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Summary

In this supplement, we provide technical details of our theoretical and statistical analysis. Sup-

plementary details of the SPf66 vaccine trial, including an overview of antimalarial treatment,

seasonality and age structure in symptomatic episodes, are presented in Appendix A. Appendix

B concerns the stochastic within-host framework in which we embed the exponential clock model,

including the derivation of an analytic likelihood for multiple recurrent infections. In Appendix

C, we address the calibration of the model to clinical recurrence data from the SPf66 vaccine

trial, encompassing parameter estimation using the Metropolis-Hastings algorithm and posterior

predictive checks for seasonality and age structure. The sensitivity of parameter estimates to

model misspecification — namely, parametric misspecification of the sporozoite batch size dis-

tribution; unmeasured heterogeneity in the force of inoculation; a hypnozoite fating probability

prel diverging from the Chesson strain; and a dampened force of inoculation in infants under

the age of two — is discussed in Appendix D. Analytic expressions for various quantities of

epidemiological interest, with accompanying derivations, are provided in Appendix E. Appendix

F is devoted to a discussion a of the calibrated model, centred on the 8 theses of vivax relapse

biology posited by White [1].
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Appendix A

Data from the SPf66 vaccine trial

A.1 Antimalarial treatment

A.1.1 Treatment regimens

Standard treatment regimens for the SPf66 cohort were as follows [3]:

• Vivax monoinfection: chloroquine 25 mg base/kg total dose over 3 days.

• Uncomplicated falciparum moninfection or mixed infection: artesunate 4 mg/kg per day

for 3 days and a single dose of mefloquine 25 mg base/kg on day 2 of treatment.

• Severe and complicated malaria: artemether, commencing with an intramuscular dose 3.2

mg/kg on day one and then 1.6 mg/kg daily, followed by artesunate-mefloquine combina-

tion treatment, as for uncomplicated falciparum malaria.

However, antimalarial treatment records diverge from these standard regimens on occasion and

are summarised in Table A.1 for completeness. Notably, artesunate monotherapy was adminis-

tered in 15.5% (n = 137 of n = 884) of consultations with a falciparum monoinfection diagnosis,

typically to hyperparasitaemic patients.

A.1.2 Post-treatment prophylaxis

We formulate a model of post-treatment prophylaxis informed by observed inter-consultation

intervals, stratified by diagnosis and treatment at baseline.
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Figure A.1: Inter-consultation intervals (prior to screening treatment failure) following standard an-

timalarial treatment i.e. chloroquine monotherapy (CQ) for vivax monoinfection; artesunate monother-

apy (AS) for falciparum monoinfection or artesunate-mefloquine combination therapy (AS+MQ) for

either falciparum monoinfection or mixed infections). For a child with ℓ clinical consultation records,

we report (ℓ − 1) inter-consultation intervals, stratified by baseline treatment and diagnosis. Frequency

distributions (truncated at 200 days but annotated with total counts) are shown in Panel A, while em-

pirical cumulative distribution functions are shown in Panel B.
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Diagnosis Recorded treatment No. consultations

Pv monoinfection

Chloroquine monotherapy 2180

Artesunate-mefloquine 35

Artesunate monotherapy 9

Pf monoinfection

Artesunate-mefloquine 720

Artesunate monotherapy 137

Quinine-tetracycline 9

Artemether 7

Artesunate-tetracycline 5

Mefloquine monotherapy 3

Quinine monotherapy 2

Chloroquine monotherapy 1

Pv+Pf mixed infection

Artesunate-mefloquine 266

Artesunate monotherapy 18

Chloroquine monotherapy 5

Quinine-tetracycline 2

Artesunate-tetracycline 2

Artemether 1

Table A.1: Number of recorded clinical consultations (prior to screening treatment failure), stratified

by diagnosis (via light microscopy) and antimalarial treatment regimen.

A.1.2.1 Protection against P. falciparum

Chloroquine does not appear to confer any protection against falciparum monoinfection, with an

immediate risk of falciparum monoinfection following chloroquine monotherapy (Figure A.1A).

Additionally, comparison of inter-consultation intervals following artesunate monotherapy ver-

sus artesunate-mefloquine combination therapy (Figure A.1B) suggest that mefloquine did not

confer extended protection against P. falciparum. These observations are concordant with con-

temporaneous evidence of widespread multidrug resistant P. falciparum [4].

A.1.2.2 Protection against P. vivax

We see differential patterns of extended prophylactic protection against P. vivax following the

administration of chloroquine versus mefloquine, both of which are slowly-eliminated. Chloro-

quine is known to give rise to a ‘prophylactic bunching’ phenomenon, whereby residual drug levels

(below the minimum inhibitory concentration) lead to the delayed manifestation, rather than

supression, of bloodstream infection [5]. Intervals between chloroquine-treated vivax monoinfec-
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Diagnosis Treatment Masking Bunching

P. vivax

Chloroquine monotherapy 15 days 20 days

Artesunate-mefloquine 35 days 0 days

Artesunate monotherapy 15 days 0 days

Other (no mefloquine) 15 days 0 days

P. falciparum

Chloroquine monotherapy 0 days 0 days

Artesunate-mefloquine 15 days 0 days

Artesunate monotherapy 15 days 0 days

Other 15 days 0 days

Table A.2: Prophylactic masking and bunching periods for each drug regimen.

tions exhibit a unimodal characteristic, with a mode of approximately 35 days and a compar-

atively steep rise from 25 to 35 days (Figure A.1A). While this characteristic is influenced by

temporal auto-correlation in vivax recurrences (recent recurrence is a predictor of hypnozoite

carriage and consequently the risk of subsequent relapse), it is qualitatively consistent with pro-

phylactic bunching. In contrast, comparison of inter-consultation intervals following artesunate

monotherapy versus artesunate-mefloquine monotherapy (Figure A.1B) suggests that mefloquine

leads to the suppression, rather than just the delay, of vivax recurrence for an extended duration

of time.

A.1.3 Modeling post-treatment prophylaxis

For each drug regimen, we model post-treatment prophylaxis in two stages, each of fixed dura-

tion:

• An initial prophylactic ‘masking’ period, during which merozoites emerging from the liver

are unable to establish bloodstream infection i.e. any hypnozoite activation and/or imme-

diate development events are masked;

• A subsequent prophylactic “bunching” period, during which the manifestation of blood-

stream infection is potentially delayed i.e. any hypnozoite activation and/or immediate

development events within this window have a potentially delayed manifestation at the

end of the bunching window.

Bunching and masking periods, stratified by drug regimen and diagnosis, are detailed in Table

A.2.
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A.1.4 Screening treatment failure

Any consultation falling within the masking period (Table A.2) of a previous consultation is

flagged as a possible treatment failure; 33 such consultations are shortlisted. We handle these

cases as follows:

• If the malaria diagnosis is consistent across a flagged sequence of treatment failures and

the preceding episode (there are n = 14 such sequences, implicating n = 15 flagged con-

sultations), then we retain only the first episode but extend out the prophylactic masking

period from the time of the initial consultation, to the end of the prophylactic protection

period following the final consultation.

• If a diagnosis of vivax monoinfection is followed by a diagnosis of mixed infection within

3 days or less (there are n = 2 such cases), then we remove the initial vivax episode.

• If the initial diagnosis is a falciparum monoinfection that is either

– followed by a diagnosis of vivax monoinfection (n = 7 flagged consultations)

– followed by a diagnosis of mixed infection (n = 5 flagged consultations), but after the

falciparum prophylactic protection period for the previous consultation has lapsed

then we retain both episodes but set the period of prophylactic protection against vivax

malaria to be zero following treatment of the initial episode.

• If the initial diagnosis is a mixed infection followed by a diagnosis of vivax monoinfection

(n = 4 flagged consultations), then we retain only the initial mixed infection but extend out

the prophylaxis masking period for vivax malaria from the time of the initial consultation,

to the end of the prophylactic protection period following the final consultation.

After masking treatment failures, we retain 2211 of the 2224 vivax monoinfections; 871 of 884

falciparum monoinfections; and 293 of 294 mixed infections. The time at risk for each child

is adjusted for prophylactic masking, in addition to left- and right-censoring, and documented

absences from the camp. A summary of symptomatic episodes is provided in Table A.3.

A.2 Vivax after falciparum monoinfection

Of particular interest is the rate of vivax malaria following febrile falciparum malaria [6–9].

Kaplan-Meier survival curves from the time from each recorded falciparum monoinfection to the
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Age at enrolment (years) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall

Number of children 73 87 76 121 114 139 125 116 147 96 101 82 49 18 1344

Mean follow-up per child (years) 1.50 1.57 1.53 1.51 1.50 1.53 1.47 1.53 1.45 1.42 1.46 1.43 1.30 1.01 1.48

Number of Pv episodes 141 171 187 263 255 272 275 188 265 142 172 123 39 11 2504

Children with ≥ 1 Pv episode 44 57 50 88 74 80 81 65 82 51 51 43 21 5 792

(60%) (66%) (66%) (73%) (65%) (58%) (65%) (56%) (56%) (53%) (50%) (52%) (43%) (28%) (59%)

Mean Pv episodes per child 1.93 1.97 2.46 2.17 2.24 1.96 2.20 1.62 1.80 1.48 1.70 1.50 0.80 0.61 1.86

Pv incidence rate (per year) 1.42 1.37 1.80 1.60 1.66 1.40 1.67 1.16 1.37 1.14 1.28 1.14 0.66 0.63 1.39

Number of Pf episodes 58 76 72 122 102 108 117 88 125 91 95 65 38 7 1164

Children with ≥ 1 Pf episode 35 46 43 71 59 68 68 55 74 54 53 43 22 5 696

(48%) (53%) (57%) (59%) (52%) (49%) (54%) (47%) (50%) (56%) (52%) (52%) (45%) (28%) (52%)

Mean Pf episodes per child 0.79 0.87 0.95 1.01 0.89 0.78 0.94 0.76 0.85 0.95 0.94 0.79 0.78 0.39 0.87

Pf incidence rate (per year) 0.54 0.57 0.63 0.69 0.61 0.52 0.65 0.51 0.60 0.68 0.66 0.57 0.61 0.39 0.60

Number of mixed episodes 23 26 25 38 29 26 34 19 28 15 14 12 3 1 293

Children with ≥ 1 mixed episode 16 20 19 28 22 23 31 17 22 12 14 12 3 1 240

(22%) (23%) (25%) (23%) (19%) (17%) (25%) (15%) (15%) (13%) (14%) (15%) (6%) (6%) (18%)

Mean mixed episodes per child 0.32 0.30 0.33 0.31 0.25 0.19 0.27 0.16 0.19 0.16 0.14 0.15 0.06 0.06 0.22

Mixed incidence rate (per year) 0.23 0.21 0.24 0.23 0.19 0.13 0.21 0.12 0.15 0.12 0.10 0.11 0.05 0.06 0.16

Table A.3: Summary of episodes detected through active clinical follow-up (daily surveillance) in the SPf66 trial (after removing likely treat-

ment failures). Mixed infections are double-counted as both vivax and falciparum episodes. Age-stratified incidence rates are computed as

the ratio of the total number of symptomatic episodes recorded within an age group, and the cumulative time at risk adjusted for left/right-

censoring, documented absences from the camp and post-treatment prophylactic masking.
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Figure A.2: Kaplan-Meier survival curves for the time to vivax infection following falciparum

monoinfection, stratified by treatment with artesunate monotherapy (AS) vs artesunate-mefloquine

combination therapy (AS+MQ) prior to screening treatment failure. Panel A shows results for all

AS+MQ-treated falciparum monoinfections. Panel B shows results for a subset of AS+MQ-treated

falciparum monoinfections, that have been matched to AS-treated falciparum monoinfections for the

number of previously recorded vivax episodes and the time of the baseline falciparum monoinfection.

subsequent symptomatic vivax episode are shown in Figure A.2. We adjust for right-censoring,

but not interruptions in clinical follow-up due to documented absences from the camp. We strat-

ify baseline episodes by treatment with either artesunate monotherapy, or artesunate-mefloquine

combination therapy. Since artesunate monotherapy was typically administered to children

with repeated falciparum episodes (to treat hyperparasitaemic patients), we match the treat-

ment groups by the number of previous vivax episodes and the time of the baseline falciparum

monoinfection (to control for seasonality) using the nearest neighbour method implemented in

the R function MatchIt::match.data [10]. This should remove confounding by seasonality and

prior exposure. Survival analysis has been performed using the R function survival::survfit

[11].

Comparison of survival curves following artesunate monotherapy vs artesunate-mefloquine com-

bination therapy, after matching for the history of vivax malaria and seasonality (Figure A.2B),

suggests that mefloquine eliminates bloodstream infections which emerge in the first month after

treatment.
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Diagnosis < 150, 000/mm3 150, 000− 200, 000/mm3 > 200, 000/mm3

Pf monoinfection 40.9% 27.6% 31.5%

Pv monoinfection 34.0% 31.0% 35.0%

Pv+Pf monoinfection 41.6% 29.5% 28.8%

Table A.4: Summary of platelet counts recorded at each consultation (prior to screening treatment

failure).

Figure A.3: Platelet counts recorded at each consultation (prior to screening treatment failure), strat-

ified by diagnosis. The threshold for thrombocytopenia (platelet count below 150,000/mm3) is high-

lighted in blue.

A.3 Platelet counts

Thrombocytopenia is a feature of all human clinical malaria infections (platelet count< 150,000/mm3)

[12]. Platelet counts exceeding 200,000/mm3 are unusual for symptomatic malaria. Density plots

of platelet counts recorded at each clinical consultation are shown in Figure A.3, and summarised

in Table A.4. The relatively large proportion of consultations with normal platelet counts sug-

gests that some symptomatic malaria episodes may have been asymptomatic parasitemias with

coincident febrile viral infections.
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A.4 Observed age structure in the incidence of symptomatic

malaria

Here, we summarise observed age structure in the incidence of symptomatic malaria in the SPf66

cohort. Mixed infections are double-counted as both vivax and falciparum episodes. We define

age groups based on the age at enrolment (2 to 15 years).

Figure A.4: Overview of age structure in the incidence of symptomatic malaria in the SPf66 cohort.

(A) The aggregated incidence rate stratified by age group. Error bars depict 95% confidence intervals

generated through bootstrap resampling with 2000 replicates.

(B) Age-stratified empirical cumulative distribution functions (CDFs) for the incidence per individual

Y
(ℓ)
q /T

(ℓ)
q , annotated with p-values for the Kruskall-Wallis rank sum test and the Mack-Wolfe

test (with unknown peak) for umbrella alternatives [13].

For each child ℓ, of age a(ℓ), and each possible diagnosis q ∈ {Pf, Pv, mixed}, we compute the

total number of symptomatic episodes Y
(ℓ)
q with diagnosis q (after screening for treatment failure)

and the cumulative time at risk T
(ℓ)
q (adjusting for left- and right-censoring; any documented

absences from the camp and prophylactic masking).
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The aggregated incidence rate for a particular age group a is computed as the quotient

Iq(a) =

∑
ℓ 1{a(ℓ)=a}Y

(ℓ)
q∑

ℓ 1{a(ℓ)=a}T
(ℓ)
q

, (A.1)

and visualised in Figure A.4A. We generate 95% confidence intervals through bootstrap resam-

pling with 2000 replicates.

The incidence per individual is Y
(ℓ)
q /T

(ℓ)
q , and stratified by age group (Figure A.4B). We conduct

non-parametric rank sum tests to screen for age structure in the incidence per individual: the

Kruskall-Wallis test [13] is performed using the R function stats::kruskal.test [14], while the

Mack-Wolfe test for umbrella alternatives (with unknown peak) [13, 15] is performed using the R

function PMCMRplus::mackWolfeTest [16], with p-values estimated from bootstrap permutations

with 10000 iterations.

A.4.1 Immunity as a function of age

There is a large difference between P. falciparum and P. vivax in the age stratified risk of

symptomatic malaria infection by age. While there is no statistically meaningful age structure

in the age-stratified incidence rate of symptomatic falciparum malaria, there is a declining trend

from ages 8 to 15 in the incidence rate of symptomatic vivax malaria (Figure A.4A). Since

P. vivax and P. falciparum are transmitted by the same vectors in this setting, and the force

of infection for the two malaria species at the time of the study was similar, there is likely

no confounding by age in terms of transmission. We suggest that these differing patterns are

best explained by the accelerated acquisition of blood-stage immunity in vivax malaria due to

relapse; this is a well characterised feature of vivax malaria in low transmission settings. The

age stratified pattern of symptomatic malaria within the childhood years suggests that sustained

exposure to malaria in the participants since birth would have been sufficient to confer partial

anti-disease immunity against P. vivax, but not necessarily P. falciparum, up to age 15.

