEA g	ene set of
	module 1 and r	nodule3.
	module 1	module 3
Angiogenesis	0.418283882	0.503452342
Apoptosis	0.271375825	0.529839799
Cell Cycle	0.578523842	0.308534688
Differentiation	0.3233917	0.518811206
DNA damage	0.294293984	0.508519042
DNA repair	0.389440533	0.417034406
EMT	0.493920241	0.339786825
Hypoxia	0.379962105	0.536818506
Inflammation	-0.326905687	0.696088588
Invasion	0.527789624	0.305854316
Metastasis	0.323202576	0.53659832
Proliferation	0.364169971	0.440038584
Quiescence	-0.245442436	0.685674871
Stemness	0.389320043	0.433264862

Table S3	GO Enrichment r	esult of pseudo-time	e variable gene clu	isters.			V Tatal		V.C	V Canala			-			-	
Category	CategoryID GO	Description	PARENT_GO	LogP Enri	chment Z.	score	GeneIn Library	X.Gene InGO	eInHit 0	GOAndH tList	K.In GO	STDV GO	In (GeneID	Hits	Log.q. value.	GeneList
GO Biological Processes	19 GO:000334	1 cilium movement	19_GO:0009987 cellular process	-32	37	30	30304	178	116	25	22	:	1 3 3.8 6 2 4	17661/1770/8701/95761/25790/51 18664/53340/79645/80217/83659/ 1838531/23872/138162/1468451/ 1478/11/96382/200162/219670/2 20136/221421/257062/286207/3 15895/387885/399949	DNAH5 DNAH9 DNAH11 SPA G6 CFAP45 ZMYND10 SPA17 CLXN CFAP43 TEKT1 ROPN1 L DNAAF1 PIERCE1 CFAP52 DAW1 DNAH10 SPAG17 ENK UR CFAP53 RSPH9 CATSPER D CFAP157 RSPH4A CFAP73 UGAT2	-21	7 cluster1
GO Biological Processes	19 GO:000701	8 microtubule-based movement	19_GO:0009987 cellular process	-29	20	23	30304	388	116	29	25		1 9 3 4 6 2 9	1767 1770 7846 8701 9576 257 10[51364 53340 79645 80217 8 1657 83659 83853 123872 1381 12 146845 164781 196385 2001 22 01625 21670 22136 2214 21 257062 286207 343521 3458 15 387885 399949	NOAIEJDNAH9JTUBA1AJDN AH1JISPAG6(CFAP45/ZMYN D10§PA17(CLXN)CFAP43JDY NLRB2[TEKT1 ROPN1L]DNA AF1JPIERCE1(CFAP52]DAW11 DNAH10JSPAG17[DNAH12]E NKURCFAP53]RSPH9(CATSP ERD(CFAP157)DYNLT4 RSPH 4A(CFAP73]HOATZ	-2:	5 cluster1
GO Biological Processes	19 GO:003508	2 axoneme assembly	19_GO:0009987 cellular process	-25	49	29	30304	96	116	18	16	:	1 0 3.4 2 1 9	1767 2302 9576 51364 79645 8 2217 85478 89765 92749 12387 2138162 164781 200162 22142 1286207 345895 387885 39994 2	DNAH5 FOXJ1 SPAG6 ZMYN D10 CLXN CFAP43 CCDC65 R SPH1 DRC1 DNAAF1 PIERCE 1 DAW1 SPAG17 RSPH9 CFAP 157 RSPH4A CFAP73 HOATZ	-21	l cluster1
GO Biological Processes	19 GO:000157	8 microtubule bundle formation	19_GO:0009987 cellular process	-25	40	27	30304	125	116	19	16	:	1 9 3.4 : - -	1767 2302 9576 51364 51673 7 9645 80217 85478 89765 92749 123872 138162 164781 200162 221421 286207 345895 387885 399949	DNAH5 FOXJ1 SPAG6 ZMYN D10 TPPP3 CLXN CFAP43 CC DC65 RSPH1 DRC1 DNAAF1 P IERCE1 DAW1 SPAG17 RSPH 9 CFAP157 RSPH4A CFAP73 HOATZ	-21	l cluster1
GO Biological Processes	19 GO:004478	2 cilium organization	19_GO:0009987 cellular process	-24	18	20	30304	365	116	25	22	:	1 7 3.8 2 2 4	1767 2302 9576 29070 51364 5 17562 79645 80217 83659 85478 89765 92749 123872 127254 1 18344 138162 164781[200162]2 21421 257177 286207 339145 3 15895 387885 399949	DNAH5/FOXJI/SPAG6/CCDC1 13/ZMYND10/CEP126/CLXN CFAP43/TEKT1/CCDC65/RSP H1/DRC1/DNAAF1/ERICH3/CI MAP3/PIERCE1/DAW1/SPAG1 7/RSPH9/CFAP126/CFAP157/C IBAR2/RSPH4A/CFAP73/HOA 77	-20) cluster1
GO Biological Processes	19 GO:000153	9 cilium or flagellum- dependent cell motility	19_GO:0009987 cellular process	-22	34	24	30304	140	116	18	16	:	1 3.4 ² 1 2	1767 1770 8701 9576 25790 80 217 83659 83853 85478 92749 46845 196385 219670 221421 257062 286207 345895 399949	DNAH5 DNAH9 DNAH11 SPA G6 CFAP45 CFAP43 TEKT1 R OPN1L CCDC65 DRC1 CFAP5 2 DNAH10 ENKUR RSPH9 CA TSPERD CFAP157 RSPH4A H OATZ	-19) cluster1
GO Biological Processes	19 GO:006028	5 cilium-dependent cell motility	19_GO:0009987 cellular process	-22	34	24	30304	140	116	18	16	:	1 3.4 2 1 2	1767 1770 8701 9576 25790 80 217 83659 83853 85478 92749 146845 196385 219670 221421 257062 286207 345895 399949	DNAH5 DNAH9 DNAH11 SPA G6 CFAP45 CFAP43 TEKT1 R OPN1L CCDC65 DRC1 CFAP5 2 DNAH10 ENKUR RSPH9 CA TSPERD CFAP157 RSPH4A H OATZ	-19) cluster1
GO Biological Processes	19 GO:006027	1 cilium assembly	19_GO:0009987 cellular process	-22	18	19	30304	331	116	23	20	:	1 7 3.7 8 8 9	1767 2302 9576 29070 51364 5 17562 79645 80217 83659 85478 89765 92749 123872 127254 1 188162 164781 200162 221421 2 16207 339145 345895 387885 3 19949	DNAH5 FOXJ1 SPAG6 CCDC1 13 ZMYND10 CEP126 CLXN CFAP43 TEKT1 CCDC65 RSP H1 DRC1 DNAAF1 ERICH3 P1 ERCE1 DAW1 SPAG17 RSPH9 CFAP157 CIBAR2 RSPH4A CF AP73 HOATZ	-19) cluster1
GO Biological Processes	19 GO:000335	epithelial cilium movement involved in extracellular fluid movement	19_GO:0051179 localization	-21	79	32	30304	43	116	13	11	1	1 2.9 3 1	1767 1770 8701 9576 25790 53 340 80217 83853 123872 16478 1 200162 220136 345895	AI //JIIOA12 DNAH5 DNAH9 DNAH11 SPA G6 CFAP45 SPA17 CFAP43 R OPN1L DNAAF1 DAW1 SPAG 17 CFAP53 RSPH4A	-18	3 cluster1
GO Biological Processes	19 GO:000685	8 extracellular transport	19_GO:0051179 localization	-21	74	31	30304	46	116	13	11	2	1 2.9 3 1	1767 1770 8701 9576 25790 53 340 80217 83853 123872 16478 1 200162 220136 345895	G6 CFAP45 SPA17 CFAP43 R OPN1L DNAAF1 DAW1 SPAG 17 CFAP53 RSPH4A	-11	3 cluster1