These deductions are concordant with a prospective study preceding the SPf66 trial which was

conducted in the same epidemiological setting [17], in which clinical follow-up and passive case

detection was supplemented by regular cross-sectional surveys (blood smears). Extended age

profiles of the incidence of vivax malaria showed a decreasing trend until age 25, and a plateau

thereafter. In children between 4 and 15 years of age, 57% of vivax infections were found to

be asymptomatic. The age profile for falciparum malaria in the same location (and under a

similar force of infection; EIR 0.5/person/year) was different with peak risk after the second

decade. Nevertheless P. falciparum showed a marked (and consistent over thousands of studied

patients) age related stratification in the risks of recrudescence at this study site. Thus, there

13



is strong evidence for the acquisition of antimalarial immunity across the population, but with

earlier acquisition for P. vivax – which we attribute to relapse.

A.5 Estimating transmission heterogeneity from the incidence

of symptomatic falciparum malaria

We estimate an upper bound for transmission heterogeneity in the SPf66 vaccine trial from

the incidence of symptomatic falciparum malaria. Given the apparent absence of statistically

meaningful age structure in the incidence of symptomatic falciparum malaria (Figure A.4), we

aggregate data across age groups.

A.5.1 A simple model of transmission heterogeneity

We assume that the incidence rate of symptomatic falciparum malaria (per child per year) in

the population is Gamma-distributed, that is, for each individual ℓ

λ(ℓ)
i.i.d.∼ Gamma(λ̄, κ)

parameterised by the population mean λ̄ and shape parameter κ. Conditional on λ(ℓ) = ζ, we

model the number of symptomatic falciparum recurrences Y
(ℓ)
Pf (corrected for treatment failure)

to follow a Poisson distribution

Y
(ℓ)
Pf

∣∣ζ ∼ Poisson
(
ζ · T (ℓ)

Pf

)
where T

(ℓ)
Pf is the cumulative time at risk (adjusted for left/right-censoring and post-exposure

prophylaxis). Here, we assume that symptomatic falciparum recurrences occur at constant rate

ζ, without accounting for seasonal fluctuations in mosquito inoculation, or systematic changes

in transmission over time.

Convolving over the Gamma distribution governing the incidence rate, it follows that

Y
(ℓ)
Pf

independent∼ NegativeBinomial
(
λ̄ · T (ℓ)

Pf , κ
)

where we have parametrised the negative binomial distribution by its mean and size parameter.

A.5.1.1 Metropolis-Hastings algorithm

We estimate the parameters λ̄ and log(κ) using the Metropolis-Hastings algorithm. We take a

flat improper prior on the positive real line for λ∗, and a normal prior for log(κ)

log(κ) ∼ Normal(0.5, 1).
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Figure A.5: Estimates of heterogeneity in the SPf66 vaccine trial, based on the incidence of symp-

tomatic falciparum malaria. Marginal posteriors are stratified by chain; the normal prior for log(κ) is

shaded grey.

We adopt a symmetric proposal distribution

λ̄∗ ∼ NR(λ̄′, (0.02/365)2) log(κ∗) ∼ N
(
log(κ′), 0.12

)
,

where NR(µ, σ2) denotes the rectified normal distribution, equivalent to the normal distribution

N (µ, σ2) with all negative values mapped to zero.

We initialise each chain by independently sampling

λ̄0 ∼ Uniform[0.2, 4] log(κ)0 ∼ Normal(0.5, 1).

We run the algorithm for 4 independent chains, each spanning 8000 iterations. The first 4000

iterations of each chain are discarded as the burn-in period.

A.5.2 Estimates of transmission heterogeneity

Marginal posteriors, annotated with the Gelman-Rubin convergence diagnostic (calculated using

Equation (1.1) of [18] after discarding the burn-in period) are shown in Figure A.5.

We estimate a population averaged incidence rate of 0.62 symptomatic falciparum episodes

per individual year (95% credible interval 0.57 to 0.66 episodes per individual per year). The

heterogeneity shape parameter log(κ) is estimated to be 0.62 (95% credible interval 0.355 to

0.943). To aid interpretability, we can transform κ to instead consider the proportion of symp-

tomatic falciparum episodes experienced by the top 20% of individuals (see Appendix E.3.3.1

for a derivation). Accordingly, we estimate that 43% of symptomatic falciparum episodes (95%

credible interval 40% to 47%) are experienced by the top 20% of hosts.

The incidence of symptomatic falciparum malaria is a correlate of mosquito inoculation. How-
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ever, our negative binomial (Gamma-Poisson mixture) model is neither adjusted for seasonal

fluctuations in mosquito inoculation, nor systematic changes in transmission intensity (most no-

tably, the sustained decline in P. falciparum transmission in the second half of the study). While

we adjust for variation in the overall duration of follow-up, we do not adjust for these temporal

effects. For instance, an individual followed-up in the first six months of the study period may

exhibit a higher cumulative risk of falciparum malaria than an individual followed-up in the

final six months of the study period, not because of population heterogeneity in transmission,

but because of systematic temporal shifts in transmission intensity. We therefore interpret the

proportion of symptomatic falciparum episodes experienced by the top 20% of individuals as an

upper bound for the proportion of bites experienced by the top 20% of individuals.

A.6 Pre-processing for model calibration

A.6.1 Discretised vivax infection states

For the purpose of model calibration, we discretise the study period into nobs = 65 windows,

each of length T = 10 days. Prior to applying the prophylactic masking and bunching periods

detailed in Table A.2, we shift each recorded clinical consultation to the midpoint of the relevant

window. Each window is assigned one of four possible states:

• Masking (state M): Hypnozoite activation and/or immediate sporozoite development

events can go unobserved due to lapses in clinical follow-up (due to left/right-censoring or

a documented absence from a camp) or prophylactic protection (whereby merozoites that

emerge from the liver are unable to establish bloodstream infection). We calculate the

total number of days within each window that are censored either due to interruptions in

active clinical follow-up or prophylaxis (i.e. overlap with the prophylactic masking period

of a previous consultation). If more than 5 days of a given window are censored in this

manner, then we mask observations in the relevant window. In most cases, if antimalarial

treatment is administered in window i, then to adjust for post-treatment prophylaxis, we

mask observations in window (i+ 1); and additionally windows (i+ 2) and (i+ 3) in the

event of mefloquine treatment (Table A.2). However, prophylactic masking periods are

adjusted for treatment failure in a small number of cases (Appendix A.1.4).

• Clinical consultation (state C): This indicates a window in which a clinical consulta-

tion was recorded, and which does not overlap for more than 5 days with the prophylactic

bunching period of a previous consultation; in effect, a hypnozoite activation and/or imme-
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diate sporozoite development event is assumed to give rise to a symptomatic bloodstream

infection without delay in this window.

• Bunching (state B): If a clinical consultation is recorded within a window that overlaps

for more than 5 days with the prophylactic bunching period of a previous consultation,

then we group together the set of windows overlapping with the said prophylactic bunching

period. We say that the hypnozoite activation and/or immediate sporozoite development

event giving rise to the relevant consultation may have occurred in any window within

this group. If chloroquine is administered in window i, then the corresponding bunching

period generally spans windows (i + 2) and (i + 3) (Table A.2) with some adjustments

for treatment failure (Appendix A.1.4); that is, given a hypnozoite activation and/or

immediate sporozoite development event in window (i + 2), we allow for the potentially

delayed manifestation of bloodstream infection in window (i+ 3).

• No clinical consultation (stateH): This indicates a window during which no clinical consul-

tation is recorded; that does not belong to the bunching group of a recorded consultation;

and for which less than 5 days are censored (due to either a lapse of clinical follow-up or

prophylactic masking).

For each child ℓ, we recover a vector C(ℓ) ∈ {M,C,B,H}nobs . To show how the discretised data

are represented, Figure A.6 shows the discretised vivax infection states for children aged 7 at

enrolment.

A.6.2 Seasonality

Hypnozoite latency periods obscure seasonality in the force of inoculation for P. vivax. The

incidence of falciparum infection is a more direct correlate of mosquito inoculation rates. We

estimate relative seasonal fluctuations in the force of inoculation for P. vivax from the incidence

of symptomatic falciparum infection (computed after screening for treatment failure, and cor-

recting the time at risk for left/right censoring, post-treatment prophylaxis and documented

camp absences). We assume that the force of inoculation for P. vivax is piecewise constant

over T = 10 day windows, and encode relative seasonal fluctuations in a seasonality vector S,

discretised over T = 10 day windows. To estimate S over the study period, we fit a cubic

smoothing spline (24 degrees of freedom, using the R function stats::smooth.spline [14]) to

the incidence of symptomatic falciparum infection averaged over the SPf66 cohort, calculated

in 20 day windows with a moving average across half-windows (Figure A.7). We normalise S to

yield a mean of one in the first 200 days of the study. We do not account for seasonal fluctuations
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Figure A.6: Discretised vivax infection states, adjusted for post-treatment prophylaxis, for children

aged 7 at enrolment.

Figure A.7: Seasonality estimate. Relative seasonal fluctuations in the incidence of symptomatic fal-

ciparum infection (calculated in 20 day windows with a moving average across half windows) are shown

in black. The smoothing spline fit is shown in blue.
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and systematic changes in transmission prior to the study period, whereby we set Si = 1 for all

windows i preceding the study.

We then parameterise the force of inoculation for P. vivax with a set of scaling factors, that is,

the force of inoculation in window i is given by the product of Si and a scaling factor Λ. Given

the concerted shift towards artemisinin-based combination therapies (ACT) for P. falciparum

across the camp in mid-1994 — and the consequent reduction in the transmission of P. falciparum

infection [19] — we accommodate a shift in the relative inoculation rates of P. falciparum vs

P. vivax by adopting the scaling factor Λ1 until day 200 (or window 20, this corresponds to

April 1994) of the study period, and the scaling factor Λ2 thereafter. Λ1 can be interpreted

as the “historical” force of inoculation preceding the study, and is an important determinant

of the initial hypnozoite burden. We calculate the ratio of the respective inoculation rates for

vivax and falciparum based on the unnormalised smoothing spline; that is, we interpret the daily

incidence rate, calculated over 20 day windows with a moving average over half-windows, as the

daily force of inoculation for P. falciparum.
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Appendix B

Theoretical framework

B.1 An open network of infinite server queues

B.1.1 The within-host framework of Mehra et al. [2]

We begin by recapitulating the short-latency within-host model of Mehra et al. [2], in which

each hypnozoite is susceptible to activation directly upon establishment in the host liver [20]. In

short, we construct an open network of infinite server queues, with nodes {H,A,D, P} (Figure

B.1) such that:

• node H corresponds to latent (but activatable) hypnozoites within the liver;

• node A corresponds to hypnozoites that have activated;

• node D corresponds to hypnozoites that have died before activating; and

• node P corresponds to primary infections.

The arrival process for the queueing network — corresponding to the sequence of infective

mosquito bites — is assumed to follow a non-homogeneous Poisson process with rate λ(t),

referred to hereafter as the force of inoculation. Associated with each arrival event is:

• With probability pprim, the initiation of a primary infection, whereby the occupancy of

node P increases by one.

• The addition of a batch of hypnozoites in the liver (geometrically-distributed with mean

size β and state space Z≥0), whereby the occupancy of node H increases by n with prob-
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Figure B.1: Schematic of the open network of infinite server queues used to model within-host liver-

and bloodstream infection. Adapted from Figure 1 of Mehra et al. (2022), arXiv:2208.10403 and Fig-

ure 3 of [2]. w.p.: with probability.

ability:

pn =
1

1 + β

( β

1 + β

)n
.

Independent stochastic processes govern the dynamics of each hypnozoite in node H. Each

hypnozoite remains in node H for an exponentially-distributed period of time, of mean duration

1/(α + µ), where-after it enters either node A with probability α/(α + µ); or node D with

probability µ/(α + µ). Here, we additionally impose a simple model of age-dependent anti-

disease immunity, whereby each primary infection (that is, arrival into node P ) and relapse

(that is, arrival into node A) is independently marked to be clinical with an age-dependent

probability pclin(a), and asymptomatic otherwise.

B.1.2 An extension allowing for sporozoite destiny

We modify the arrival process of the queueing network constructed in Mehra et al. [2] by

allowing for stochastic sporozoite fating. Each sporozoite is independently assigned one of two

fates: with probability (1−phyp), it undergoes immediate development, whereby it is routed into

queue P ; and with probability phyp, it forms a hypnozoite whereby it is routed into queue H.

As such, the probability of an infectious bite giving rise to a primary infection is dependent on

the size of the sporozoite inocolum, rather than being held fixed. The immediate development

of one or more sporozoites is assumed to give rise to a primary infection. Arrivals into queues

H and P , however, behave identically to the model detailed above.
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Figure B.2: Schematic of the extended within-host model, allowing for stochastic fating of each

sporozoite. Adapted from Figure 1 of Mehra et al. (2022), arXiv:2208.10403. w.p.: with probability.

B.1.2.1 A re-parameterised model

Each arrival into the queuing network depicted in Figure B.2 can take one of three routes:

• With probability (1 − phyp), it enters node P (that is, a sporozoite undergoes immediate

development).

• With probability phypα/(α + µ), it enters node H but is subsequently routed to node A

(that is, a sporozoite develops into a hypnozoite that subsequently activates).

• With probability phypµ/(α + µ), it enters node H but is subsequently routed to node D

(that is, a sporozoite develops into a hypnozoite that dies prior to activation).

Here, we are interested in the temporal distribution of hypnozoite activation events and imme-

diate sporozoite development events. This is equivalent to the temporal distribution of arrivals

into nodes A and P respectively. The occupancy of node D is completely unobservable using

data from bloodstream infections only. By preemptively marking each incoming sporozoite with

its eventual fate or destination, we can restrict ourselves to the “successful” subset of the sporo-

zoite inoculum that gives rise to either primary infection or relapse. Denote by Ssuccessful the

size of the successful sporozoite inoculum, and S the size of the total sporozoite inoculum, which

has PGF

E
[
zS
]
=
(
1 + β(1− z)

)−1
. (B.1)

Using the law of total probability, it is straightforward to show that

E
[
zSsuccessful

]
=
(
1 + β

(
1−

phypµ

α+ µ

)
(1− z)

)−1
,
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or equivalently,

Ssuccessful ∼ Geometric
( 1

ν + 1

)
(with support Z≥0) where we denote

ν := E[Ssuccessful] = β
(
1−

phypµ

α+ µ

)
.

Given a sporozoite is successful, it gives rise to a relapse with probability

prel =
phyp

α
α+µ

(1− phyp) + phyp
α

α+µ

.

Further, given a hypnozoite eventually activates, we can readily show that the time to activation

is exponentially-distributed with rate

η := α+ µ.

Omitting the node D corresponding to (unobservable) hypnozoite death, we can reparameterise

the queueing network in Figure B.2 to recover the system depicted in the main text. Interpre-

tation of the parameters {ν, prel} is slightly different however.

B.2 Derivation of model likelihood: binary clinical infection

states in discretised windows

Here, we characterise the temporal patterns of clinical recurrence that emerge under the theo-

retical framework. For simplicity, rather than treating consultation times as continuous random

variables, we discretise observations into uniform windows and assign each window a binarised

clinical infection state. Sporozoite inocula are assumed to be geometrically-distributed [20].

In Appendix B.2.1, we derive a multivariate PGF for the number of immediate sporozoite devel-

opment and hypnozoite activation events Ni in each window i. The assumption of a piecewise-

constant force of inoculation yields an analytic, closed-form expression for the multivariate PGF.

To account for anti-disease immunity, we impose an age-dependent masking effect that acts in-

dependently on each immediate sporozoite development and hypnozoite activation event and

governs the absence/presence of clinical symptoms (Appendix B.2.2). We then formulate a bi-

nary infection state ci ∈ {0, 1}, whereby Ci = 1 if at least one hypnozoite activation or reinfection

event gives rise to clinical symptoms in window i, and Ci = 0 otherwise. A procedure for recover-

ing the likelihood of a sequence of binary infection states C, drawing on the inclusion-exclusion

principle, is delineated in Appendix B.2.3. Given the use of slowly-eliminated antimalarials
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(namely, chloroquine and mefloquine) over the course of the SPf66 trial, we also propose a

simple observation model to account for extended periods of prohylaxis and the delayed man-

ifestation of subsequent bloodstream infection (‘prophylactic bunching’) following antimalarial

treatment [5] (Appendix B.2.4). An extension to allow for population heterogeneity in the form

of a Gamma-distributed force of inoculation [21] is detailed in Appendix B.2.5.

B.2.1 A multivariate PGF for the temporal distribution of immediate sporo-

zoite development and hypnozoite activation events

Consider a discrete set of times 0 < t1 < · · · < tn, with t0 = 0. Denote by Ni the number

of initiated bloodstream infections — that is, hypnozoite activation events and immediately-

developing sporozoite batches, or equivalently, arrivals into nodes A and P — in the interval

(ti−1, ti]. Here, we derive the multivariate probability generating function (PGF)

E

[
n∏

i=1

zNi
i

]
=

∞∑
ℓ1=0

· · ·
∞∑

ℓn=0

P (N1 = ℓ1, . . . , Nn = ℓn)
n∏

i=1

zℓii ,

which uniquely characterises the distribution of N = (N1, . . . , Nn). To do so, we condition

first on the size of an incoming sporozoite batch, and then the sequence of arrival/bite times,

following an analogous approach to [2, 22–24] and others. We denote by

B(u) = 1− e−ηu (B.2)

the cdf of the time to activation for each hypnozoite.