GO Biological Processes	19 GO:000156	8 blood vessel development	19_GO:0032502 developmental process	-3.8	14	6.9	30304	523	17	4	24		10 1	490 2701 3491 6347	CCN2 GJA4 CCN1 CCL2	-1.9	luster2
GO Biological Processes	19 GO:000194	4 vasculature development	19_GO:0032502 developmental process	-3.7	13	6.8	30304	543	17	4	24		10 1	490 2701 3491 6347	CCN2 GJA4 CCN1 CCL2	-1.8	3 cluster2
GO Biological Processes	19 GO:004340	8 regulation of MAPK cascade	19_GO:0050896 response to stimulus	-3.3	11	6	30304	673	17	4	24		10 1	490 3487 3491 6347	CCN2 IGFBP4 CCN1 CCL2	-1.0	5 cluster2
GO Biological Processes	19 GO:007037	2 regulation of ERK1 and ERK2 cascade	19_GO:0050896 response to stimulus	-3.2	17	6.8	30304	313	17	3	18	9	9.2 1	490 3491 6347	CCN2 CCN1 CCL2	-1.5	5 cluster2
GO Biological Processes	19 GO:000152	5 angiogenesis	19_GO:0032502 developmental process	-3.1	16	6.5	30304	336	17	3	18	9	9.2 1	490 3491 6347	CCN2 CCN1 CCL2	-1.4	4 cluster2
GO Biological Processes	19 GO:000693	5 chemotaxis	19_GO:0040011 locomotion	-3.1	16	6.5	30304	341	17	3	18	ç	9.2 2	2920 3491 6347	CXCL2 CCN1 CCL2	-1.4	4 cluster2
GO Biological Processes	19 GO:004233	0 taxis	19_GO:0040011 locomotion	-3.1	16	6.4	30304	343	17	3	18	9	9.2 2	2920 3491 6347	CXCL2 CCN1 CCL2	-1.4	4 cluster2
GO Biological Processes	19 GO:004001	1 locomotion	19_GO:0040011 locomotion	-3	15	6.2	30304	362	17	3	18	9	9.2 2	2920 3491 6347	CXCL2 CCN1 CCL2	-1.4	4 cluster2
GO Biological Processes	19 GO:004851	4 blood vessel morphogenesis	19_GO:0032502 developmental process	-2.8	12	5.7	30304	429	17	3	18	9	9.2 1	490 3491 6347	CCN2 CCN1 CCL2	-1.2	2 cluster2
GO Biological Processes	19 GO:004341	0 positive regulation of MAPK cascade	19_GO:0048518 positive regulation of	-2.7	11	5.3	30304	474	17	3	18	ç	9.2 1	490 3487 6347	CCN2 IGFBP4 CCL2	-1.1	l cluster2
GO Biological Processes	19 GO:000675	4 ATP biosynthetic process	19_GO:0008152 metabolic process	-23	86	34	30304	84	59	14	24	4	2 5.5 8 8	226 498 506 509 513 514 516 51 8 521 4715 9551 9556 10632 84 833	ALDOA ATP5F1A ATP5F1B A TP5F1C ATP5F1D ATP5F1E A TP5MC1 ATP5MC3 ATP5ME NDUFB9 ATP5MF ATP5MJ A	-20) cluster3
GO Biological Processes	19 GO:000920	purine ribonucleoside 6 triphosphate biosynthetic process	19_GO:0008152 metabolic process	-22	76	32	30304	95	59	14	24	4	2 5.5 8 8	226 498 506 509 513 514 516 51 8 521 4715 9551 9556 10632 84 833	TP5MG ATP5MK ALDOA ATP5F1A ATP5F1B A TP5F1C ATP5F1D ATP5F1E A TP5MC1 ATP5MC3 ATP5ME NDUFB9 ATP5MF ATP5MJ A	-19) cluster3
GO Biological Processes	19 GO:000914	purine nucleoside 5 triphosphate biosynthetic process	19_GO:0008152 metabolic process	-22	75	32	30304	96	59	14	24	4	2 5.5 8 8	226 498 506 509 513 514 516 51 8 521 4715 9551 9556 10632 84 833	TP5MG ATP5MK ALDOA ATP5F1A ATP5F1B A TP5F1C ATP5F1D ATP5F1E A TP5MC1 ATP5MC3 ATP5ME NDUFB9 ATP5MF ATP5MJ A TP5MC1ATP5MJ	-19) cluster3
GO Biological Processes	19 GO:000920	ribonucleoside 1 triphosphate biosynthetic process	19_GO:0008152 metabolic process	-22	71	31	30304	101	59	14	24	4	2 5.5 8 8	226 498 506 509 513 514 516 51 8 521 4715 9551 9556 10632 84 833	ALDOA ATP5F1A ATP5F1B A TP5F1C ATP5F1D ATP5F1B A TP5MC1 ATP5MC3 ATP5ME NDUFB9 ATP5MF ATP5MJ A TP5MG ATP5MK	-19) cluster3
GO Biological Processes	19 GO:001598	6 proton motive force- driven ATP synthesis	19_GO:0008152 metabolic process	-22	91	34	30304	73	59	13	22	4	5.4 ⁴ 1	498 506 509 513 514 516 518 52 4715 9551 9556 10632 84833	ATP5F1A ATP5F1B ATP5F1C ATP5F1D ATP5F1E ATP5MC 1 ATP5MC3 ATP5ME NDUFB 9 ATP5MF ATP5MJ ATP5MG ATP5MK	-19) cluster3
GO Biological Processes	19 GO:000914	2 nucleoside triphosphate biosynthetic process	19_GO:0008152 metabolic process	-22	66	30	30304	109	59	14	24	4	2 5.5 8 8	226 498 506 509 513 514 516 51 8 521 4715 9551 9556 10632 84 833	ALDOA ATP5F1A ATP5F1B A TP5F1C ATP5F1D ATP5F1E A TP5MC1 ATP5MC3 ATP5ME NDUFB9 ATP5MF ATP5MJ A TP5MG ATP5MK	-18	3 cluster3
GO Biological Processes	19 GO:004603	4 ATP metabolic process	19_GO:0008152 metabolic process	-21	62	29	30304	116	59	14	24	4	2 5.5 8 8	226 498 506 509 513 514 516 51 8 521 4715 9551 9556 10632 84 333	ALDOAJA1P5F1AJATP5F1BJA TP5F1CJATP5F1DJATP5F1EJA TP5MC1JATP5MC3JATP5MEJ NDUFB9JATP5MKJATP5MJA TP5MGJATP5MK ALDOAJATP5F1AJATP5F1DJA	-18	3 cluster3
GO Biological Processes	19 GO:000920	purine ribonucleoside 5 triphosphate metabolic process	19_GO:0008152 metabolic process	-20	51	26	30304	140	59	14	24	1	2 5.5 8 8	226 498 506 509 513 514 516 51 8 521 4715 9551 9556 10632 84 333	TP5F1C ATP5F1D ATP5F1B A TP5F1C ATP5F1D ATP5F1E A TP5MC1 ATP5MC3 ATP5ME NDUFB9 ATP5MF ATP5MJ A TP5MG ATP5MK ALDOA ATP5F1A ATP5F1D A	-13	7 cluster3
GO Biological Processes	19 GO:000914	purine nucleoside 4 triphosphate metabolic process	19_GO:0008152 metabolic process	-20	49	26	30304	146	59	14	24	4	2 5.5 8 8	226 498 506 509 513 514 516 51 8 521 4715 9551 9556 10632 84 833	TP5F1C ATP5F1D ATP5F1E A TP5F1C ATP5F1D ATP5F1E A TP5MC1 ATP5MC3 ATP5ME NDUFB9 ATP5MK]ATP5MJ A TP5MG ATP5MK	-17	7 cluster3
GO Biological Processes	19 GO:000919	ribonucleoside 9 triphosphate metabolic process	19_GO:0008152 metabolic process	-20	49	26	30304	147	59	14	24	4	2 5.5 8 8	226 498 506 509 513 514 516 51 8 521 4715 9551 9556 10632 84 833	TP5F1C ATP5F1D ATP5F1E A TP5F1C ATP5F1D ATP5F1E A TP5MC1 ATP5MC3 ATP5ME NDUFB9 ATP5MF ATP5MJ A TP5MG ATP5MK	-17	7 cluster3

													APOF ATP5F1BIGPX1INOTC	
GO Biological Processes	19 GO:0048514	blood vessel morphogenesis	19_GO:0032502 developmental process	-5.7	9.6	7.9	30304	429	59	8	14	4.5 348 506 2876 4851 6659 7045 9 3974 128240	H1 SOX4 TGFBI ATP5IF1 NA XE	-3.6 cluster3
GO Biological Processes	19 GO:0001568	blood vessel development	19_GO:0032502 developmental process	-5.1	7.9	7	30304	523	59	8	14	4.5 348 506 2876 4851 6659 7045 5 3974 128240	H1 SOX4 TGFBI ATP5IF1 NA XE	-3 cluster3
GO Biological Processes	19 GO:0001944	vasculature development	19_GO:0032502 developmental process	-5	7.6	6.8	30304	543	59	8	14	4.5 348 506 2876 4851 6659 7045 9 3974 128240	APOE ATP5F1B GPX1 NOTC H1 SOX4 TGFBI ATP5IF1 NA XE	-2.9 cluster3
GO Biological Processes	19 GO:0001525	angiogenesis	19_GO:0032502 developmental process	-4.3	9.2	6.7	30304	336	59	6	10	3.9 506 2876 4851 7045 93974 128 240	ATP5F1B GPX1 NOTCH1 TGF BI ATP5IF1 NAXE	-2.3 cluster3
GO Biological Processes	19 GO:0030162	regulation of proteolysis	19_GO:0008152	-3.7	5.8	5.3	30304	618	59	7	12	4.2 348 2537 2876 6923 10399 299	APOE IFI6 GPX1 ELOB RACK	-1.8 cluster3
GO Biological Processes	19 GO:2000147	positive regulation of cell	I 19_GO:0040011	-3	5.1	4.5	30304	600	59	6	10	3 9 498/506/3640/4851/6678/10399	ATP5F1A ATP5F1B INSL3 NO	-1.3 cluster3
co pi i i i p		motility positive regulation of	locomotion 19 GO:0040011										TCH1 SPARC RACK1 ATP5F1A ATP5F1B INSL3 NO	
GO Biological Processes	19 GO:0040017	locomotion	locomotion	-2.9	5	4.4	30304	614	59	0	10	3.9 498 506 3640 4851 6678 10399	TCH1 SPARC RACK1	-1.3 cluster3
GO Biological Processes	19 GO:0010810	regulation of cell- substrate adhesion	regulation of biological process	-2	7	3.9	30304	220	59	3	5.1	2.9 335 1029 4851	APOA1 CDKN2A NOTCH1	-0.64 cluster3
GO Biological Processes	19 GO:0001501	skeletal system development	19_GO:0032502 developmental process	-6.3	9.2	8.2	30304	500	59	9	15	4.7 871 1116 1277 1278 1281 1462 1490 3491 10468	OL1A2 COL3A1 VCAN CCN2 CCN1 FST	-4.1 cluster4
GO Biological Processes	19 GO:0051216	cartilage development	19_GO:0032502 developmental process 19_GO:0032501	-6	18	9.8	30304	172	59	6	10	3.9 871 1116 1277 1281 1490 3491	SERPINH1 CHI3L1 COL1A1 C OL3A1 CCN2 CCN1	-3.8 cluster4
GO Biological Processes	19 GO:0001503	ossification	multicellular organismal process	-5.9	13	8.7	30304	286	59	7	12	4.2 1277 1278 1462 1490 3486 349 1 6696	COL1A1 COL1A2 VCAN CCN 2 IGFBP3 CCN1 SPP1 SCAPP1 COL1A1 DEED1 ELN	-3.7 cluster4
GO Biological Processes	19 GO:2000147	positive regulation of cell motility	19_GO:0040011 locomotion	-5.6	7.7	7.3	30304	600	59	9	15	4.7 949 1277 1672 2316 3491 5962 9590 10457 284119	A CCN1 RDX AKAP12 GPNM B CAVIN1	-3.5 cluster4
GO Biological Processes	19 GO:0040017	positive regulation of locomotion	19_GO:0040011 locomotion	-5.6	7.5	7.2	30304	614	59	9	15	4.7 949 1277 1672 2316 3491 5962 9590 10457 284119	SCARB1 COL1A1 DEFB1 FLN A CCN1 RDX AKAP12 GPNM B CAVIN1	-3.4 cluster4
GO Biological Processes	19 GO:0030199	collagen fibril organization	19_GO:0009987 cellular process	-5.3	35	11	30304	59	59	4	6.8	3.3 871 1277 1278 1281	SERPINH1 COL1A1 COL1A2 COL3A1	-3.1 cluster4
GO Biological Processes	19 GO:0061448	connective tissue development	19_GO:0032502 developmental process	-5.3	14	8.4	30304	228	59	6	10	3.9 871 1116 1277 1281 1490 3491	SERPINH1 CHI3L1 COL1A1 C OL3A1 CCN2 CCN1	-3.1 cluster4
GO Biological Processes	19 GO:0001568	blood vessel development	19_GO:0032502 developmental process	-5.1	7.9	7	30304	523	59	8	14	4.5 133 1277 1278 1281 1490 2316 3491 23554	ADM COL1A1 COL1A2 COL3 A1 CCN2 FLNA CCN1 TSPAN	-3 cluster4
GO Biological Processes	19 GO:0001649	osteoblast differentiation	19_GO:0032502 developmental process	-5.1	18	9	30304	141	59	5	8.5	3.6 1277 1462 3486 3491 6696	COL1A1 VCAN IGFBP3 CCN1 SPP1	-3 cluster4
GO Biological Processes	19 GO:0001944	vasculature development	19_GO:0032502 developmental process	-5	7.6	6.8	30304	543	59	8	14	4.5 3491 23554	ADM COL1A1 COL1A2 COL3 A1 CCN2 FLNA CCN1 TSPAN 12	-2.9 cluster4
GO Biological Processes	19 GO:0070372	regulation of ERK1 and ERK2 cascade	19_GO:0050896 response to stimulus	-4.5	9.8	6.9	30304	313	59	6	10	3.9 1116 1490 3491 8767 9590 104 57	CHI3L1 CCN2 CCN1 RIPK2 A KAP12 GPNMB	-2.5 cluster4
GO Biological Processes	19 GO:0048514	blood vessel	19_GO:0032502	-3.7	7.2	5.7	30304	429	59	6	10	3.9 133 1281 1490 2316 3491 2355	ADM COL3A1 CCN2 FLNA C	-1.9 cluster4
GO Biological Processes	19. GO:0030162	morphogenesis regulation of protectivis	19_GO:0008152	-3.7	5.8	53	30304	618	59	7	12	4 2 871 1718 2810 6280 8767 1041	SERPINH1 DHCR24 SFN S100	-1.8 cluster4
co biological Hotelands	10 00 0052540	regulation of	metabolic process 19 GO:0008152	2.0	0.0		20204	200	<i>c</i> 0			8 22836	A9 RIPK2 SPON1 RHOBTB3 SERPINH1 DHCR24 SFN S100	10 1
GO Biological Processes	19 GO:0052548	endopeptidase activity	metabolic process	-3.0	8.9	0	30304	288	59	5	8.5	3.0 8/1 1/18 2810 0280 8/0/	A9 RIPK2	-1.8 cluster4