Suppose a successful sporozoite is inoculated at time tj−1 < τ < tj . Then the multivariate PGF

for the number of hypnozoite activation Hi and immediate sporozoite development Fi events in

each interval (ti−1, ti] can be expressed

E

[
n∏

i=1

xHi
i yFi

i

∣∣∣ sporozoite established at time tj−1 < τ < tj

]
= (1− prel)yj︸ ︷︷ ︸

immediate development

+ prel[1−B(tn − τ)]︸ ︷︷ ︸
hypnozoite activates after tn

+ prelB(tj − τ)xj︸ ︷︷ ︸
hypnozoite activates in (τ,tj ]

+
n∑

k=j+1

prel
[
B(tk − τ)−B(tk−1 − τ)

]
xk︸ ︷︷ ︸

hypnozoite activates in (tk−1,tk]

.

Under the assumption that each sporozoite is governed by an independent stochastic process, a
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batch arrival of M sporozoites at time tj−1 < τ < tj yields the PGF

E

[
n∏

i=1

xHi
i yFi

∣∣∣M sporozites established at time tj−1 < τ < tj

]

=
{
(1− prel)yj + prel

[
1−B(tn − τ) + xjB(tj − τ) +

n∑
k=j+1

xk
[
B(tk − τ)−B(tk−1 − τ)

]]}M
.

A routine application of the law of total expectation— accommodating a geometrically-distributed

sporozoite batch of mean size ν at time tj−1 < τ < tj — yields

E

[
n∏

i=1

xHi
i yFi

∣∣∣bite at time tj−1 < τ < tj

]

=

(
1 + ν

{
1− (1− prel)yj − prel

[
1−B(tn − τ) + xjB(tj − τ) +

n∑
k=j+1

xk
[
B(tk − τ)−B(tk−1 − τ)

]]})−1

.

(B.3)

Noting that Ni = Hi + 1{Fi ≥ 1} for a single inoculation, we use Equation (B.3) to recover the

joint PGF of N given a single inoculation at time tj−1 < τ < tj :

E

[
n∏

i=1

zNi
i

∣∣∣bite at time tj−1 < τ < tj

]

= zj

(
1 + νprel

[
B(tn − τ)− zjB(tj − τ)−

n∑
k=j+1

zk
[
B(tk − τ)−B(tk−1 − τ)

]])−1

+ (1− zj)

(
1 + ν(1− prel) + νprel

[
B(tn − τ)− zjB(tj − τ)−

n∑
k=j+1

zk
[
B(tk − τ)−B(tk−1 − τ)

]]})−1

.

(B.4)

Drawing on the independent increment property of non-homogeneous Poisson processes, we note

that the number of bites Sj in each disjoint interval (tj−1, tj ] are independent random variables,

with

Sj ∼ Poisson
(∫ tj

tj−1

λ(τ)dτ
)
.

Further, conditional on Sj = nj bites in the interval (tj−1, tj ], the (unordered) bite times

T
(j)
1 , . . . , T

(j)
nj are i.i.d. with pdf

fj(τ) =
λ(τ)∫ tj

tj−1
λ(τ)dτ

· 1{tj−1<τ<tj}.

Through a standard conditioning argument, in which we consider the number of bites Sj in

each disjoint interval (tj−1, tj ] followed by the conditional sequence of bite times T
(j)
1 , . . . , T

(j)
nj
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— with the critical assumption of mutual independence between hypnozoite activation times —

we obtain the multivariate PGF

E

[
n∏

i=1

zNi
i

]
= exp

{
−

n∑
j=1

∫ tj

tj−1

λ(τ)

(
1−E

[
n∏

i=1

zNi
i

∣∣∣bite at time tj−1 < τ < tj

])
dτ

}
.

(B.5)

Substituting Equation (B.3) into (B.5) yields the multivariate PGF for N:

E

[
n∏

i=1

z
Ni
i

]
= exp

{
n∑

j=1

∫ tj

tj−1

λ(τ)

[
− 1 + zj

(
1 + νprel

[
B(tn − τ)− zjB(tj − τ)−

n∑
k=j+1

zk
[
B(tk − τ)−B(tk−1 − τ)

]])−1

+(1− zj)

(
1 + ν(1− prel) + νprel

[
B(tn − τ)− zjB(tj − τ)−

n∑
k=j+1

zk
[
B(tk − τ)−B(tk−1 − τ)

]]})−1
]
dτ

}
.

(B.6)

For the service time distribution B(u) = 1 − e−ηu for node H, the assumption of a piecewise-

constant force of inoculation on each interval (tj−1, tj ], that is,

λ(t) = λj for all t ∈ (tj−1, tj ]

allows us to evaluate Equation (B.6) analytically. For convenience, we restrict ourselves hereafter

to uniformly separated intervals tj = jT . In this setting, we obtain

E

[
n∏

i=1

zNi
i

]
= exp

{
n∑

j=1

λj

∫ tj

tj−1

[
− 1 + zj

(
1 + νprel(1− zj)− νprelhj(z, t)e

ητ

)−1

+ (1− zj)

(
1 + ν(1− prelzj)− νprelhj(z, t)e

ητ

)−1
]
dτ

}
,

(B.7)

where we define

hj(z, t) = e−ηnT − zje
−ηjT + (1− e−ηT )

n∑
k=j+1

zke
−η(k−1)T .

Using standard integral 2.313.1 of [25], we compute

E

[
n∏

i=1

z
Ni
i

]
=

n∏
j=1

e−λjT

(
1−

(
1 + νprel(1− zj)

)(
1− e−ηT

)
1 + νprel − νprel

[
e−η(n−j+1)T + (1− e−ηT )

∑n
k=j zke

−η(k−j)T
])−

λjzj
η(1+νprel(1−zj))

(
1−

(
1 + ν(1− prelzj)

)(
1− e−ηT

)
1 + ν − νprel

[
e−η(n−j+1)T + (1− e−ηT )

∑n
k=j zke

−η(k−j)T
])−

λj(1−zj)

η(1+ν(1−prelzj).)

(B.8)

Now, consider a study period of duration nobsT . For an individual of age nageT at the onset

of the study, we account for a period of hypnozoite accrual
(
0, nage · T

]
during which initiated

bloodstream infections are unobserved/masked; but seek to recover the complete distribution of
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infection during the study period
(
nageT, (nage + nobs)T

]
. Reindexing

Vi := Ni+nage for i = {1, . . . , nobs},

we recover the multivariate PGF for V by plugging the vector

z =
(
z1 = 1, . . . , znage = 1, x1, . . . , xnobs

)
into Equation (B.8). This yields the expression

E

[ nobs∏
i=1

x
Vi
i

]
=

nage∏
j=1

e−λjT

(
1−

1− e−ηT

1 + νprele
−ηT (nage−j)

[
e−ηT − e−ηT (nobs+1) − (1− e−ηT )

∑nobs
k=1 xk · e−ηTk

])−
λj
η

nobs∏
j=1

e
−λj+nageT

(
1−

(
1 + νprel(1− xj)

)(
1− e−ηT

)
1 + νprel − νprel

[
e−η(nobs−j+1)T + (1− e−ηT )

∑nobs
k=j xke−η(k−j)T

])−
λj+nage

xj

η(1+νprel(1−xj))

(
1−

(
1 + ν(1− prelxj)

)(
1− e−ηT

)
1 + ν − νprel

[
e−η(nobs−j+1)T + (1− e−ηT )

∑nobs
k=j xke−η(k−j)T

])−
λj+nage

(1−xj)

η(1+ν(1−prelxj))

. (B.9)

Suppose the hypnozoite reservoir has reached stationarity under a constant force of inoculation

λ prior to the study period period. Then from [2], the hypnozoite burden H at time zero has

PGF

E
[
zH
]
=
(
1 + νprel(1− z)

)−λ
η .

Using the law of total expectation, the number of hypnozoite activation events Wi in window i

of the study period attributable to hypnozoites established prior to the study period takes the

form

E

[
n∏

i=1

zWi
i

]
=

(
1 + νprel

[
1− e−nobsT −

n∑
j=1

e−η(i−1)T (1− e−ηT )zj

])−λ
η

.

Therefore, in the limit nage → ∞ with λj = λ for all j ≤ nage, we obtain the expression

E

[ nobs∏
i=1

x
Vi
i

]
=

(
1 + νprel

[
1− e−ηnobsT −

n∑
i=1

e−η(i−1)T (1− e−ηT )xj

])−λ
η

nobs∏
j=1

e
−λj+nageT

(
1−

(
1 + νprel(1− xj)

)(
1− e−ηT

)
1 + νprel − νprel

[
e−η(nobs−j+1)T + (1− e−ηT )

∑nobs
k=j xke−η(k−j)T

])−
λj+nage

xj

η(1+νprel(1−xj))

(
1−

(
1 + ν(1− prelxj)

)(
1− e−ηT

)
1 + ν − νprel

[
e−η(nobs−j+1)T + (1− e−ηT )

∑nobs
k=j xke−η(k−j)T

])−
λj+nage

(1−xj)

η(1+ν(1−prelxj))

. (B.10)

B.2.2 Clinical infection states

Suppose an individual is of age a at the onset of the study period. To account for anti-disease

immunity, we assume that each initiated bloodstream infection (that is, a hypnozoite or rein-
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fection event) during the study period gives rise to clinical symptoms with probability pclin(a).

Here, we treat age a as a proxy for prior exposure. For notational convenience, we drop the

argument a hereafter.

Denote by Ui the number of clinical bloodstream infections initiated in each interval (ti+nage−1, ti+nage ]

of the study period. It follows that

Ui|Vi ∼ Binomial
(
Vi, pclin

)
.

A routine application of the law of total expectation allows us to recover the PGF for Ui from

that of Vi:

E

[
nobs∏
i=1

xUi
i

]
= E

[
nobs∏
i=1

(
1− pclin + pclinxi

)Vi

]
. (B.11)

From Equation (B.9), it follows that

E

[nobs∏
i=1

x
Ui
i

]
=

nage∏
j=1

e
−λjT

(
1 −

1 − e−ηT

1 + νprelpcline
−ηT (nage−j)

[
e−ηT − e−ηT (nobs+1) − (1 − e−ηT )

∑nobs
k=1

xk · e−ηTk
])−

λj
η

nobs∏
j=1

e
−λj+nage

T
(
1 −

(
1 + νprelpclin(1 − xj)

)(
1 − e−ηT )

1 + νprelpclin − νprelpclin
[
e−η(nobs−j+1)T + (1 − e−ηT )

∑nobs
k=j

xke
−η(k−j)T

])−
λj+nage

(1−pclin+pclinxj)

η(1+νprelpclin(1−xj))

(
1 −

(
1 + ν(1 − prel(1 − pclin) − prelpclinxj)

)(
1 − e−ηT )

1 + ν
(
1 − prel(1 − pclin)

)
− νprelpclin

[
e−η(nobs−j+1)T + (1 − e−ηT )

∑nobs
k=j

xke
−η(k−j)T

])−
λj+nage

pclin(1−xj)

η(1+ν(1−prel(1−pclin)−prelpclinxj))
.

(B.12)

B.2.3 Binarised clinical infection states

For the purposes of inference, we shift our attention to the binary variable

Ci = 1{Ui > 0}

describing the absence/presence of clinical symptoms in each interval (ti+nage−1, ti+nage ] of the

study period. Under our heavily-simplified model of anti-disease immunity, Ci = 1 with proba-

bility 1− (1− pclin)
n given Vi = n hypnozoite activation events or reinfection events with at at

least one immediately-developing sporozoite occur in window i.

The marginal likelihood of observing no clinical symptoms in window w can be computed by

plugging xw = 0, xk = 1 for all k ̸= w into Equation (B.8) to yield

P (Cw = 0) =

nage+w−1∏
j=1

e−λjT

(
1− 1− e−ηT

1 + νprelpclin(1− eηT )e−ηT (nage+w−j)

)−λj
η

e
−λw+nageT

[
1− 1−pclin

1+νprelpclin
− pclin

1+ν(1−prel(1−pclin))

](
1 + νprelpclin(1− e−ηT )

)λw+nage (1−pclin)

η(1+νprelpclin)
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(
1 + ν(1− prel)

1 + ν(1− prel) + νprelpclin(1− eηT )

) −λw+nagepclin

η(1+ν(1−prel(1−pclin))

. (B.13)

In the limit nage → ∞ with a constant force of infection λj = λ, from Equation (B.10), we

obtain the likelihood of no clinical recurrence in a follow-up period of length T :

P (C1 = 0) =e
−λT

[
1− 1−pclin

1+νprelpclin
− pclin

1+ν(1−prel(1−pclin))

](
1 + νprelpclin(1− e−ηT )

)−λ
η

(
1− 1−pclin

1+νprelpclin

)
(

1 + ν(1− prel)

1 + ν(1− prel) + νprelpclin(1− eηT )

)− λpclin
η(1+ν(1−prel(1−pclin)))

. (B.14)

We can also recover the joint likelihood of the C analytically from the joint PGF of U, given

by Equation (B.8). For notational convenience, given a set of parameters {λ, η, ν, pclin}, denote
the multivariate PGF for U by

f(x1, . . . , xnobs
) = E

[
n∏

i=1

xUi
i

∣∣∣λ, η, ν, pclin
]
.

As a base case, we observe that the conditional PGF of U given Unobs
= Cnobs

= 0 can be

written

E

[
nobs−1∏
i=1

xUi
i

∣∣∣Cnobs
= 0

]
· P (Cnobs

= 0)

=
∞∑

ℓ1=0

· · ·
∞∑

ℓnobs−1=0

P (U1 = ℓ1, . . . , Unobs−1 = ℓnobs−1, Unobs
= 0)

nobs−1∏
i=1

xℓii

=f(x1, . . . , x(nobs−1), 0),

while, given Cnobs
= 1, or equivalently, Unobs

> 0,

E

[
nobs−1∏
i=1

xUi
i

∣∣∣Cnobs
= 1

]
· P (Cnobs

= 1)

=

∞∑
ℓ1=0

· · ·
∞∑

ℓnobs−1=0

∞∑
ℓnobs

=1

P (U1 = ℓ1, . . . , Unobs−1 = ℓnobs−1, Unobs
= ℓnobs

)

nobs−1∏
i=1

xℓii

=f(x1, . . . , x(nobs−1), 1)− f(x1, . . . , x(nobs−1), 0).

If the observation Cnobs
is missing, then we marginalise the multivariate PGF over Unobs

to

obtain

E

[
nobs−1∏
i=1

xUi
i

]
=

∞∑
ℓ1=0

· · ·
∞∑

ℓnobs−1=0

P (U1 = ℓ1, . . . , Unobs−1 = ℓnobs−1)

nobs−1∏
i=1

xℓii
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= f(x1, . . . , x(nobs−1), 1).

By the inclusion-exclusion principle, it thus follows that

P
(
C = c

)
=

∑
y+∈S+(c)

f(y+)−
∑

y−∈S−(c)

f(y−) (B.15)

where

j(c) := {i ∈ {1, . . . , nobs} : ci non-missing} (B.16)

S+(c) :=
{
y ∈ {0, 1}nobs : yi = 1∀ i ∈ j(c)∁, yi ≤ ci ∀ i ∈ j(c),

∑
i∈j(c)

(ci − yi) even
}

(B.17)

S−(c) :=
{
y ∈ {0, 1}nobs : yi = 1∀ i ∈ j(c)∁, yi ≤ ci ∀ i ∈ j(c),

∑
i∈j(c)

(ci − yi) odd
}
. (B.18)

The time complexity of evaluating the likelihood P (C = c) scales exponentially with the number

of windows |c| for which clinical symptoms are observed: the joint PGF f is called 2|c| times to

compute the likelihood of P (C = c). As such, this approach is computationally viable only for

comparatively infrequent infection data, as seen in the SPf66 cohort (with at most 13 recorded

infections per individual over the course of the study period, after screening treatment failures).

While we can theoretically disentangle (a)symptomatic infection under this framework, exponen-

tial time complexity constrains inference on the basis of (a)symptomatic infection: to compute

the likelihood of an infection sequence with nc clinical windows; na confirmed asymptomatic

windows, and nu windows with no clinical infection but potentially unobserved asymptomatic

infection, the joint PGF f would need to be called 2nc · 3nu times. Given the temporal sparsity

of active detection and the low incidence of clinical infection in the SPf66 cohort, the majority

of discretised windows yield no clinical, but potentially unobserved asymptomatic infection. As

such, accounting for asymptomatic infection is computationally viable only for coarse windows

T .

B.2.4 Accounting for prophylactic protection and “bunching”

We adopt a simple model of prophylactic protection (spanning Imask windows) and bunching

(spanning Ibunch windows) following each treated recurrence. Specifically, given a clinical recur-

rence is treated in window i, we assume that:

• No immediately-developing sporozoites or hypnozoite activation events in windows (i +

1), . . . , (i + Imask) are able to successfully-establish bloodstream infection, whereby the

observations Ci+1, . . . , Ci+Imask
are masked/set to be missing.
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• Any immediately-developing sporozoites or hypnozoite activation events in windows (i+1+

Imask), . . . , (i+Imask+Ibunch) will bunch together and manifest in window (i+Imask+Ibunch);

that is, we define a new binary infection state at window (i+ Imask + Ibunch)

Bi+Imask+Ibunch := 1

{
Ibunch∑
j=1

Ui+Imask+j > 0

}
,

while masking the observations Ci+1+Imask
, . . . , Ci+Imask+Ibunch−1.