GO Biological Processes	19 GO:0043410	positive regulation of MAPK cascade	positive regulation of biological process	-3.5	6.5	5.3	30304	474	59	6	10	3.9 1116 1490 3486 8767 9590 104 57	CHI3L1 CCN2 IGFBP3 RIPK2 AKAP12 GPNMB	-1.7 cluster4
GO Biological Processes	19 GO:0043408	regulation of MAPK cascade	19_GO:0050896 response to stimulus	-3.5	5.3	5	30304	673	59	7	12	4.2 0 10457 4.2 0 10457	CHI3L1 CCN2 IGFBP3 CCN1 R IPK2 AKAP12 GPNMB	-1.7 cluster4
GO Biological Processes	19 GO:0052547	regulation of peptidase activity	19_GO:0008152 metabolic process	-3.4	8.2	5.7	30304	312	59	5	8.5	3.6 871 1718 2810 6280 8767	SERPINH1 DHCR24 SFN S100 A9 RIPK2	-1.7 cluster4
GO Biological Processes	19 GO:0006935	chemotaxis	19_GO:0040011	-3.3	7.5	5.4	30304	341	59	5	8.5	3.6 1672 3491 6280 9547 10457	DEFB1 CCN1 S100A9 CXCL1 4 CDNIMD	-1.5 cluster4
GO Biological Processes	19 GO:0042330	taxis	19_GO:0040011	-3.3	7.5	5.3	30304	343	59	5	8.5	3.6.1672 3491 6280 9547 10457	4 GPNMB DEFB1 CCN1 S100A9 CXCL1	-1.5 cluster4
CO D' L : LD	10 CO 0040011		locomotion 19 GO:0040011	2.2		6.0	20204	2(2	<i>c</i> 0		0.6		4 GPNMB DEFB1 CCN1 S100A9 CXCL1	16.1.4
GO Biological Processes	19 GO:0040011	locomotion	locomotion 19. GO:0032502	-3.2	/.1	5.2	30304	362	59	5	8.5	3.6 16/2 3491 6280 9547 10457	4 GPNMB	-1.5 cluster4
GO Biological Processes	19 GO:0001525	angiogenesis	developmental process 19 GO:0050789	-2.4	6.1	4.2	30304	336	59	4	6.8	3.3 1490 2316 3491 23554	CCN2 FLNA CCN1 TSPAN12	-0.89 cluster4
GO Biological Processes	19 GO:0010810	substrate adhesion	regulation of biological process	-2	7	3.9	30304	220	59	3	5.1	2.9 1277 2316 3491	COL1A1 FLNA CCN1	-0.64 cluster4
GO Biological Processes	19 GO:0051085	dependent protein refolding	19_GO:0008152 metabolic process	-8.1	73	19	30304	32	65	5	7.7	3.3 3303 3304 3310 3311 3337	HSPA1A HSPA1B HSPA6 HSP A7 DNAJB1	-5.7 cluster5
GO Biological Processes	19 GO:0051084	'de novo' post- translational protein folding	19_GO:0008152 metabolic process	-7.8	63	17	30304	37	65	5	7.7	3.3 3303 3304 3310 3311 3337	HSPA1A HSPA1B HSPA6 HSP A7 DNAJB1	-5.4 cluster5
GO Biological Processes	19 GO:0006458	'de novo' protein folding	19_GO:0008152 metabolic process	-7.6	57	17	30304	41	65	5	7.7	3.3 3303 3304 3310 3311 3337	HSPA1A HSPA1B HSPA6 HSP A7 DNAJB1	-5.2 cluster5
GO Biological Processes	19 GO:0042026	protein refolding	19_GO:0008152	-6.6	75	17	30304	25	65	4	6.2	3 3303 3304 3310 3311	HSPA1A HSPA1B HSPA6 HSP	-4.4 cluster5
GO Biological Processes	19 GO:0010810	regulation of cell-	regulation of biological	-6.3	15	9.5	30304	220	65	7	11	3.8 2335 2633 5054 6480 7422 980	A7 FN1 GBP1 SERPINE1 ST6GAL	-4.1 cluster5
CODI L I ID	10.00.00(1077	chaperone-mediated	process 19 GO:0008152	(2)	22	10	20204		10	,		3 3 330313204133101331113337	HSPA1A HSPA1B HSPA6 HSP	
GO Biological Processes	19 GO:0061077	protein folding	metabolic process	-0.3	32	12	30304	/4	65	5	1.1	220212204[5054]50511[5057]	A7 DNAJB1 HSPA1A HSPA1B SERPINE1 S	-4 cluster5
GO Biological Processes	19 GO:0030162	regulation of proteolysis	metabolic process	-6.1	7.5	7.6	30304	618	65	10	15	4.5 2 7498 8743 9806 90637	100A8 TNF VEGFA XDH TNF SF10 SPOCK2 ZFAND2A	-3.9 cluster5
GO Biological Processes	19 GO:0090084	negative regulation of inclusion body assembly	negative regulation of biological process	-5.7	120	19	30304	12	65	3	4.6	2.6 3303 3304 3337	HSPA1A HSPA1B DNAJB1	-3.5 cluster5
GO Biological Processes	19 GO:0052548	regulation of endopeptidase activity	19_GO:0008152 metabolic process	-5.5	11	8.2	30304	288	65	7	11	3.8 5054 6279 7124 7422 7498 874 3 9806	SERPINE1 S100A8 TNF VEGF A XDH TNFSF10 SPOCK2	-3.4 cluster5
GO Biological Processes	19 GO:0052547	regulation of peptidase activity	19_GO:0008152 metabolic process	-5.3	10	7.8	30304	312	65	7	11	3.8 5054 6279 7124 7422 7498 874 3 9806	SERPINE1 S100A8 TNF VEGF A XDH TNFSF10 SPOCK2	-3.2 cluster5
GO Biological Processes	19 GO:0034605	cellular response to heat	19_GO:0050896	-5.3	35	11	30304	54	65	4	6.2	3 3303 3304 3310 3337	HSPA1A HSPA1B HSPA6 DN A IB1	-3.1 cluster5
GO Biological Processes	19 GO:2000147	positive regulation of cell	1 19_GO:0040011	-3.5	5.4	5.1	30304	600	65	7	11	3.8 2335 3912 5054 7124 7422 980	FN1 LAMB1 SERPINE1 TNF V	-1.7 cluster5
GO Biological Processes	19 GO-0040017	motility positive regulation of	19_GO:0040011	-3.5	53	5	30304	614	65	7	11	6 23328 3 8 2335 3912 5054 7124 7422 980	EGFA SPOCK2 SASH1 FN1 LAMB1 SERPINE1 TNF V	-1.7 chuster5
CODI L L IF	10 00 0017	locomotion regulation of MAPK	locomotion 19_GO:0050896	2.5			20201	(77				6 23328 2335 2633 7124 7422 7498 233	EGFA SPOCK2 SASH1 FN1 GBP1 TNF VEGFA XDH S	0.00
GO Biological Processes	19 GO:0043408	cascade	response to stimulus	-2.5	4.2	3.8	30304	6/3	65	6	9.2	3.0 28	ASH1 EN1/SERPINE1/TNEA/D2/VEC	-0.98 cluster5
GO Biological Processes	19 GO:0001525	angiogenesis	developmental process	-2.2	5.6	3.9	30304	336	65	4	6.2	3 2335 5054 7127 7422	FA	-0.78 cluster5

p val avg log2FC pct.1 pct.2 p val adj cluster gene 0.142 1 0 0.848 0 FTCEC_TFF3+ 4.88662983 TFF3 2 0 4.484049045 0.411 0.085 0 FTCEC TFF3+ SCGB1D4 4.420223043 3 0.915 0.073 0 FTCEC TFF3+ 0 **TMEM190** 4 0 4.041499653 0.965 0.284 0 FTCEC TFF3+ TPPP3 5 0 FTCEC TFF3+ Clorf194 0 3.595317138 0.96 0.216 6 0 3.296124274 0.939 0.178 0 FTCEC_TFF3+ FAM183A 7 0 3.227884344 0.985 0.689 0 FTCEC TFF3+ CAPS 8 0 3.02763478 0 FTCEC TFF3+ AL357093.2 0.87 0.132 $0 \ FTCEC_TFF3+ \ CETN2$ 9 0 2.833839245 0.942 0.651 10 0 2.808400722 0.888 0.571 0 FTCEC TFF3+ AGR3 0 FTCEC SOD3+ SOD3 11 0 2.481098871 0.886 0.402 12 0 2.397556316 0.441 0.043 0 FTCEC SOD3+ FGA 13 0 2.137498043 0.818 0.416 0 FTCEC SOD3+ G0S2 0 FTCEC SOD3+ C20orf85 14 0 2.087584951 0.958 0.304 2.046388699 15 0 0.946 0.295 0 FTCEC SOD3+ C9orf24 16 0 2.022019188 0.824 0 FTCEC SOD3+ ID1 0.416 0 FTCEC SOD3+ ODF3B 17 1.963114663 0 0.902 0.409 18 1.962046109 0.794 0.255 0 FTCEC SOD3+ AK1 0 19 1.918008185 0.969 0 FTCEC_SOD3+ TUBB4B 0 0.884 1.373481 7.835026 20 80614641 1.881414624 0.678 0.422 96316217 FTCEC SOD3+ RRAD e-179 e-183 21 0 4.437025305 0.97 0.277 0 FTPEC CXCR4 22 0.086 CCL5 0 4.156778788 0.845 0 FTPEC 23 0 4.018635083 0.969 0.205 0 FTPEC SRGN 24 0 3.436708681 0.869 0.403 0 FTPEC **CREM** 25 0 3.405777796 0.942 0.769 0 FTPEC BTG1 26 0 3.397541129 0.77 0 FTPEC RGS1 0.084 1.620563 9.244504 27 45665196 3.357187546 0.534 0.134 23847108 FTPEC CCL4 e-265 e-261 28 0 3.334776614 0.762 0.052 0 FTPEC CD7 29 0 3.198637357 0.827 0.059 0 FTPEC CD52 30 0 3.093385719 0.514 0.038 0 FTPEC KLRB1 31 0 2.602857333 0.994 0.303 0 FTSEC1 GAS5 32 0 2.216783972 0.631 0.219 0 FTSEC1 CXCL1 33 0 2.171665815 0.997 0.354 0 FTSEC1 SNHG29 34 0 1.872047098 0.997 0.463 0 FTSEC1 KRT7 35 0 1.823487651 0.878 0.344 0 FTSEC1 CRYAB 36 0 1.789245454 0.998 0.532 0 FTSEC1 EEF1G 37 0 1.774935879 0.91 0.485 0 FTSEC1 CXCL2 38 0 1.740572791 0.905 0 FTSEC1 RPL17 1 39 0 1.656773503 0.763 0 FTSEC1 H19 0.092 40 0 1.620112564 0.998 0 FTSEC1 0.458 NME2 41 0 1.528489076 0.611 0.068 0 FTSEC2 CYR61 42 1.238792091 0 FTSEC2 FKBP2 0 0.785 0.279 43 0 1.199711892 0.944 0.753 0 FTSEC2 CRISP3 44 1.194117348 0 FTSEC2 0 0.64 0.09 C6orf48 45 0 1.138623618 0.719 0.465 0 FTSEC2 MGST1 46 0 1.083753269 0.79 0 FTSEC2