Application of the inclusion-exclusion principle to the multivariate PGF (B.8), as in Appendix

B.2.3 allows us to recover the likelihood of a sequence of binarised clinical recurrence states,

whilst accounting for periods of prophylactic protection and bunching associated with each bout

of antimalarial treatment.

B.2.5 Accounting for population heterogeneity in the force of inoculation

Suppose seasonality in the force of inoculation is encoded in the vector S = (S1, . . . , Sn), such

that λj = λSj for some scalar λ. To allow for population heterogeneity in the force of inoculation,

following the approach of [21], we model λ to be Gamma-distributed

λ ∼ Γ(κ, θ) =⇒ p(λ |κ, θ) = 1

Γ(κ)θκ
λκ−1e−

λ
θ

with the shape-scale parametrisation.

We note from Equation (B.12) that we can write the joint PGF for U in the form

E

[
nobs∏
i=1

xUi
i

∣∣∣λ, ν, η, pclin
]
= h(x,S, ν, η, pclin)

λ (B.19)

where

h(x,S, ν, η, pclin) = e
−T

∑n
j=1 Sj

nage∏
j=1

(
1 −

1 − e−ηT

1 + νprelpcline
−ηT (nage−j)

[
e−ηT − e−ηT (nobs+1) −

∑nobs
k=1

xk · e−ηTk
])−

Sj
η

nobs∏
j=1

(
1 −

(
1 + νprelpclin(1 − xj)

)(
1 − e−ηT )

1 + νprelpclin − νprelpclin
[
e−η(nobs−j+1)T + (1 − e−ηT )

∑nobs
k=j

xke
−η(k−j)T

])−
Sj(1−pclin+pclinxj)

η(1+νprelpclin(1−xj))

(
1 −

(
1 + ν(1 − prel(1 − pclin) − prelpclinxj)

)(
1 − e−ηT )

1 + ν
(
1 − prel(1 − pclin)

)
− νprelpclin

[
e−η(nobs−j+1)T + (1 − e−ηT )

∑nobs
k=j

xke
−η(k−j)T

])−
Sjpclin(1−xj)

η(1+ν(1−prel(1−pclin)−prelpclinxj))
.

(B.20)

Using the law of total expectation, we can marginalise Equation (B.19) with respect to λ ∼
Γ(κ, θ)

E

[
n∏

i=1

xUi
i

∣∣∣ ν, η, pclin, κ, θ
]
=

∫ ∞

0
E

[
n∏

i=1

xUi
i

∣∣∣λ, ν, η, pclin
]
· p(λ |κ, θ) dλ
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= Eλ

[
h(x,S, ν, η, pclin)

λ
]

=
(
1− θ log h(x,S, ν, η, pclin)

)−κ
(B.21)

where we have recognised the moment generating function (MGF) for the Gamma distribution.

Substituting Equation (B.20) into (B.21) yields the PGF of U, conditional on the parameter set

(S, ν, η, pclin) but marginalised with respect to λ ∼ Gamma(θ, κ):

E

[
n∏

i=1

x
Ui
i

∣∣∣S,ν, η, pclin, κ, θ

]

=

(
1 + θ

{
n∑

j=1

SjT +

nage∑
j=1

Sj

η(1 + νprel(1 − zj))
log

(
1 −

(
1 + νprel(1 − zj)

)(
1 − e−ηT )

1 + νprel − νprel
[
e−η(n−j+1)T + (1 − e−ηT )

∑n
k=j

zke
−η(k−j)T

])
n∑

j=1

Sj(1 − xj)
log

(
1 −

(1 + νpclin − νpclinxj)
(
1 − e−ηT )

1 + νpclin
(
1 − e−ηT (nobs−j+1))− νpclin

(
1 − e−ηT

)∑nobs
k=j

xk · e−ηT (k−j)

)})−κ

. (B.22)

Application of the inclusion-exclusion principle to the PGF (B.22), as detailed in Appendix

B.2.3, allows us to recover the likelihood binary infection state Ci = 1{Ui > 0} for a given set

of parameters {S, ν, η, pclin} whilst marginalising over λ ∼ Γ(κ, θ); the model of propyhlactic

protection and bunching proposed in Appendix B.2.4 also applies.
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Appendix C

Calibration to the SPf66 vaccine trial

C.1 Parameter estimation

C.1.1 Metropolis-Hastings algorithm

For the cohort of ncohort = 1344 children, indexed ℓ = 1, . . . , ncohort, we compute the likelihood

L
(
C(1), . . . ,C(ncohort)

∣∣Λ1,Λ2, ν, η, ρ, γ
)
=

ncohort∏
ℓ=1

L
(
C(ℓ)

∣∣Λ1,Λ2, ν, η, ρ, γ
)

using the analytic expressions derived in Appendix B.2, where known values/covariates (specif-

ically, the age n
(ℓ)
age of each child ℓ in units of T day windows; the seasonality vector S estimated

from the incidence of clinical falciparum episodes; and the ratio prel = 0.4 of sporozoites that

form hypnozoites, informed by in vivo experiments for the Chesson strain of P. vivax [26]) have

been dropped for notational convenience.

We take flat improper priors on (0,∞) for the parameters Λ1, Λ2, ν and η, but informative

priors for the parameters governing the age-dependent anti-disease masking curve

logit(ρ) ∼ N (0, 0.72) log(γ) ∼ N (0, 0.62).

To generate a candidate parameter set (Λ∗
1,Λ

∗
2, ν

∗, η∗, ρ∗, γ∗) given (Λ′
1,Λ

′
2, ν

′, η′, ρ′, γ′), we adopt

the symmetric proposal distribution

Λ∗
1 ∼ NR(Λ′

1, (0.02/365)
2)

Λ∗
2 ∼ NR(Λ′

2, (0.02/365)
2)

ν∗ ∼ NR(ν ′, 0.22)

η∗ ∼ NR(η′, 1/20002)
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logit(ρ∗) ∼ N
(
logit(ρ′), 0.052

)
log(γ∗) ∼ N

(
log(γ′), 0.052

)
where NR(µ, σ2) denotes the rectified normal distribution, equivalent to the normal distribution

N (µ, σ2) with all negative values mapped to zero.

Initial values (Λ′
1,Λ

′
2, ν

′, η′, ρ′, γ′) are sampled independently for each parameter from

Λ′
1,Λ

′
2 ∼ U [0.1/365, 1/365]

ν ′ ∼ U [0.5, 8]

η′ ∼ U [1/500, 1/50]

logit(ρ′) ∼ N
(
0, 0.72

)
log(γ′) ∼ N

(
0, 0.62

)
.

We aggregate results over 4 chains, spanning 100,000 iterations each, and discard the initial

20,000 iterations for each chain as the burn-in period. To assess convergence, we report Gelman-

Rubin diagnostic, calculated using Equation (1.1) of [18] after discarding the burn-in period.

C.1.2 Trace plots

Figure C.1: Trace plots for the Metropolis-Hastings fitting regime. The burn-in period is shaded in

grey. Averaging over seasonal fluctuations, Λ1 represents the mean force of inoculation up to day 200

of the study period, while Λ2 represents the mean force of inoculation thereafter.
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C.1.3 Pairwise posterior distributions

Figure C.2: Pairwise joint posterior distributions for each parameter pair (aggregated across chains

after discarding the burn-in period). Marginal posteriors for each parameter, stratified by chain, are

shown across the diagonal; prior distributions for {logit(ρ), log(γ)} are shown in grey (the other param-

eters have flat improper priors). Averaging over seasonal fluctuations, Λ1 represents the mean force of

inoculation up to day 200 of the study period, while Λ2 represents the mean force of inoculation there-

after.
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C.1.4 Summary of posterior estimates

A decline in malaria transmission was apparent in the second half of the study. Early detection

and prompt effective antimalarial treatment throughout the camp was likely a contributing fac-

tor. Falciparum malaria declined more than vivax malaria. The ratio of the vivax to falciparum

inoculation rates was estimated to rise from 0.61 (95% CrI 0.50 to 0.73) to 1.10 (95% CrI 0.89

to 1.34) after April 1994 following the widespread adoption of mefloquine-artesunate treatment

for falciparum malaria throughout the camp.

Quantity Interpretation Median [95% CrI]

1/η Average duration of hypnozoite carriage 171 [144, 206] days

log(2)/η Half-life of a hypnozoite in the liver 118 [100, 143] days

1− e−14η Prob of hypnozoite activation in a 2 week window 0.08 [0.07, 0.09]

1− e−28η Prob of hypnozoite activation in a 4 week window 0.15 [0.13, 0.18]

1− e−84η Prob of hypnozoite activation in a 12 week window 0.39 [0.33, 0.44]

1− e−168η Prob of hypnozoite activation in a 24 week window 0.63 [0.56, 0.69]

ν Average sporozoite batch size 6.9 [5.4, 8.7]

νprel Average hypnozoite batch size 2.7 [2.2, 3.5]

1− 1/(1 + ν(1− prel)) Probability of primary infection per bite 0.80 [0.77, 0.84]

νprel + prel/(1− prel) Ratio of expected relapse vs primary per bite 3.4 [2.8, 4.2]

Λ1 Average force of inoculation before day 200 0.57 [0.47, 0.69] year−1

Λ2 Average force of inoculation after day 200 0.50 [0.40, 0.60] year−1

Λ1(1− 1/(1 + ν(1− prel))) Average force of primary infection before day 200 0.46 [0.38, 0.54] year−1

Λ2(1− 1/(1 + ν(1− prel))) Average force of primary infection after day 200 0.40 [0.33, 0.48] year−1

Table C.1: Summary of posterior median estimates for quantities of epidemiological interest. Poste-

rior median estimates and 95% credible intervals are provided for each quantity.

C.2 Posterior predictive checks

C.2.1 Simulating symptomatic vivax episodes

To assess the model fit, we simulate symptomatic vivax episodes under the calibrated model;

falciparum episodes are not simulated. In generating posterior predictive data, we retain the

age distribution and clinical follow-up pattern of the SPf66 cohort. For each child ℓ in the

SPf66 cohort, we record the age at enrolment n
(ℓ)
age (in units of T day windows) and extract

a masking vector m(ℓ) ∈ {0, 1}nobs , where m
(ℓ)
i = 0 if at least 50% of window i was masked

for child ℓ due to left/right-censoring or a documented camp absence, and m
(ℓ)
i = 1 otherwise.
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We sample 2000 parameter combinations (λ, η, ν, ρ, γ) uniformly at random from the posterior

(without replacement). For each parameter combination, we simulate clinical recurrences across

nobs = 65 windows, each of length T = 10, for each child ℓ = 1, . . . , ncohort as follows.

Denote by λmax = maxλiSi. We simulate the timing of infectious mosquito bites from birth

until the end of the study period by thinning a homogeneous Poisson process with rate λmax.

We first sample

M (ℓ)
max ∼ Poisson

(
λmax(n

(ℓ)
age + nobs)T

)
.

Conditional on M
(ℓ)
max, we sample a sequence of prospective bite times τ

(ℓ)
1 , . . . , τ

(ℓ)

M
(ℓ)
max

indepen-

dently from the uniform distribution

τ
(ℓ)
1 , . . . , τ

(ℓ)

M
(ℓ)
max

i.i.d.∼ Uniform
[
0, (n(ℓ)age + nobs)T

]
.

Each prospective bite time τ
(ℓ)
q is placed into a window ⌈τ (ℓ)q /T ⌉, and retained with probability

λ⌈τ (ℓ)q /T ⌉S⌈τ (ℓ)q /T ⌉/λmax to yield a thinned set of bite times, denoted T
(ℓ)
1 , . . . , T

(ℓ)

Mℓ hereafter.

The sequence of recurrences associated with each bite j = 1, . . . ,M (ℓ) is then simulated as

per Appendix D.1.2.1, but with a geometrically-distributed sporozoite batch size. These data

are collated to recover a binary infection state I(ℓ) ∈ {0, 1}nobs , where I
(ℓ)
k = 1 if at least one

recurrence was simulated in the interval [(nage + k − 1)T, (nage + k)T ), and I
(ℓ)
k = 0 otherwise.

From the binarised sequence of infection states I(ℓ) and masking vector m(ℓ), we construct a

ternary infection sequence C(ℓ) ∈ {M,H,C}nobs corrected for post-treatment prophylaxis and

anti-disease masking (with C
(ℓ)
k =M indicating masking due to left/right-censoring, documented

camp absences or prophylaxis; C
(ℓ)
k = C indicating a detected and treated clinical recurrence

in window k and C
(ℓ)
k = H otherwise). We model post-treatment prophylaxis as follows: if

antimalarial treatment is administered in window ktreat, we mask clinical recurrences in window

ktreat + 1 (i.e. account for a period of complete prophylactic protection spanning T days), and

delay the detection of clinical recurrences in window ktreat +2 to window ktreat +3 (i.e. account

for a prophylactic bunching period spanning 2T days). For all k such that m
(ℓ)
k = 0, we set

C
(ℓ)
k = M . We then iterate across infection windows k = 1, . . . , nobs and perform the following

steps:

• If C
(ℓ)
k ∈ {H,M} has already been assigned, we leave as is.

• If C
(ℓ)
k = C has already been assigned or C

(ℓ)
k has not yet been assigned and I

(ℓ)
k = 1, we

simulate a Bernoulli random variable A
(ℓ)
k with success parameter pclin(n

(ℓ)
age) (computed

using the anti-disease masking parameters ρ and γ).
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– If A
(ℓ)
k = 1, we set C

(ℓ)
k = C corresponding to a clinical recurrence that has prompted

antimalarial treatment. We additionally set C
(ℓ)
k+1 =M (due to complete prophylactic

protection). If mk+2 = 1, then we set C
(ℓ)
k+2 = H; if additionally Ik+2 = 1 and

mk+3 = 1, then we set C
(ℓ)
k+3 = C (to adjust for prophylactic bunching).

– IfA
(ℓ)
k = 0, we set C

(ℓ)
k = H corresponding to an undetected asymptomatic recurrence.

• If C
(ℓ)
k has not yet been assigned and I

(ℓ)
k = 0, we set C

(ℓ)
k = H.

C.2.2 Seasonal fluctuations in the incidence of symptomatic vivax malaria

The aggregated incidence in window k is computed as

Wk =

∑
ℓ 1{C(ℓ)

k =C}∑
ℓ 1{C(ℓ)

k ̸=M}
,

and is shown in Figure C.3. We find that the model is unable to recapitulate seasonal fluctuations

in the incidence of symptomatic vivax malaria, particularly in the first 7 months of the study.

Figure C.3: Observed vs posterior predictive incidence by window, aggregated over age groups.

Points indicate medians, while error bars show 95% credible intervals for posterior predictive data.

We use the incidence of symptomatic falciparum malaria as a proxy for the force of inoculation.

It is likely that observed fluctuations in falciparum incidence were determined by variation in re-

crudescence rates across the camp more generally. In individuals not enrolled in the SPf66 trial,

uncomplicated falciparum malaria in the camp was largely treated with mefloquine monother-

apy until early 1994, with high rates of treatment failure [3, 27]. The persistence of gametocytes

following mefloquine monotherapy of resistant infections [19] likely had implications for P. fal-

ciparum transmission across the camp. This unaccounted variation in transmission due to
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falciparum treatment failure biases our estimates of seasonality in the force of inoculation for

vivax malaria.

C.2.3 Age structure in the incidence of symptomatic vivax

The simulated incidence rate for age group a is calculated as the quotient

R(a) =

∑
ℓ 1{n(ℓ)

age=a}
∑nobs

k=1 1{C(ℓ)
k =C}∑

ℓ 1{n(ℓ)
age=a}

∑nobs
k=1 1{C(ℓ)

k ̸=M}
.

Under the assumption of a homogeneous force of inoculation across age groups, posterior pre-

dictive data yield monotonic age structure in the incidence of symptomatic vivax malaria (see

main text). This is at odds with non-monotonicity in the observed age-stratified incidence rate

of symptomatic vivax malaria (Appendix A.4).

C.3 Rates of vivax recurrence in fixed follow-up windows

C.3.1 Posterior predictive distributions

Given a parameter vector θ := (Λ1,Λ2, ν, η, ρ, γ), we compute the likelihood of child ℓ experienc-

ing a vivax recurrence in windows w0 to w1 inclusive. In doing so, we condition on the history

of vivax recurrence C
(ℓ)
(w0)

= (C
(ℓ)
1 , . . . , C

(ℓ)
w0−1) prior to window w0. During windows w0 to w1

inclusive, we account for masking due to lapses in clinical follow-up (left- or right-censoring, or

a documented absence from the camp), or post-treatment prophylaxis due to the treatment of

falciparum monoinfection only. We thus define an additional vector C
(ℓ)
(w0,w1)

= (W
(ℓ)
1 , . . . ,W

(ℓ)
w1 )

such that W
(ℓ)
i = C

(ℓ)
i for i < w0, while for each window i ∈ {w0, . . . , w1}, we set W

(ℓ)
i = M if

window i is masked due to censoring or falciparum monoinfection prophylaxis, and W
(ℓ)
i = H

(corresponding to no hypnozoite and/or immediate sporozoite development events) otherwise.