0.7

0 FTSEC2

0.068

0.627

HNRNPH1

C8orf59

Top 10 DEGs of each FTE cluster. Table S4

47

0

1.045405058

	5.493907				3.133999		
48	48800114	1.012509566	0.996	0.98	52653025	FTSEC2	RPL31
	e-38				e-33		
49	0	0.942999817	0.998	0.984	0	FTSEC2	RPL27A
50	0	0.911760495	0.733	0.145	0	FTSEC2	MINOS1
51	0	3.949494162	0.983	0.232	0	FTSEC3	OVGP1
52	0	2.358395241	0.778	0.177	0	FTSEC3	SERPINA3
53	0	2.319363901	0.97	0.413	0	FTSEC3	SPARCL1
54	0	2.208513863	0.904	0.073	0	FTSEC3	PKHD1L1
55	0	2.206467497	0.97	0.492	0	FTSEC3	USP53
56	0	2.100708001	0.983	0.851	0	FTSEC3	HSP90B1
57	0	1.957807191	0.951	0.324	0	FTSEC3	EPB41L2
58	0	1.913938617	0.973	0.795	0	FTSEC3	HSPA5
59	0	1.903210971	0.9	0.271	0	FTSEC3	CPM
60	0	1.879191553	0.949	0.295	0	FTSEC3	PGR
61	0	3.606270099	0.821	0.312	0	FTSEC4	C11orf96
62	0	3.183844574	0.777	0.253	0	FTSEC4	TPM2
	3.737520				2.132068		
63	161478e-	3.129257017	0.738	0.366	37611513	FTSEC4	ACTA2
	268				e-263		
	5.694722				3.248554		
64	40587009	3.109486073	0.831	0.477	39642859	FTSEC4	TAGLN
	e-246				e-241		
65	0	2.950939959	0.784	0.25	0	FTSEC4	IGFBP5
66	0	2.709824813	0.469	0.085	0	FTSEC4	SFRP4
67	0	2.610869614	0.713	0.171	0	FTSEC4	DCN
	1.842286				1.050932		
68	70729272	2.601800111	0.423	0.116	45217513	FTSEC4	DES
	e-214				e-209		
	1.607673				9.170970		
69	04126771	2.543439697	0.552	0.158	86391167	FTSEC4	PTGDS
	e-279				e-275		
70	0	2.522325397	0.773	0.282	0	FTSEC4	MGP

Table S7 Progeny pathway gene score in each FTE cluster.

	ETCEC SOD1	ETCEC TEE2	ETDEC	ETCECI	ETCECA	ETCEC2	ETCECA
	FICEC_SOD3+	FICEC_IFF3+	FIFEC	FISECI	F1SEC2	FISECS	FISEC4
Androgen	0.402	-0.260	-0.687	0.015	0.123	1.767	0.624
EGFR	-0.346	-1.180	0.016	0.468	0.308	-0.309	0.244
Estrogen	-0.579	0.368	0.693	-0.235	0.656	1.490	0.903
Hypoxia	-0.082	-0.382	0.076	-0.504	-0.489	0.363	0.135
JAK-STAT	-0.171	-0.425	-0.369	-0.198	-0.376	0.014	-0.105
MAPK	-0.525	-1.259	-0.338	0.320	0.081	-0.137	0.071
NFkB	0.514	-0.533	0.248	0.897	0.198	0.972	0.919
p53	1.493	0.641	-0.287	0.936	0.311	0.447	0.940
PI3K	-0.531	-0.020	1.161	-0.572	0.219	-0.277	-0.419
TGFb	0.279	-0.540	-1.005	-0.095	-0.458	0.063	1.007
TNFa	0.440	-0.600	0.134	0.900	0.181	0.833	0.832
Trail	0.764	0.670	0.860	0.159	-0.001	-0.856	0.233
VEGF	-1.156	-1.269	-0.381	-0.274	-0.217	-0.204	-0.657
WNT	-0.946	-0.483	0.122	-0.556	-0.483	-0.499	-0.320

Table S8	GO e	enrichment res	ult of pseudo-time va	riable gene cluster 4.													
Category	CategoryID	GO	Description	PARENT_GO	LogP	Enrichment	Z.score	X.TotalGe neInLibra rv	X.GeneInGO	X.GeneI nHitList	X.GeneIn GOAndH itList	X.InGO	STDVIn GO	GeneID	Hits	Log.q.value.	GeneList
GO Biolog	19	9 GO:0001819	positive regulation of cytokine production	19_GO:0048518 positive regulation of biological process	-8.2	11	9.9	30304	499	63	11	17	4.8	1116 1535 1545 3 091 3428 3554 57 43 6653 8915 930 8 23236	CHI3L1 C YBA CYP 1B1 HIF1 A IF116 I L1R1 PT GS2 SOR L1 BCL10 CD83 PL CB1	-4	Cluster4
GO Biolog	19	9 GO:0035239	tube morphogenesis	19_GO:0032502 developmental process	-6.9	7.8	8.2	30304	679	63	11	17	4.8	367 1545 3091 39 49 4691 5420 574 3 7052 8549 8915 80781	AR CYP1 B1 HIF1A LDLR NC L PODXL PTGS2 T GM2 LGR 5 BCL10 COL18A1	-3	Cluster4
GO Biolog	19	9 GO:0071345	cellular response to cytokine stimulus	19_GO:0050896 response to stimulus	-6.5	7.2	7.8	30304	732	63	11	17	4.8	1116 1545 2923 3 091 3309 3428 35 54 4641 4691 636 4 23236	CHI3L1 C YP1B1 P DIA3 HIF 1A HSPA 5 IFI16 IL 1R1 MYO 1C NCL C CL20 PLC	-2.8	Cluster4
GO Biolog	19	9 GO:0034975	protein folding in endoplasmic reticulum	19_GO:0008152 metabolic process	-5.9	130	20	30304	11	63	3	4.8	2.3	2923 3309 7184	B1 PDIA3 HS PA5 HSP9 0B1 CYP1B1	-2.3	Cluster4
GO Biolog	19	9 GO:0030335	positive regulation of cell migration	19_GO:0040011 locomotion	-5.5	7.5	7.2	30304	575	63	9	14	4.4	1545 3091 3309 3 554 4641 5420 57 43 6364 9510	HIF1A HS PA5 IL1R 1 MYO1C PODXL P TGS2 CC L20 ADA MTS1	-2.1	Cluster4
GO Biolog	19	9 GO:2000147	positive regulation of cell motility	19_GO:0040011 locomotion	-5.4	7.2	7	30304	600	63	9	14	4.4	1545 3091 3309 3 554 4641 5420 57 43 6364 9510	CYP1B1 HIF1A HS PA5 IL1R 1 MYO1C PODXL P TGS2 CC L20 ADA MTS1 CYP1B1	-2	Cluster4
GO Biolog	19	9 GO:0040017	positive regulation of locomotion	19_GO:0040011 locomotion	-5.3	7.1	6.9	30304	614	63	9	14	4.4	1545 3091 3309 3 554 4641 5420 57 43 6364 9510	HIF1A HS PA5 IL1R 1 MYO1C PODXL P TGS2 CC L20 ADA MTS1	-2	Cluster4
GO Biolog	19	9 GO:0036003	positive regulation of transcription from RNA polymerase II promoter in response to stress	19_GO:0048518 positive regulation of biological process	-5.2	80	15	30304	18	63	3	4.8	2.5	7 3091 3309 4582	HIF1A HS PA5 MUC 1	-2	Cluster4
GO Biolog	19	9 GO:0071407	cellular response to organic cyclic compound	19_GO:0050896 response to stimulus	-5.2	8	7.1	30304	481	63	8	13	4.2	196 367 1545 370 2 9 5743 7052 7184 23236	CYP1B1 I TPR2 PT GS2 TGM 2 HSP90B 1 PLCB1	-2	Cluster4
GO Biolog	19	9 GO:0046683	response to organophosphorus	19_GO:0050896 response to stimulus	-5.2	19	9.2	30304	127	63	5	7.9	3.4	196 1545 3709 57 43 7184	AHR CYP 1B1 ITPR 2 PTGS2 HSP90B1 CPE DHC	-2	Cluster4
GO Biolog	19	9 GO:0051604	protein maturation	19_GO:0008152 metabolic process	-5.1	7.9	7	30304	489	63	8	13	4.2	1363 1718 2923 3 2 309 3428 6653 71 84 10418	R24 PDIA 3 HSPA5 I FI16 SOR L1 HSP90 B1 SPON 1	-2	Cluster4
GO Biolog	19	9 GO:0070555	response to interleukin-1	19_GO:0050896 response to stimulus	-5.1	18	9.1	30304	131	63	5	7.9	3.4	1116 3091 3554 6 364 23236	CHI3L1 H IF1A IL1 R1 CCL20 PLCB1	-2	Cluster4
GO Biolog	19	9 GO:0014074	response to purine- containing compound	19_GO:0050896 response to stimulus	-4.9	17	8.7	30304	143	63	5	7.9	3.4	196 1545 3709 57 43 7184	AHR CYP 1B1 ITPR 2 PTGS2 HSP90B1	-1.8	Cluster4
GO Biolog	19	9 GO:1900076	regulation of cellular response to insulin stimulus	19_GO:0050896 response to stimulus	-4.8	27	10	30304	71	63	4	6.3	3.1	490 4641 4691 66 53	ATP2B1 MYO1C NCL SOR L1	-1.8	Cluster4
GO Biolog	19	9 GO:0010575	positive regulation of vascular endothelial growth factor production	19_GO:0048518 positive regulation of biological process	-4.5	48	12	30304	30	63	3	4.8	2.5	7 1545 3091 5743	CYP1B1 HIF1A PT GS2	-1.5	Cluster4
GO Biolog	19	9 GO:0002009	morphogenesis of an epithelium	19_GO:0032502 developmental process	-4.4	7.4	6.3	30304	452	63	7	11	4	367 3091 5420 70 52 7414 8549 891 5	AR HIF1 A PODXL TGM2 V CL LGR5 BCL10	-1.4	Cluster4
GO Biolog	19	9 GO:0043618	regulation of transcription from RNA polymerase II promoter in response to stress	19_GO:0050896 response to stimulus	-4.3	44	11	30304	33	63	3	4.8	2.5	7 3091 3309 4582	HIF1A HS PA5 MUC 1	-1.4	Cluster4
GO Biolog	19	9 GO:0071347	cellular response to interleukin-1	19_GO:0050896 response to stimulus	-4.2	19	8.2	30304	102	63	4	6.3	3.1	3091 3554 6364 2 3236	HIF1A IL 1R1 CCL2 0 PLCB1	-1.3	Cluster4
GO Biolog	19	9 GO:0031667	response to nutrient levels	19_GO:0050896 response to stimulus	-4.2	7	6	30304	484	63	7	11	4	1545 3309 3428 3 949 5743 6653 89 15	HSPA5 IF I16 LDLR PTGS2 S ORL1 BC L10	-1.3	Cluster4