Denote by V
(ℓ)
(w0,w1)

the indicator function that child ℓ experiences at least one vivax recurrence

in windows w0 to w1 inclusive, conditional on the history of vivax recurrence prior to window

w0. We compute the conditional probability

L
[
V

(ℓ)
(w0,w1)

= 1
∣∣ θ] = 1−

L
(
C(w0,w1)

∣∣ θ)
L
(
C(w0)

∣∣ θ) .

For a fixed follow-up period spanning Q windows, we identify a set of individuals and baseline

time points of interest S ⊂ {1, . . . , ncohort} × {1, . . . , nobs − Q}, such that for each (ℓ, w) ∈ S,

child ℓ is subject to at least partial clinical follow-up (adjusting for falciparum prophylaxis and
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censoring) in windows (w+1) to (w+Q) inclusive. Given a parameter vector θ, the proportion

of windows ψvivax(S) accompanied by a vivax recurrence is modeled to be the scaled sum of

a set of independent, but non-identical Bernoulli random variables (i.e. a Poisson binomial

distribution), that is,

ψvivax(S) | θ ∼
1

|S|
∑

(ℓ,w)∈S

V
(ℓ)
(w+1,w+Q)(θ)

where

V
(ℓ)
(w+1,w+Q)(θ)

independent∼ Bernoulli
(
L
[
V

(ℓ)
(w0,w1)

= 1
∣∣ θ]).

As a caveat, we note that the assumption of independence between the random variables

V
(ℓ)
(w+1,w+Q)(θ) is misspecified if multiple baseline windows w are considered for the same child

ℓ; the construction of a joint analysis across multiple follow-up windows, however, is unclear.

To generate posterior predictive distributions for ψvivax(S), we sample nposterior = 2000 param-

eter combinations θ uniformly at random (without replacement) from the posterior π(θ). We

then recover the posterior predictive distribution function

P (ψvivax(S) ≤ x) =
1

nposterior

nposterior∑
i=1

P (ψvivax(S) ≤ x | θi)

using the the Poisson-binomial distribution function implemented in the R package poisbinom

[28].

C.3.2 Confounding due to seasonality

To gauge confounding due to seasonality, we compare the observed vs posterior predictive rates

of vivax recurrence across the cohort in fixed follow-up windows (of length 20 to 80 days)

at various time points in the SPf66 trial; that is, for Q ∈ {2, . . . , 8} and w in the range 0

to 55 in increments of 5, we consider S(w) = {(ℓ, w) : ℓ ∈ {1, . . . , ncohort}}. The Poisson-

binomial independence assumption is justified for this analysis, because each child is considered

at most once for each baseline time point w and follow-up window Q. While seasonality leads

to systematic biases, observed rates (closed circles, Figure C.4) generally lie within 99% CrI for

posterior predictive distributions (error bars, Figure C.4).

40



Figure C.4: Rates of vivax recurrence in fixed follow-up windows at specified time points in the

SPf66 trial. Observed rates are shown with closed circles, while error bars show 99% CrI for posterior

predictive distributions.
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Appendix D

Sensitivity to model misspecification

D.1 On the assumption of geometric sporozoite batches

Our theoretical framework is predicated on the assumption of geometric batch sizes (originally

proposed byWhite et al. [20] based on a visual examination of sporozoite inoculum data collected

by Beier et al. [29]). This parametric form introduces constraints on the variance-to-mean ratio

of sporozoite batch sizes, that may not hold in practice. Here, we characterise the sensitivity of

our statistical framework to parametric misspecification of the sporozoite batch size.

D.1.1 An extention: negative binomial sporozoite batches

A natural generalisation — which can be motivated under a model of heterogeneity in mosquito

infectivity1 — is a negative binomial distribution governing the sporozoite batch size

S ∼ NegativeBinomial
( r

ν + r
, r
)

with PGF

E
[
zS
]
=
(
1 +

ν

r
(1− z)

)−r
,

parametrised by the mean inoculum size ν and the “success” parameter r.

The parameter r modulates overdispersion in sporozoite inocula. For r ≤ 1, we obtain a mode

of zero sporozoites with increasing zero inflation as r → 0; for r > 1, the mode is instead given

by ⌊ν(1 − 1
r )⌋, approaching the mean inoculum size ν in the limit r → ∞ whereby we recover

the Poisson distribution with mean ν. In the case r = 1, we recover the geometric distribution.

1Conditional on a mosquito infectivity coefficient ζ, we claim that sporozoite inocula are Poisson-distributed

with mean ζ, but allow ζ to follow a Gamma distribution with mean ν and variance ν2/r.
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Parameter Interpretation Values Units

λ Force of inoculation 0.5/365 day−1

η Hypnozoite activation rate {1/400, 1/200, 1/100} day−1

ν Mean sporozoite batch size {4, 6, 8} —

r Negative binomial ‘size’ parameter {0.25, 0.5, 1, 2} —

prel Hypnozoite fating probability 0.4 —

Table D.1: Simulated parameter sets for the analysis of sensitivity of geometric sporozoite batches

Keeping the mean inoculum size ν fixed, but reducing overdispersion (i.e. increasing r) augments

the probability of each infective bite giving rise to a primary infection

bprim := 1−
(
1 +

ν

r
(1− prel)

)−r
, (D.1)

in addition to reducing the expected disparity in the relapse burden conditional on the ab-

sence/presence of primary infection.

D.1.2 Simulation study details

D.1.2.1 A simulation framework assuming negative binomial sporozoite batches

We simulate vivax recurrences under the theoretical framework, allowing for negative binomial

sporozoite batches. For clarity, we ignore the effects of anti-disease masking (that is, we set

pclin(a) = 1 for all age groups a) and assume a constant force of inoculation, setting the season-

ality vector S = 1. We assume each observed recurrence is treated with a long-lived antimalarial,

adopting a simple model of prophylactic masking/bunching [5].

For each parameter combination {λ, η, ν, r, prel} detailed in Table D.1, we simulate a hypothetical

cohort of ncohort = 1120 individuals, with 80 children within each age group a = 2, 3, . . . , 15 years.

We assume complete follow up over a study period discretised into nobs = 65 windows, each of

length T = 10 days.

For an individual of age a (measured in years), the number of infective bites M(a) experienced

from birth until the end of the study period is sampled from a Poisson distribution

M(a) ∼ Poisson
(
λ · (365 · a+ nobsT )

)
.

Conditional on M(a), the respective bite times T1, . . . , TM(a) are sampled independently from

the uniform distribution

T1, . . . , TM(a)
i.i.d.∼ Uniform

[
0, 365 · a+ nobsT

]
.
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For each bite j, we simulate a sporozoite batch size

Sj ∼ NegativeBinomial
( r

ν + r
, r
)
.

Conditional on the sporozoite batch size Sj , the number of hypnozoites Hj that are destined to

activate later is sampled from a binomial distribution

Hj

∣∣Sj ∼ Binomial
(
Sj , prel

)
.

If Hj < Sj (i.e. at least one sporozoite established by bite j undergoes immediate development),

we record a primary infection at time Tj . We additionally record Hj relapses, with relapse i of

bite j occurring at time

R
(i)
j = Tj +A

(i)
j where A

(i)
j

i.i.d.∼ Exponential(η)

with the rate parametrisation of the exponential distribution.

For each window k = 1, . . . , nobs, we recover a binary infection state Ik with Ik = 1 if at

least one recurrence was recorded in the interval [365 · a + (k − 1)T, 365 · a + kT ) and Ik = 0

otherwise. To generate a quaternary infection sequence C ∈ {M,H,B,C}nobs corrected for post-

treatment prophylaxis (with Ck =M indicating masking due to propyhlaxis in window k; Ck =

C indicating a recurrence manifesting in window k; Ck = B indicating a hypnozoite activation

or immediate sporozoite development event with delayed manifestation due to prophylactic

bunching; and Ck = H otherwise), we iterate across infection windows k = 1, . . . , nobs and

perform the following steps:

• If Ck ∈ {H,M,B} has already been assigned, we leave as is.

• If Ck = C or Ck is yet to be assigned and Ik = 1, we set Ck = C and Ck+1 = M i.e.

we model a period of complete prophylactic protection spanning 10 days. Additionally, if

Ik+1 ̸= 0 or Ik+2 ̸= 0, we set Ck+2 = B and Ck+3 = C, corresponding to a prophylactic

bunching period spanning 20 days.

• If Ck is yet to be assigned and Ik = 0, we set Ck = H.

By mapping C to B, we recover a ternary infection sequence C′ ∈ {M,H,B}nobs .

D.1.2.2 An inferential framework assuming geometric sporozoite batches

We estimate the parameters {λ, η, ν} using the Metropolis-Hastings algorithm. Inference is

performed under the assumption of geometrically-distributed batch sizes, with the likelihood

of observing a given ternary sequence C′ ∈ {H,M,B}nobs for an individual of age a computed
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using the formulae derived in Appendix B.2. In light of computational constraints, we censor

windows following the 12th observed recurrence for each individual. We take flat improper priors

on (0,∞) for each parameter {λ, ν, η}, with (symmetric) rectified normal proposals

λ∗ ∼ NR(λ′, (0.02/365)2) ν∗ ∼ NR(ν ′, 0.22) η∗ ∼ NR(η′, 1/20002),

and initial values are sampled from uniform distributions

λ′ ∼ U [0.1/365, 1/365] ν ′ ∼ [0.5, 8] η′ ∼ [1/500, 1/50].

We run 4 chains over 32000 iterations, discarding the initial 16000 iterations of each chain as

the burn-in period.

D.1.2.3 Recapitulating the burden of primary infection and relapse

Notwithstanding parametric misspecification of the sporozoite batch size, we seek to recapitulate

the respective burden of relapse and primary infection. As such, we introduce:

• The force of primary bloodstream infection, defined to be the product of the force of

inoculation λ and the probability bprim of a primary infection associated with each bite

λprim(r) := λ
[
1−

(
1 +

ν

r
(1− prel)

)−r]
. (D.2)

• The relative burden of relapse vs primary infection, defined to be the ratio of the expected

number of activating hypnozoites νprel and primary infections bprim per bite

Yrelapse:prim(r) :=
νprel

1−
(
1 + ν

r (1− prel)
)−r . (D.3)

In particular, we seek to see whether the respective truth values λprim(r) and Yrelapse:prim(r)

for negative binomial sporozoite inocula (which are over-dispersed relative to the geometric

distribution in the case r < 1, and under-dispersed if r > 1) can be recapitulated by the

quantities λprim(1) and Yrelapse:prim(1) estimated under the inferential framework predicated on

geometric batch sizes.

D.1.3 Simulation study results

Marginal posteriors for a series of epidemiologically-plausible parameter sets are shown in Figure

D.1. In short, estimates for the force of inoculation λ and the mean batch size ν are sensitive to

parameteric misspecification of sporozoite inocula. For over-dispersed distributions (r < 1), λ is

systematically under-estimated to compensate for unaccounted zero-inflation in sporozoite inoc-
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(a) λ = 0.5 year−1, η ∈ {1/400, 1/200, 1/100} day−1, ν = 4, r ∈ {0.25, 0.5, 1, 2}, prel = 0.4

Figure D.1: Simulation study results. Marginal posteriors are stratified by chain.
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(b) λ = 0.5 year−1, η ∈ {1/400, 1/200, 1/100} day−1, ν = 6, r ∈ {0.25, 0.5, 1, 2}, prel = 0.4

Figure D.1: Simulation study results. Marginal posteriors are stratified by chain.
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(c) λ = 0.5 year−1, η ∈ {1/400, 1/200, 1/100} day−1, ν = 8, r ∈ {0.25, 0.5, 1, 2}, prel = 0.4

Figure D.1: Simulation study results. Marginal posteriors are stratified by chain.
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ula; while ν is systematically over-estimated to better capture over-dispersion in the simulated

risk of recurrence. The converse applies for under-dispersed distributions (r > 1). Estimates for

the hypnozoite activation rate η, however, appear to be more robust with proportionally little

systematic bias apparent for the simulated set of non-geometric sporozoite distributions.

Geometric batch sizes offer reasonable flexibility to recapitulate the burden of relapse vs primary

infection in spite of parametric misspecification of the sporozoite batch size. Estimates for the

force of primary infection λprim appear to exhibit little systematic bias. For over-dispersed

sporozoite distributions with long right tails (i.e. small r), estimates for the ratio of relapse

vs primary infection per bite Grelapse:prim tend to be downward-biased (but less severely than

estimates for the mean sporozoite batch size ν): we postulate that this occurs due to overlap in

hypnozoite activation events following large sporozoite inoculations.

D.2 On the assumption of a homogeneous force of inoculation

We perform inference under the assumption of a homogeneous force of inoculation. To assess the

sensitivity of our inferential framework to heterogeneity in the force of inoculation, we conduct

a simulation study whereby recurrence data are simulated under a Gamma-distributed force

of inoculation [21]; but inference is performed under a mis-specified model predicated on a

homogeneous force of inoculation.

D.2.1 Simulation study details

We generate data under the simulation framework detailed in Appendix D.1.2.1, with the excep-

tion that the (time-constant) force of inoculation for each individual i is independently sampled

from the Gamma distribution

λ∗i ∼ Gamma(λ̄, κ)

parametrised by the population mean λ̄ and shape parameter κ. In the limit κ→ ∞, we recover

a homogeneous force of inoculation.

To aid interpretation, we can alternatively parametrise the Gamma distribution with respect to

the proportion of bites collectively experienced by the 20% of individuals subject to the highest

transmisison intensity:

P0.8 = 0.2 +
1

Γ(κ+ 1)
Xκ

0.8e
−X0.8

where X0.8 denotes the 0.8 quantile of the Gamma distribution with scale parameter one and
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Parameter Interpretation Values Units

λ Population mean force of inoculation {0.25/365, 0.5/365} day−1

κ Shape parameter for force of inoculation {0.245, 1.15, 2.485, 9.1,∞} —

P0.8 Proportion bites in top 20% hosts {0.8, 0.5, 0.4, 0.3, 0.2} —

η Hypnozoite activation rate {1/400, 1/200, 1/100} day−1

ν Mean sporozoite batch size 6 —

prel Hypnozoite fating probability 0.4 —

Table D.2: Simulated parameter sets for the sensitivity analysis pertaining to homogeneity in the

force of inoculation

shape parameter κ (see Appendix E.3.3.1 for a derivation). Simulated sporozoite batch sizes

are geometrically-distributed (r = 1). Recurrence data (spanning nobs = 65 windows, each of

length T = 10 days, for 80 individuals each of ages a = 2, . . . , 15 years) are simulated for each

parameter combination detailed in Table D.2.

Due to computational constraints, we right censor windows following the 12th observed recur-

rence for each individual. Parameter estimation is then performed using the Metropolis-Hasting

algorithm, as described in Appendix D.1.2.2.

D.2.2 Simulation study results

Marginal posterior distributions are shown in Figure D.2 for a range of parameter values that

may be plausible in low transmission settings. In the presence of population heterogeneity

in the force of inoculation, the sporozoite batch size ν is systematically overestimated, while

both the activation rate η and the (population mean) force of inoculation λ are systematically

underestimated, relative to the known parameter values under which recurrence data have been

simulated, using a misspecified model predicated on a homogeneous force of inoculation. Under

a misspecified model predicated on a homogeneous force of inoculation, highly overdispersed and

zero-inflated patterns of incidence across individuals are best explained by infrequent infective

bites that yield a large number of relapses; the duration of hypnozoite carriage is systematially

inflated to allow these relapses to manifest over an extended period of time. However, the extent

of bias is heavily-dependent on the degree of heterogeneity in the force of inoculation. For the

simulated parameter set, we see little bias in the hypnozoite activation rate η when 30% of bites

are collectively experienced by the top 20% of human hosts; but potentially more than two-fold

underestimation when 80% of bites are experienced by 20% of hosts.
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(a) λ = 0.25 year−1, η ∈ {1/400, 1/200, 1/100} day−1, ν = 6, P0.8 ∈ {0.2, 0.3, 0.4, 0.5, 0.8}, prel = 0.4

Figure D.2: Simulation study results. Marginal posteriors are stratified by chain.
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(b) λ = 0.5 year−1, η ∈ {1/400, 1/200, 1/100} day−1, ν = 6, P0.8 ∈ {0.2, 0.3, 0.4, 0.5, 0.8}, prel = 0.4

Figure D.2: Simulation study results. Marginal posteriors are stratified by chain.
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D.2.3 Transmission heterogeneity in the SPf66 vaccine trial

We would expect substantially less transmission heterogeneity in the SPf66 vaccine trial — which

was conducted predominantly in school-aged children in a large refugee camp — than a “typ-

ical” epidemiological setting. Under a negative binomial (Gamma-Poisson mixture) model, we

estimate that 43% of symptomatic falciparum episodes (95% credible interval 40% to 47%) were

experienced by the top 20% of hosts; treating the incidence of symptomatic falciparum malaria

as a correlate of mosquito inoculation, we interpret this as an upper bound for transmission

heterogeneity in the SPf66 vaccine trial (Appendix A.5). On the basis of our simulation study,

this degree of heterogeneity in the force of inoculation is unlikely to yield a drastic departure

from estimates under the misspecified model predicated on transmission homogeneity. Upon

examination of Figure D.2, we suggest that the hypnozoite activation rate η is unlikely to be

underestimated by more than 30% (average duration of carriage of 120 vs 170 days); while the

sporozoite batch size ν is unlikely to be overestimated by more than 40% (average size of ∼ 5

vs ∼ 7). These are the key parameters of interest that we assume to be generalisable across epi-

demiological settings when deriving metrics of epidemiological interest (Appendix E). As such,

we suggest that unmeasured transmission heterogeneity in the SPf66 vaccine trial is unlikely to

yield a substantial departure from our findings.