GO Biolog	19 GO:0043620	regulation of DNA- templated transcription in response to stress	19_GO:0050896 response to stimulus	-4.1	37	10	30304	39	63	3	4.8	2.7 3091 3309 4582	HIF1A HS PA5 MUC 1	-1.2 C	luster4
GO Biolog	19 GO:0009991	response to extracellular stimulus	19_GO:0050896 response to stimulus	-4	6.6	5.8	30304	513	63	7	11	1545 3309 3428 3 4 949 5743 6653 89 15	CYP1B1 HSPA5 IF I16 LDLR PTGS2 S ORL1 BC L10	-1.2 C	luster4
GO Biolog	19 GO:0010035	response to inorganic substance	19_GO:0050896 response to stimulus	-4	6.5	5.7	30304	522	63	7	11	1545 3091 5743 7 4 184 7356 23236 8 0781	CYP1B1 HIF1A PT GS2 HSP9 0B1 SCG B1A1 PL CB1 COL 18A1	-1.2 C	luster4
GO Biolog	19 GO:0001568	blood vessel development	19_GO:0032502 developmental process	-4	6.4	5.7	30304	523	63	7	11	196 1545 3091 39 4 49 4691 5743 807 81	AHR CYP 1B1 HIF1 A LDLR NCL PTG S2 COL18 A1	-1.2 C	luster4
GO Biolog	19 GO:0006979	response to oxidative stress	19_GO:0050896 response to stimulus	-3.9	7.9	6	30304	366	63	6	9.5	3.7 ¹⁵⁴⁵ 1718 3091 4 257 5743 7356	CYP1B1 DHCR24 HIF1A M GST1 PT GS2 SCG B1A1	-1.2 C	luster4
GO Biolog	19 GO:0071396	cellular response to lipid	19_GO:0050896 response to stimulus	-3.9	6.3	5.7	30304	531	63	7	11	196 367 1545 394 4 9 4257 8915 2323 6	AHR[AR] CYP1B1] LDLR[M GST1[BC L10[PLCB 1	-1.2 C	luster4
GO Biolog	19 GO:0001944	vasculature development	19_GO:0032502 developmental process	-3.9	6.2	5.6	30304	543	63	7	11	196 1545 3091 39 4 49 4691 5743 807 81	AHR CYP 1B1 HIF1 A LDLR NCL PTG S2 COL18 A1	-1.1 C	luster4
GO Biolog	19 GO:0033628	regulation of cell adhesion mediated by integrin	19_GO:0050789 regulation of biological process	-3.8	29	9.1	30304	49	63	3	4.8	2.7 1545 4582 5420	CYP1B1 MUC1 PO DXL	-1.1 C	luster4
GO Biolog	19 GO:0010951	negative regulation of endopeptidase activity	19_GO:0048519 negative regulation of biological process	-3.8	15	7.3	30304	128	63	4	6.3	3.1 ^{12 1718 3428 665} 3	SERPINA 3 DHCR2 4 IF116 S ORL1	-1.1 C	luster4
GO Biolog	19 GO:0006954	inflammatory response	19_GO:0050896 response to stimulus	-3.8	6.1	5.5	30304	555	63	7	11	4 12 1116 1535 309 1 3428 3554 6364	SERPINA 3 CHI3L1 CYBA HI F1A IFI16 IL1R1 CC L20	-1.1 C	luster4
GO Biolog	19 GO:0071320	cellular response to cAMP	19_GO:0050896 response to stimulus	-3.8	29	9	30304	50	63	3	4.8	2.7 196 1545 3709	AHR CYP 1B1 ITPR 2	-1.1 C	luster4

Table S12	Univariable cox	x-ph regression analysis		
	beta	HR (95% CI for HR)	wald.test	p.value
Fraction Genome Altered	-0.29	0.75 (0.38-1.5)	0.7	0.4
Neoplasm Histologic Grade	0.28	1.3 (0.92-1.9)	2.3	0.13
Mutation Count	-0.011	0.99 (0.98-1)	11	0.00077
Platinum Status	-1.4	0.25 (0.18-0.35)	72	1.8E-17
TMB (nonsynonymous)	-0.33	0.72 (0.6-0.87)	11	0.00071
Tumor Stage 2009	0.25	1.3 (1.1-1.5)	10	0.0015
EC3_Endo_ESM1	0.47	1.6 (1.1-2.4)	5.2	0.022

Table S13 qPCR primers

Gene-oligo name	sequences 5'-3'
ESM1-forward	ACTTGCTACCGCACAGTCTCAG
ESM1-reverse	AATCCATCCCGAAGGTGCCGTA
ACTIN-forward	GAGCTACGAGCTGCCTGACG
ACTIN-reverse	GTAGTTTCGTGGATGCCACAG

Table S14 CRISPR gRNA and ICE analysis primers	
CRISPR gRNA	Spacer sequences without PAM
TGFB1 TGFBR1 LAMA4	GGCACCTCCCCTGGCTCGG TTGACTTAATTCCTCGAGAT TGACATTGAAGGGAGCTCAG
ICE primers	Primer sequences (5'-3')
TGFB1 forward	TTCGCTATCTCCTCCTCTCCAAGAC
TGFB1 reverse	TCCAAGCCTCCCCTCCACCACTG
TGFBR1 forward	
	AACCIOOOTCCAAATOTTOCTAC
TGFBR1 reverse	AACAGACCTCAGAGGAAGTCCAC
TGFBR1 reverse LAMA4 forward	AACAGACCTCAGAGGAAGTCCAC AGAGTCTAGCGGATGAACTCAGAG