D.3 Hypnozoite fating probability prel

The probability prel = 0.4 that a “successful” sporozoite will form a hypnozoite that is destined

to activate vs undergo immediate activation is informed by in vivo experiments for the Chesson

strain of P. vivax [26], with origins in the island of New Guinea [30]. For completeness, we per-

form a sensitivity analysis for the hypnozoite fating probability prel ∈ {0.1, 0.25, 0.4, 0.6, 0.75, 0.9},
using the Metropolis-Hastings regime detailed in Appendix C.1.1 for the SPf66 vaccine trial data.

Marginal posterior densities, stratified by chain, are shown in Figure D.4. In short, we attain

consistent estimates for the hypnozoite activation rate η and the mean hypnozoite batch size

νprel as the hypnozoite fating probability prel is varied. While estimates for the force of inocu-

lation (particularly in the first 200 days of the study) appear to be somewhat sensitive to the

hypnozoite fating probability prel, estimates for the expected cumulative number of hypnozoites

and primary infections acquired over the course of a year

Btotal = λ
(
1− 1

1 + ν(1− prel)
+ νprel

)
(i.e. the product of the average yearly force of inoculation and the expected number of primary
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infections and hypnozoites established by each bite) are generally consistent as prel is varied.

D.4 Age stratification in the force of inoculation

It is plausible that non-monotonic age structure in the incidence of symptomatic vivax malaria

is a consequence of age-stratification in mosquito inoculation rates. We therefore perform ad-

ditional model fits under the assumption that each individual experiences a dampened force of

inoculation from birth until age 2, adjusted by a fixed factor u ∈ {0.1, 0.25, 0.5, 0.75, 1}. In the

extreme case u = 0, the hypnozoite reservoir accrues only from age 2 onwards, while in the case

u = 1 there is no age-stratification in the force of inoculation. Model calibration is performed

using the Metropolis-Hasting algorithm outlined in Appendix C.1.1 for the SPf66 vaccine trial

data, with appropriate age-dependent adjustments to the seasonality vector S for each child.

Posterior predictive symptomatic vivax recurrence data (discretised across nobs = 65 windows,

each of length T = 10 days) are simulated for 2000 parameter combinations (Λ1,Λ2, η, ν, ρ, γ)

sampled uniformly at random from the posterior (without replacement) — retaining the age

distribution and clinical follow-up pattern of the SPf66 cohort, and adjusting for post-treatment

prophylaxis — using the procedure detailed in Appendix C.2.1, likewise with appropriate age-

dependent adjustments to the seasonality vector S.

Marginal posterior densities for the force of inoculation Λ; hypnozoite activation rate η; mean

sporozoite batch size ν; the shape parameter γ for the age-dependent anti-disease masking

probability; and the shift parameter ρ (i.e. the proportion reduction in the probability of

symptomatic malaria for 2 vs 15 year olds) appear to be insensitive to the dampening factor

u (Figure D.3A). However, dampening the force of inoculation from birth to age 2 (u < 1)

better recapitulates non-monotonicity in the age-stratified incidence rate of symptomatic vivax

malaria (Figure D.3B). Given the estimated time-scale of hypnozoite carriage (approximately 6

months on average), we note that this non-montonicity is governed most strongly by the relative

reduction in the force of inoculation between the ages of 1 and 2: assuming a dampened force of

inoculation from birth to age 1, for instance, would not necessarily give rise to non-monotonic

age structure in the symptomatic incidence rate.
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Figure D.3: Estimates accounting for a dampened force of inoculation (parametrised by a fixed factor

u) between birth and age 2.

(A) Marginal posterior densities for each parameter, stratified by chain. R denotes the Gelman-

Rubin diagnostic, calculated using Equation (1.1) of [18] after discarding the burn-in period (i.e.

the initial 20,000 iterations of each chain).

(B) Observed vs posterior predictive incidence rate, stratified by age group. Error bars indicate 95%

confidence intervals for empirical data (generated by bootstrapping with 2000 replicates), and

95% CIs for data simulated under the posterior. Smoothing splines based on median incidence

rates (indicated with points) have been generated with ggplot::geom smooth [31] using the

method loess with default parameters.
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Figure D.4: Marginal posteriors for each estimated parameter, stratified by chain, for different hypnozoite fating probabilities prel ∈
{0.1, 0.25, 0.4, 0.6, 0.75, 0.9}; prior distributions for {logit(ρ), log(γ)} are shown in grey. Averaging over seasonal fluctuations, λ1 represents

the mean force of inoculation up to day 200 of the study period, while λ2 represents the mean force of inoculation thereafter. R denotes the

Gelman-Rubin diagnostic, calculated using Equation (1.1) of [18] after discarding the burn-in period (i.e. the initial 20,000 iterations of each

chain).
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Appendix E

Quantities of epidemiological interest

E.1 Recurrences following a single infective bite

Conditional on a hypnozoite batch of size H = h ≥ m, the mth inter-relapse interval

Tm|H=h≥m ∼ Exponential(η(h−m+ 1))

(where we have adopted the rate parametrisation of the exponential distribution). Using the

law of total expectation, we evaluate the moments

E[Tm|H ≥ m] =

∑∞
h=m

1
η(h−m+1)

( νprel
1+νprel

)h∑∞
h=m

( νprel
1+νprel

)h =
log(1 + νprel)

ηνprel

E[T 2
m|H ≥ m] =

∑∞
h=m

2
η2(h−m+1)2

( νprel
1+νprel

)h∑∞
h=m

( νprel
1+νprel

)h =
2Li2

( νprel
1+νprel

)
η2νprel

,

where Li2(·) denotes the polylogarithm function of order 2. The coefficient of variation for the

mth inter-relapse, given it occurs, can therefore be written

CV(Tm|H ≥ m) =
SD(Tm|H ≥ m)

E[Tm|H ≥ m]
=

√
2νprel · Li2

( νprel
1+νprel

)
− log(1 + νprel)2

log(1 + νprel)
.

Treating the time to first recurrence T1 as a baseline, we also consider the difference between

the mth and first inter-relapse intervals Tm − T1. Conditional on the hypnozoite batch size

H = h ≥ m, we note that Tm and T1 are conditionally independent. A similar application of

the law of total expectation thus yields

E[Tm − T1|H ≥ m] =

∑∞
h=m

[
1

η(h−m+1) −
1
h

]( νprel
1+νprel

)h∑∞
h=m

( νprel
1+νprel

)h
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=
log(1 + νprel)

νprel
−

Φ
( νprel
1+νprel

, 1,m
)

1 + νprel

where Φ(z, s, a) denotes the Hurwitz–Lerch transcendent.

Here, all infinite sums have been evaluated symbolically using Mathematica [32].

E.2 Metrics related to the hypnozoite burden

E.2.1 Size of the hypnozoite reservoir

From Equation (34) of [2], the size of the hypnozoite reservoir H(t) after a period of accrual t

has PGF

E
[
zH(t)

]
= exp

{∫ t

0
λ(τ)

[
− 1 +

1

1 + νprel(1− z)e−η(t−τ)

]
dτ

}
. (E.1)

Under a piecewise constant FORI λi over uniform windows of length T , we can evaluate Equation

(E.1) analytically to yield the size of the hypnozoite reservoir H(n) at the end of the nth window,

or equivalently, after period nT of accrual:

E
[
zH(n)

]
=

n∏
i=1

[
1 + νprel(1− z)e−η(n−i+1)T

1 + νprel(1− z)e−η(n−i)T

]λi
η

.

Using Equations (74) and (75) of [2], we can write the PMF for H(n) using complete exponential

Bell polynomials Bh:

P
(
H(n) = h) =

1

n!

(
n∏

i=1

[
1 + νprele

−η(n−i+1)T

1 + νprele−η(n−i)T

]λi
η
)

·Bh

(
x1(n), . . . , xh(n)

)
(E.2)

where

xk(n) =
1

η
(k − 1)!

n∑
i=1

λi
[
νprele

−η(n−i+1)T
]k · [ 1

(e−ηT + νprele−η(n−i+1)T )k
− 1

(1 + νprele−η(n−i+1)T )k

]
.

(E.3)

At stationarity (that is, in the limit t→ ∞) under a constant FORI λ, we show in [2] (Equation

(37)) that the size of the hypnozoite reservoir H∗ follows a negative binomial distribution with

PGF

E
[
zH∗] = (1 + νprel(1− z)

)−λ
η (E.4)
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and PMF

P (H∗ = n) =
Γ
(
λ
η + n

)
n! · Γ

(
λ
η

) (prelν)
n

(1 + prelν)
n+λ

η

where Γ(·) denotes the Gamma function.

E.2.2 Time to hypnozoite clearance following the cessation of mosquito trans-

mission

Suppose mosquito transmission is curbed completely from time t = nT onwards. Given an

individual harbours precisely h hypnozoites, the total time to hypnozoite clearance Tclear for an

individual has cdf

P
[
Tclear ≤ u |H(n) = h

]
=
(
1− e−ηu

)h
.

Using the law of total expectation, it thus follows that

P
[
Tclear ≤ u

]
=

∞∑
h=0

P (H(n) = h) ·
(
1− e−ηu

)h
= E

[
(1− e−ηu)H(n)

]
(E.5)

=
n∏

i=1

[
1 + νprele

−η[(n−i+1)T+u]

1 + νprele−η[(n−i)T+u]

]λi
η

. (E.6)

For a stationary hypnozoite reservoir under a constant force of inoculation λ, we obtain

P
[
T ∗
clear ≤ u

]
=
(
1 + νprele

−ηu
)−λ

η (E.7)

by substituting Equation (E.4) into (E.5).

To achieve spontaneous hypnozoite clearance with probability c in each individual, mosquito-

to-human transmission would therefore need to be interrupted for time

Tinterrupt(c) = max

{
0,

1

η
log

(
νprel

c−
η
λ − 1

)}
. (E.8)

E.3 Recent recurrence as a predictor of hypnozoite carriage

E.3.1 Joint distribution of the recurrence and hypnozoite burden

Here, we derive the joint distribution of number of recurrences Ni in discretised windows i, in

addition to the hypnozoite burden Rn at a desired endpoint n. We can derive the multivariate

PGF for Ni, Rn through a slight modification (highlighted in red) of the argument detailed in
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Appendix B.2. Specifically, given a successful sporozoite is inoculated at time tj−1 < τ < tj ,

the multivariate PGF for the number of hypnozoite activation Hi and immediate sporozoite

development Fi events in each interval (ti−1, ti], in addition to the hypnozoite burden in window

n can be written

E

[
wRn

n∏
i=1

xHi
i yFi

i

∣∣∣ sporozoite established at time tj−1 < τ < tj

]
= (1− prel)yj︸ ︷︷ ︸

immediate development

+ prel[1−B(tn − τ)]w︸ ︷︷ ︸
hypnozoite activates after tn

+ prelB(tj − τ)xj︸ ︷︷ ︸
hypnozoite activates in (τ,tj ]

+

n∑
k=j+1

prel
[
B(tk − τ)−B(tk−1 − τ)

]
xk︸ ︷︷ ︸

hypnozoite activates in (tk−1,tk]

.

An identical argument then allows us to recover the joint PGF of the hypnozoite burden Rnobs
at

the end of an observation period spanning nobs windows, in addition to the number of hypnozoite

activation and sporozoite developments Ui with the potential to cause clinical symptoms in

window i

Ui|Ni+nage ∼ Binomial
(
Ni+nage , pclin

)
.

For uniformly separated windows tj = jT , we obtain

E

[
w

Rnobs

nobs∏
i=1

x
Ui
i

]
=

nage∏
j=1

e
−λjT

(
1 −

1 − e−ηT

1 + νprelpcline
−ηT (nage−j)

[
e−ηT − we−ηT (nobs+1) − (1 − e−ηT )

∑nobs
k=1

xk · e−ηTk
])−

λj
η

nobs∏
j=1

e
−λjT

(
1 −

(
1 + νprelpclin(1 − xj)

)(
1 − e−ηT )

1 + νprelpclin − νprelpclin
[
we−η(nobs−j+1)T + (1 − e−ηT )

∑nobs
k=j

xke
−η(k−j)T

])−
λj(1−pclin+pclinxj)

η(1+νprelpclin(1−xj))

(
1 −

(
1 + ν(1 − prel(1 − pclin) − prelpclinxj)

)(
1 − e−ηT )

1 + ν
(
1 − prel(1 − pclin)

)
− νprelpclin

[
we−η(nobs−j+1)T + (1 − e−ηT )

∑nobs
k=j

xke
−η(k−j)T

])−
λjpclin(1−xj)

η(1+ν(1−prel(1−pclin)−prelpclinxj))
.

(E.9)

Differences to the joint PGF for Ui (Equation (B.12)) are highlighted in red.

If we allow the hypnozoite reservoir to reach stationarity prior to the study period, that is, we

take the limit nage → ∞ under a constant historical force of inoculation λ then we can write

E

[
w

Rnobs

nobs∏
i=1

x
Ui
i

]
=

(
1 + νprelpcline

−ηnobsT (1 − w) + νprelpclin

nobs∑
k=1

e
−η(k−1)T

(1 − e
−ηT

)(1 − zk)

)−λ
η

nobs∏
j=1

e
−λjT

(
1 −

(
1 + νprelpclin(1 − xj)

)(
1 − e−ηT )

1 + νprelpclin − νprelpclin
[
we−η(nobs−j+1)T + (1 − e−ηT )

∑nobs
k=j

xke
−η(k−j)T

])−
λj(1−pclin+pclinxj)

η(1+νprelpclin(1−xj))

(
1 −

(
1 + ν(1 − prel(1 − pclin) − prelpclinxj)

)(
1 − e−ηT )

1 + ν
(
1 − prel(1 − pclin)

)
− νprelpclin

[
we−η(nobs−j+1)T + (1 − e−ηT )

∑nobs
k=j

xke
−η(k−j)T

])−
λjpclin(1−xj)

η(1+ν(1−prel(1−pclin)−prelpclinxj))
.

(E.10)
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E.3.2 Accuracy of recent recurrence as a predictor of hypnozoite carriage

Under a constant force of inoculation λ, where the hypnozoite reservoir is likewise modeled

to reach stationarity, the joint PGF for the number of hypnozoite activation and/or immediate

sporozoite development events U in a window of length T , and the size of the hypnozoite resevoir

R at the end of that window, can be written

f(x,w) := E
[
xUwR] = (1 + νprel − νprel

[
we−ηT + x(1− e−ηT ])−λ

η

e−λT

(
1−

(
1 + νprel(1− x)

)
(1− e−ηT )

1 + νprel − νprel
[
we−ηT + x(1− e−ηT )

])− λx
η(1+νprel(1−x))

(
1−

(
1 + ν − νprelx

)
(1− e−ηT )

1 + ν − νprel
[
we−ηT + x(1− e−ηT )

])− λ(1−x)
η(1+ν−νprelx)

(E.11)

where we have set nobs = 1, pclin = 1 in Equation (E.9).

Suppose a serological test can, with perfect accuracy, detect whether an individual experienced a

bloodstream infection in the preceding T day window. Under the above conditions, the specificity

of this test in predicting hypnozoite carriage, or equivalently, the conditional probability that a

non-hypnozoite carrier has not experienced a recurrence in the preceding T day window, can be

computed using Equation (E.11):

hspec(λ) :=
P (U = 0, R = 0)

P (R = 0)
=
f(0, 0)

f(1, 0)
= e−

λTν
1+ν . (E.12)

Likewise, the sensitivity of the test, or equivalently, the conditional probability that a hypnozoite

carrier has experienced a recurrence in the preceding T day window, can be written

hsens(λ) :=
P (U > 0, R > 0)

P (R > 0)
=

1− f(0, 1)− f(1, 0) + f(0, 0)

1− f(1, 0)

=
1− (1 + νprel)

−λ
η

[
1− e−

λTν
1+ν

]
− e−λT

(
1 + νprel(1− e−ηT )

)−λ
η

(
1− (1+ν)(1−e−ηT )

1+ν−νprele−ηT

)− λ
η(1+ν)

1− (1 + νprel)
−λ

η

.

(E.13)

The positive predictive value, or the conditional probability of hypnozite carriage given a recur-

rence within the preceding T day window is given by

P (U > 0, R > 0)

P (U > 0)
=

1− f(0, 1)− f(1, 0) + f(0, 0)

1− f(0, 1)

=
1− (1 + νprel)

−λ
η

[
1− e−

λTν
1+ν

]
− e−λT

(
1 + νprel(1− e−ηT )

)−λ
η

(
1− (1+ν)(1−e−ηT )

1+ν−νprele−ηT

)− λ
η(1+ν)

1− e−λT
(
1 + νprel(1− e−ηT )

)−λ
η

(
1− (1+ν)(1−e−ηT )

1+ν−νprele−ηT

)− λ
η(1+ν)

,

(E.14)
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while the false omission rate takes the form

P (U = 0, R > 0)

P (U = 0)
= 1− f(0, 0)

f(0, 1)

= 1− e
λT
1+ν (1 + νprel)

−λ
η
(
1 + νprel(1− e−ηT )

)λ
η

(
1− (1 + ν)(1− e−ηT )

1 + ν − νprele−ηT

) λ
η(1+ν)

. (E.15)

E.3.3 Allowing for population hetereogeniety in the force of inoculation

To accommodate population heterogeneity, we model the force of inoculation λ to follow a

Gamma distribution [21]

λ ∼ Gamma(κ, θ)

where we have adopted the shape-scale parametrisation. The mean force of inoculation in the

population takes the form kθ, while scale parameter θ can be interpreted as the variance-to-mean

ratio for population heterogeneity in the force of inoculation.

For each individual in the population, we sample a force of inoculation λ∗ from this Gamma

distribution, and model the hypnozoite reservoir to reach stationarity under the inoculation rate

λ∗. Then by the law of total probability, the specificity of recent recurrence (within a preceding T

window) as a predictor of hypnozoite carriage — which we compute as the conditional probability

that a randomly-sampled individual from the population does not carry hypnozoites, given they

have not experienced any recurrences in the preceding T days — follows from the law of total

probability

h(het)neg (κ, θ) =

∫ ∞

0
hspec(λ) · p(λ|κ, θ)dλ =

(
1 +

θTν

1 + ν

)−κ

(E.16)

where we have used Equation (E.12) and recognised the moment generating function for the

Gamma distribution. Similarly, the sensitivity of recent recurrence (within a preceding T day

window) as a predictor of hypnozoite carriage — which we compute as the conditional probability

that a randomly-sampled individual from the population carries hypnozoites, given they have

experienced at least one recurrence in the preceding T days — can be computed

h(het)pos (κ, θ) =

∫ ∞

0
hsens(λ) · p(λ|κ, θ)dλ

= 1 +

(
η

θ log(1 + νprel)

)κ[
ζ

(
κ, 1 +

η

log(1 + νprel)

(
1

θ
+

Tν

1 + ν

))
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− ζ

(
κ,

η
θ + ηT + log

(
1 + νprel(1− e−ηT )

)
+ 1

1+ν log
(
1− (1+ν)(1−e−ηT )

1+ν−νprele−ηT

)
log(1 + νprel)

)]
(E.17)

using Equation (E.13) and integral 3.411.7 of [25], where ζ(·, ·) denotes the Hurwitz zeta function;
this expression can be evaluated using Mathematica [32].

E.3.3.1 A more intuitive formulation of population heterogeneity

To yield a more intuitive measure of population heterogeneity, we can reparameterise the Gamma

distribution by the force of inoculation averaged over the population Λ = κθ and the proportion

of bites P0.8 that are experienced by the 20% of individuals subject to the highest transmission

intensity. Denote by X0.8 the 0.8 quantile of the Gamma distribution with shape k and scale θ,

such that

Γ
(
κ, X0.8

θ

)
Γ(κ)

= 0.2

where Γ(·) denotes the Gamma function, and Γ(·, ·) denotes the upper incomplete Gamma

function. The proportion of bites experienced by the 20% of individuals subject to the highest

transmission intensity takes the form

P0.8 :=
1

κθ

∫ ∞

X0.8

1

Γ(κ)θκ
xκe−

x
θ dx =

Γ
(
κ+ 1, X0.8

θ

)
Γ(κ+ 1)

.

Using a standard recurrence relation for the upper incomplete Gamma function (identity 8.356.2

of [25]), we can write

P0.8 =
κΓ
(
κ, X0.8

θ

)
+
(
X0.8
θ

)κ
e−

X0.8
θ

Γ(κ+ 1)
= 0.2 +

1

Γ(κ+ 1)θκ
Xκ

0.8e
−X0.8

θ . (E.18)

E.3.4 Accuracy of an imperfect serological test for recent recurrence as a

predictor of hypnozoite carriage

Now, consider an imperfect serological test with specificity rspec and sensitiviy rsens as a predictor

for recent recurrence within a preceding T day window. Denote by R′ = 1{R ≥ 0} the indicator

that an individual harbours hypnozoites at the time of testing, and U ′ = 1{U ≥ 0} the indicator

that an individual experiences at least one recurrence in the preceding T day window. We make

the assumption that

rsens = P (positive test |U ′ = 1) = P (positive test |U ′ = 1, R′),

rspec = P (negative test |U ′ = 0) = P (positive test |U ′ = 0, R′).
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Then by the law of total probability, granted the hypnozoite reservoir has reached stationarity

under a constant force of inoculation λ, the specificity of the test as a predictor of hypnozoite

carriage takes the form

sspec(λ) = (1− rsens) + (rsens + rspec − 1)hspec(λ)

where hspec(λ) is given by Equation (E.12). Similarly, the sensitivity of the serological test as a

predictor of hypnozoite carriage can be written

ssens(λ) = (1− rspec) + (rsens + rspec − 1)hsens(λ)

where we hsens(λ) is given by Equation (E.13). An analogous functional form holds in the

presence of population heterogeneity in the force of inoculation.

E.4 On the classification of relapse vs primary infection

The classification of an observed vivax recurrence as a primary infection vs relapse is of epi-

demiological interest, with possible implications for treatment and control [33]. Relapses and

primary infections, however, are typically indistinguishable in natural transmission settings.

Given the sequence of clinical recurrences recorded for a child, we can derive the probability

that a given recurrence is a relapse i.e. can be attributed to a hypnozoite activation event only.

In doing so, we leverage each inter-recurrence intervals recorded for a child (with recurrences in

quick succession characteristic of a recently-established hypnozoite batch); in addition to season-

ality. Probabilistic classifications for 7 year olds with at least two recorded clinical recurrences

(n = 56 children) are shown in Figure E.1.

E.4.1 Derivation: probabilistic classification under the within-host frame-

work

Probabilistic classification of observed recurrences necessitates the derivation of the multivariate

PGF for the number of relapses Hi and the number of primary infections Pi experienced in each

window i. We can derive this PGF using much the same reasoning as Appendix B.2 (differences

are highlighted in red for clarity). Given a single inoculation at time tj−1 < τ < tj , we can show

that

E

[
n∏

i=1

yPi
i z

Hi
i

∣∣∣ bite at time tj−1 < τ < tj

]

= yj

(
1 + νprel

[
B(tn − τ)− zjB(tj − τ)−

n∑
k=j+1

zk
[
B(tk − τ)−B(tk−1 − τ)

]])−1
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Figure E.1: Probabilistic classification of symptomatic vivax episodes for 7 year old children (n = 56)

with at least two vivax episodes. Predictions are predicated on posterior median estimates for each pa-

rameter η, ν, Λ1, Λ2, as well as the relative probability of symptomatic infection pclin(a) at age 7 com-

pared to age 2. Symptomatic vivax episodes are shown with boxes, shaded according to the computed

probability that they are attributable to hypnozoite activation event(s) only; dark grey boxes indicate

recurrences which could not be classified due to numerical errors. Light grey bars indicate masking, ei-

ther due to left/right-censoring, a documented absence from the camp or complete prophylactic protec-

tion following a previous bout of antimalarial treatment. Symptomatic falciparum episodes are marked

with crosses.
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+ (1− yj)

(
1 + ν(1− prel) + νprel

[
B(tn − τ)− zjB(tj − τ)−

n∑
k=j+1

zk
[
B(tk − τ)−B(tk−1 − τ)

]]})−1

.

(E.19)

As before, we impose the assumption of uniformly separated intervals tj = jT with a piecewise

constant force of inoculation λj . Setting

Wi

∣∣Pi+nage ∼ Binomial
(
Pi+nage , pclin

)
Ri

∣∣Hi+nage ∼ Binomial
(
Hi+nage , pclin

)
we follow an identical argument to Appendix B.2 to obtain

G(w,x) := E

[nobs∏
i=1

w
Wi
i x

Ri
i

]

=

nage∏
j=1

e
−λjT

(
1 −

1 − e−ηT

1 + νprelpcline
−ηT (nage−j)

[
e−ηT − e−ηT (nobs+1) − (1 − e−ηT )

∑nobs
k=1

xk · e−ηTk
])−

λj
η

nobs∏
j=1

e
−λjT

(
1 −

(
1 + νprelpclin(1 − xj)

)(
1 − e−ηT )

1 + νprelpclin − νprelpclin
[
e−η(nobs−j+1)T + (1 − e−ηT )

∑nobs
k=j

xke
−η(k−j)T

])−
λj(1−pclin+pclinwj)

η(1+νprelpclin(1−xj))

(
1 −

(
1 + ν(1 − prel(1 − pclin) − prelpclinxj)

)(
1 − e−ηT )

1 + ν
(
1 − prel(1 − pclin)

)
− νprelpclin

[
e−η(nobs−j+1)T + (1 − e−ηT )

∑nobs
k=j

xke
−η(k−j)T

])−
λjpclin(1−wj)

η(1+ν(1−prel(1−pclin)−prelpclinxj))
.

(E.20)

Application of the inclusion-exclusion principle allows us to recover the likelihood that each re-

currence is a relapse or primary infection. Under our framework, we do not constrain the number

of hypnozoite activation and/or immediate sporozoite development events in each window. As

such, a recurrence in window i can be attributed to both hypnozoite activation (relapse) and

immediate sporozoite development (primary infection). In particular, we note that

E

[
nobs−1∏
i=1

wWi
i xRi

i

∣∣∣∣∣Wnobs
= 0, Rnobs

> 0 i.e. relapse only at window nobs

]
= G(w1, . . . , wnobs−1, 0, x1, . . . xnobs−1, 1)−G(w1, . . . , wnobs−1, 0, x1, . . . xnobs−1, 0)

E

[
nobs−1∏
i=1

wWi
i xRi

i

∣∣∣∣∣Wnobs
> 0, Rnobs

= 0 i.e. primary infection only at window nobs

]
= G(w1, . . . , wnobs−1, 1, x1, . . . xnobs−1, 0)−G(w1, . . . , wnobs−1, 0, x1, . . . xnobs−1, 0)

E

[
nobs−1∏
i=1

wWi
i xRi

i

∣∣∣∣∣Wnobs
> 0, Rnobs

= 0 i.e. primary infection and relapse at window nobs

]
= G(w1, . . . , wnobs−1, 1, x1, . . . xnobs−1, 1)−G(w1, . . . , wnobs−1, 0, x1, . . . xnobs−1, 1)

−G(w1, . . . , wnobs−1, 1, x1, . . . xnobs−1, 0) +G(w1, . . . , wnobs−1, 0, x1, . . . xnobs−1, 0).
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E.5 Recurrences attributable to a single batch

Here, we examine the probability that successive recurrences are derived from different sporo-

zoite batches. We make the simplifying assumption of a constant force of inoculation λ. We

allow for the accrual of hypnozoites over the interval (0, Y ] before the study period (Y, Y +nT ],

discretised into n uniform windows of length T . We say that a batch “contributes” to the burden

of bloodstream infection in window j if either an inoculated sporozoite develops immediately,

or a hypnozoite activates in window j.

Suppose a baseline recurrence is observed in window 1, and that the next recurrence is recorded

in window n. Here, we seek to derive the probability that the same batch contributes to both

windows 1 and n. We denote the arrival time of batch i by τi, and set:

• Wi = 1 if batch i does not contribute to the burden of bloodstream infection in windows

2, . . . , (n− 1); and Wi = 0 otherwise.

• Vi = 1 if batch i contributes to the burden of bloodstream infection in windows 1 and n,

but not 2, . . . , (n− 1); and Vi = 0 otherwise.

The number of sporozoite batches M inoculated in the interval (0, Y + Tn]

M ∼ Poisson
(
λ(Y + nT )

)
.

Given M = m, the batch arrival times

τ1, . . . , τm
i.i.d.∼ Uniform[0, Y + nT ].

Suppose batch i is inoculated at time x, that is, τi = x. The probability that sporozoite ik of

batch i activates in windows 2, . . . , (n− 1) is given by

P (sporozoite ik contributes in windows 2, . . . , n− 1 | τi = x)

=


prele

−η(Y+T−x)(1− e−ηT (n−2)) if x ≤ Y + T

(1− prel) + prel
(
1− e−η(Y+(n−1)T−x)

)
if Y + T < x ≤ Y + (n− 1)T

0 if x > Y + (n− 1)T.

Since each sporozoite is modeled to be governed by an independent stochastic process, accounting
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for a geometrically-distributed sporozoite batch size using the law of total probability yields

P (Wi = 1 | τi = x) =


1

1+νprele−η(Y −x+T )(1−e−ηT (n−2))
if x ≤ Y + T

1
1+ν−νprele−η(Y +(n−1)T−x) if Y + T < x ≤ Y + (n− 1)T

1 if x > Y + (n− 1)T.

A further application of the law of total probability over the batch arrival time τi then yields

P (Wi = 1) =
1

Y + nT

∫ Y+nT

0
P (Wi = 1 | τi = x)dx

=
1

Y + nT

[
T − 1

η
log

(
1− 1− e−η(Y+T )

1 + νprele−η(Y+T )
[
1− e−ηT (n−2)

])

− 1

η(1 + ν)
log

(
1− (1 + ν)(1− e−ηT (n−2))

1 + ν − νprele−ηT (n−2)

)]

where we have used standard integral 2.313.1 of [25].

Likewise, given τi = x, we adopt similar reasoning — and the inclusion-exclusion principle —

to compute

P (Vi = 1) =



1
1+νprele−η(Y −x+T )(1−e−ηT (n−2))

− 1
1+νprele−η(Y −x+T )(1−e−ηT (n−1))

− 1
1+νprele−η(Y −x)(1−e−ηT (n−1))

+ 1
1+νprele−η(Y −x)(1−e−ηTn)

if x < Y

1
1+νprel−νprele−η(Y −x+T )(1−e−ηT (n−2))

− 1
1+νprel−νprele−η(Y −x+T )(1−e−ηT (n−1))

− 1
1+ν−νprele−η(Y +(n−1)T−x) +

1
1+ν−νprele−η(Y +nT−x) if Y < x ≤ Y + T

0 if x > Y + T.

Using the law of total probability to account for stochasticity in the batch arrival time τi, it

follows that

P (Vi = 1) =
1

Y + nT

∫ Y+nT

0
P (Vi = 1 | τi = x)dx

=− 1

η(Y + nT )

[
log

(
1− 1− e−η(Y+T )

1 + νprele−η(Y+T )
[
1− e−ηT (n−2)

])

− 2 log

(
1− 1− e−η(Y+T )

1 + νprele−η(Y+T )
[
1− e−ηT (n−1)

])

+ log

(
1− 1− e−η(Y+T )

1 + νprele−η(Y+T )
[
1− e−ηTn)

])]
+

1

1 + ν
log
(
1 + ν − νprele

−ηnT
)
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− 2

1 + ν
log
(
1 + ν − νprele

−η(n−1)T
)

+
1

1 + ν
log
(
1 + ν − νprele

−η(n−2)T
)]

where we have again used standard integral 2.313.1 of [25].

Given the arrival of precisely M = m batches in the interval [0, Y + nT ], we denote by C(m)

the probability that the same batch contributes to both windows 1 and n, while no recurrences

occur in windows 2, . . . , (n − 1). By homogeneity, since the batch arrival times τ1, . . . , τm are

i.i.d.

C(m) = m · P (Vi = 1) · P (Wi = 1)m−1.

Denote by B(Y, n) the indicator for the event that, following a baseline recurrence in window 1,

the next recurrence occurs at window n and the same batch contributes to both recurrences in

windows 1 and n. Applying the law of total probability over the number of sporozoite batches

M inoculated in the interval [0, Y + nT ], we obtain

P (B(Y, n) = 1) =
∞∑

m=1

C(m) · 1

m!
e−λ(Y+nT )λm(Y + nT )m

= λ(Y + nT )P (Vi = 1) · e−λ(Y+nT )[1−P (Wi=1)]

recognising the Taylor expansion of the exponential function.

E.5.1 Metrics under a stationary hypnozoite burden

In the limit Y → ∞ — that is, allowing the hypnozoite reservoir to reach stationarity prior to

the manifestation of the baseline recurrence — we obtain

S(n) := lim
Y→∞

P (B(Y, n) = 1)

=
1

η

[
log

( [
1 + νprel(1− e−η(n−1)T )

]2[
1 + νprel(1− e−η(n−2)T )

][
1 + νprel(1− e−ηnT )

])
1

1 + ν
log

( [
1 + ν − νprele

−η(n−1)T )
]2[

1 + ν − νprele−η(n−2)T )
][
1 + ν − νprele−ηnT )

])]

× e−λ(n−2)T
(
1 + νprel

(
1− e−ηT (n−2)

))−λ
η

(
1− (1 + ν)(1− e−η(n−2)T )

1 + ν − νprele−η(n−2)T

)− λ
η(1+ν)

.

(E.21)
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From the multivariate PGF (B.10), granted the hypnozoite reservoir has reached stationarity,

the probability of a baseline recurrence in window 1 is

R1(1) = 1− e−λT
(
1 + νprel

(
1− e−ηT

))−λ
η

(
1− (1 + ν)(1− e−ηT )

1 + ν − νprele−ηT

)− λ
η(1+ν)

, (E.22)

while the joint probability of a baseline recurrence in window 1 and a subsequent recurrence in

window n is given by

R2(1, n) :=e
−λ(n−2)T

(
1 + νprel

(
1− e−ηT (n−2)

))−λ
η

(
1− (1 + ν)(1− e−η(n−2)T )

1 + ν − νprele−η(n−2)T

)− λ
η(1+ν)

− 2e−λ(n−1)T
(
1 + νprel

(
1− e−ηT (n−1)

))−λ
η

(
1− (1 + ν)(1− e−η(n−1)T )

1 + ν − νprele−η(n−1)T

)− λ
η(1+ν)

+ e−λnT
(
1 + νprel

(
1− e−ηTn

))−λ
η

(
1− (1 + ν)(1− e−ηnT )

1 + ν − νprele−ηnT

)− λ
η(1+ν)

(E.23)

where we have used the inclusion-exclusion principle.

The conditional probability that, given a baseline recurrence in window 1, the next recurrence

will occur in window n, is given by the quotient R2(1, n)/R1(1). Given a set of consecutive

recurrences in windows 1 and n, the conditional probability that the same sporozoite batch

contributes to both windows is given by the quotient S(n)/R2(1, n).

E.6 Detectable relapses

A critical feature of P. vivax infection is the “remarkable periodicity” of early inter-relapse in-

tervals [1, 34]. White et al. [20] have shown through simulation that periodicity in detected

relapses can emerge through a masking process, rendering activated hypnozoites undetectable if

they arise within a fixed window of T = 14 days of the most recent detected relapse. Here, we

present a more thorough probabilistic characterisation of this process, characterising both the

number and timing of detectable relapses in detail.

Denote by Hi the size of the hypnozoite reservoir just before the onset of the ith detectable

relapse. If less than i relapses occur, we set Hk = 0 for all k ≥ i. The initial size of the

hypnozoite reservoir H1 is assumed to have PGF

G1(z1) := E
[
zH1
1

]
.
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We note that Hn+1 is dependent only on Hn, that is, the depletion of the hypnozoite reservoir

over successive relapses is Markovian. Each hypnozoite persists through the masking period (of

fixed length T ) with probability e−ηT . Under the assumption of hypnozoite independence, the

hypnozoite burden upon the onset of the (n+ 1)th relapse is binomially-distributed conditional

on Hn = N ≥ 1, that is,

Hn+1
d
=

Binomial(N − 1, e−ηT ) if Hn = N ≥ 1

0 if Hn = 0.

Here, we propose an iterative procedure to recover the multivariate PGF of H1, . . . ,Hn, that is,

Gn(z1, . . . , zn) = E

[
n∏

i=1

zHi
i

]
=

∞∑
j1=1

· · ·
∞∑

jn=1

P (H1 = j1, . . . ,Hn = jn)

n∏
i=1

zjii .

The PGF Gn+1 follows readily from Gn through a direct application of the law of total expec-

tation:

Gn+1(z1, . . . , zn, zn+1) = E

[
n+1∏
i=1

zHi
i

]

=

∞∑
j1=0

· · ·
∞∑

jn=0

P (H1 = j1, . . . ,Hn = jn) ·
( n∏

i=1

zjii

)
·
(
1− e−ηT + zn+1e

−ηT
)max{0,jn−1}︸ ︷︷ ︸

binomial PGF for Hn+1 given Hn = jn

=
Gn

(
z1, . . . , zn−1, zn ·

[
1− e−ηT + zn+1e

−ηT
])

−Gn(z1, . . . , zn−1, 0)

1− e−ηT + zn+1e−ηT
+Gn(z1, . . . , zn−1, 0).

We can use the joint PGF Gn to recover quantities of epidemiological interest. The likelihood

that a single mosquito inoculation event gives rise to precisely ℓ detectable relapses is given by

P (ℓ detectable relapses) = P (Hℓ+1 = 0, Hℓ > 0)

= Gℓ+1(z1 = 1, . . . , zℓ−1 = 1, zℓ = 1, zℓ1 = 0)−Gℓ+1(z1 = 1, . . . , zℓ−1 = 1, zℓ = 0, zℓ1 = 0).

We can also recover precise distributions of inter-relapse times. For notational convenience, we

consider the marginalised PGF

G
(i)
ℓ (zi, zℓ, zℓ+1) := E

[
zHi
i zHℓ

ℓ z
Hℓ+1

ℓ+1

]
,

obtained by setting zj = 1 for all j /∈ {i, ℓ, ℓ+ 1} in Gℓ+1. Given precisely ℓ relapses occur, the

size of the hypnozoite Hi reservoir just before the onset of the ith relapse, i ≤ ℓ has PGF

E
[
zHi
∣∣Hℓ+1 = 0, Hℓ > 0

]
=
G

(i)
ℓ (z, 1, 0)−G

(i)
ℓ (z, 0, 0)

G
(i)
ℓ (1, 1, 0)−G

(i)
ℓ (1, 0, 0)

.

Let T
(i)
ℓ denote the ith inter-relapse time, given precisely ℓ relapses are detected. By the law of
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total expectation,

P
(
T
(i)
ℓ ≤ x

)
= 1{x≥T} ·

∞∑
n=0

[
1− e−ηn(x−T )]︸ ︷︷ ︸

time to first activation
for n hypnozoites

·P
(
Hi = n|Hℓ+1 = 0, Hℓ > 0

)

= 1− 1{x≥T} ·
G

(i)
ℓ (e−η(x−T ), 1, 0)−G

(i)
ℓ (e−η(x−T ), 0, 0)

G
(i)
ℓ (1, 1, 0)−G

(i)
ℓ (1, 0, 0)

.
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Appendix F

Theses of vivax relapse biology

Here, we interrogate the calibrated model to address the 8 theses of vivax relapse biology posited

by White [1] (reproduced below in italics). Metrics of biological interest are predicated on

posterior median estimates for the hypnozoite activation rate η and mean sporozoite batch size

ν (Table C.1), in addition to the hypnozoite fating probability prel = 0.4 informed by in vivo

experiments on the Chesson strain of P. vivax [26].

Thesis 1

Relapses show remarkable periodicity.

Post-treatment prophylaxis conferred by the commonly used antimalarial drugs chloroquine and

mefloquine, as given to children in the SPf66 vaccine trial, can result in apparent periodicity

under the exponential clock model [20]. This is because the drugs are eliminated slowly and

suppress asexual stage parasite multiplication (commonly termed post-treatment prophylaxis).

However, here, we consider inter-relapse intervals for a single infective bite, whilst ignoring the

effects of post-treatment prophylaxis (i.e. intervals between successive hypnozoite activation

events).

Given a hypnozoite batch of size H = h ≥ m, the mth inter-relapse interval Tm is exponentially-

distributed with expectation and standard deviation

E[Tm|H = h] = SD(Tm|H = h) =
1

η(h−m+ 1)

scaling inversely with the size of the remaining hypnozoite reservoir. As such, the progressive

lengthening of successive inter-relapse intervals as the hypnozoite reservoir is depleted is accom-

panied by the increasing variability of inter-relapse intervals. Accounting for a geometrically-

distributed hypnozoite batch H of mean size νprel, the coefficient of variation (CV) for the mth
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inter-relapse interval Tm

CV(Tm|H ≥ m) =
SD(Tm|H ≥ m)

E[Tm|H ≥ m]

can be shown to be a function of the average hypnozoite batch size νprel only, independent of

both m and η; that is, the standard deviation for the mth inter-relapse interval scales linearly

with the mean for the mth inter-relapse interval. We estimate the CV for inter-relapse intervals

arising from a single infective bite to be 1.41 (95% CrI 1.35 to 1.48). As a comparator, the CV

for the exponential distribution is 1; a CV exceeding 1 can be interpreted to signify a relatively

high degree of variability in the mth inter-relapse interval following an infective bite across a

hypothetical population of individuals. In light of this variability, echoing [20], we suggest that

the temporal sequence of hypnozoite activation events is not intrinsically periodic, so under the

exponential clock hypothesis relapse periodicity must be attributed to an external process e.g.

post-treatment propyhlaxis.

Thesis 2

Early relapses reach patency around three weeks after starting treatment which suggests emer-

gence from the liver at least one week earlier.

This thesis refers to rapidly-eliminated treatments. In any given 2 week interval, the probability

of activation for each hypnozoite is pact = 0.08 (95% CrI 0.07 to 0.09). One hypnozoite’s progeny

can cause a relapse so this can be interpreted as the expected proportion of relapses attributable

to a single inoculum that will reach patency within 3 weeks. The probability of a spontaneous

hypnozoite activation event within 2 weeks of treatment for a previous episode is a direct function

of the hypnozoite burden H:

P (relapse within 3 weeks of treatment) = 1− (1− pact)
H .

Following a single infective bite, the probability that at least one hypnozoite activates within

the initial 2 week period is estimated to be 0.18 (95% CrI 0.15 to 0.22).

Thesis 3

Not all P. vivax primary infections are followed by a relapse. In Thailand approximately 50%

of infections are followed by a subsequent relapse within 28 days if a rapidly eliminated anti-

malarial drug (artesunate) is given for treatment of the primary infection and primaquine is

not given. Elsewhere the probability of relapse generally varies between 20% and 80%. Animal

experiments, the malaria therapy experience, and volunteer studies all suggest this proportion is

a function of sporozoite inoculum.
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Figure F.1: Based on the model and derived parameters, characteristics of successive recurrences in

an endemic setting are shown as a function of the force of inoculation (FOI). Panel A shows the cumu-

lative distribution function for the time between successive recurrences (i.e. the conditional probabil-

ity that a secondary recurrence has occurred by day n, given a baseline recurrence on day 1). Panel B

shows the conditional probability that a pair of successive recurrences with inter-recurrence interval n

days are derived from different sporozoite batches. Relevant formulae, derived under the assumption

that the hypnozoite reservoir has reached stationarity under a constant FOI, are provided in Appendix

E.5.

We estimate that 80% (95% CrI 77% to 84%) of infective bites give rise to a primary infection,

while 6.8% (95% CrI 5.8% to 8.0%) of bites cause at least one relapse without a preceding primary

infection (although in this case, the initial relapse would manifest as a primary infection —

albeit with a longer incubation period). Conditional on the inoculation of at least one successful

sporozoite, each infective bite gives rise to two or more recurrences with probability 79% (95%

CrI 75% to 83%). We can interpret this as the estimated proportion of ostensibly primary

infections that would eventually be followed by a second relapse, given a single inoculation.

In the interpretration of recurrent infections in an endemic setting, it is necessary to account for

both the pre-existing hypnozoite reservoir and the possibility of further mosquito inoculation.

The cumulative distribution function for the time between successive recurrences (in the absence

of post-treatment prophylaxis) is shown in Figure F.1A as a function of the the force of inocu-

lation. Under a force of inoculation of 0.5 bites per year, we predict 38% of baseline recurrences

to be followed by a second recurrence within 28 days of follow-up, with this figure rising to 55%

under a more intense force of inoculation of 2 bites per year. We note that these estimates do not

account for immunity, which may lead to asymptomatic or low-density recurrences remaining

undetected.
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Thesis 4

Multiple relapses are common, particularly in young children, even though sporozoite inocula are

thought to be relatively small (median 6-10 sporozoites). It is not uncommon in tropical areas

for children to have four to six relapses at 4-6 week intervals and sometimes more following an

incident infection. Even larger numbers of relapses were observed in soldiers following intense

exposure and in Rhesus monkeys receiving very large sporozoite inocula. Importantly the frac-

tion of people experiencing a relapse after each illness episode in a particular location appears

constant.

Under the assumption of geometrically-distributed sporozite batch sizes, we estimate that each

bite establishes a mean of νprel = 2.7 (95% CrI 2.2 to 3.5) hypnozoites that are destined to

activate eventually (this estimate appears to be insensitive to the hypnozoite fating probability

prel, see Appendix D.3). Accounting for the masking of hypnozoite activation events within a

10 day interval of a previous relapse (i.e. the possibility that a relapse would not be detected

because it coincides with an earlier infection), we estimate that approximately 26% of children

will experience 4 or more “detectable” (but not necessarily symptomatic) relapses following a

single inoculation, while 12% of children will experience 6 or more detectable relapses (Figure

F.2A). If masking is longer then the proportion is correspondingly lower. Inter-relapse intervals

are expected to lengthen progressively as the hypnozoite reservoir is depleted (Figure F.2B).

The manifestation of four to six relapses, each in successive 4 to 6 week intervals, might be

plausible for a bite giving rise to 8 or more detectable relapses (Figure F.2B). This is predicted

to occur for 5.2% of infective bites. Tightly clustered bouts of successive relapses following a

single infective bite are therefore not inherently incompatible with the exponential clock model,

but they are predicted to be relatively unlikely under our estimates for the mean hypnozoite

batch size.

By construction, a geometrically-distributed sporozoite inoculum is compatible with a constant

fractional reduction in the proportion of individuals experiencing successive relapses following a

single inoculation (e.g. in the case of malaria therapy or “volunteer” studies), with the fractional

reduction dependent on the mean inoculum size.

Thesis 5

In long-latency phenotypes there is commonly a period of 8-9 months either before the first

symptomatic infection, or between the first symptomatic infection and the first relapse. This long-

latency interval appears to be normally distributed (mode 28 weeks for the Madagascar strain.

Sometimes there are several short interval relapses followed by a long interval. Conversely long
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Figure F.2: Under the model, the distribution of relapses attributable to a single, geometrically-

distributed sporozoite inoculum. The first hypnozoite activation event (if it occurs) is assumed to cause

to a “detectable” relapse, but subsequent hypnozoite activation events are detectable only if they occur

more than 10 days after the most recent detectable relapse. Panel A shows the tail distribution for the

number of hypnozoite activation events vs detectable relapses. Panel B shows the cumulative distribu-

tions functions for inter-relapse intervals, conditional on the total number of detected relapses per bite.

Distributions have been calculated using the formulae derived in Appendix E.6.
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latencies may also occur after multiple relapses in the tropical frequent relapse phenotype.

To explain long-latency phenotypes, a biological clock mechanism has been hypothesised to give

rise to a pre-programmed, genetically-determined dormancy period, before which hypnozoite

activation is prohibited [1, 35, 36]. This can be modeled by coupling the exponential clock

model to an enforced dormancy period [20, 37].

Under the exponential clock model, the expected time to relapse scales inversely with the size

of the hypnozoite reservoir: halving the hypnozoite reservoir doubles the expected time to re-

lapse. Accordingly, we predict inter-relapse intervals to increase progressively as the hypnozoite

reservoir is depleted. As such, the exponential clock mechanism is compatible with the obser-

vation that for tropical phenotypes, multiple relapses in rapid succession may be followed by a

long inter-relapse interval (Figure F.2B). When coupled to an enforced dormancy period, the

exponential clock model is also compatible with the observation that the initial relapse for long-

latency phenotypes may be followed by several short interval relapses, and then a longer relapse

interval. Due to the inherent variability of inter-relapse intervals, long and short intervals may

also be interspersed.

Thesis 6

If there are further relapses after the long latent period then they occur frequently with short

intervals which are very similar to those observed in the tropical “strains”.

The long-latent period has been modeled with an Erlang-distributed dormancy period, in associ-

ation with the biological clock mechanism, that is either collective for each batch of hypnozoites

[20] or independent for each hypnozoite [37]. Upon emergence from dormancy, an identical ac-

tivation process has been assumed for long-latency hypnozoites [20]. If the exponential clock

mechanism can recapitulate inter-relapse intervals for tropical strains, then the within-host mod-

els of [20, 37] may explain relapse dynamics for long-latency phenotypes.

Thesis 7

The relapses in clinical studies conducted in endemic areas are commonly with a genotype which

is different to that identified in the primary infection (48% in Columbian isolates, 55% in Indian

isolates, 61% in Thai and Burmese isolates, and 71% in East Timor isolates).

The probability that successive recurrences are derived from different sporozoite batches is pre-

dicted to be an increasing function of both the force of inoculation, and the inter-recurrence

interval (Figure F.1B). Given a secondary recurrence occurs precisely 28 days after a baseline

recurrence, we predict that it is derived from a different sporozoite batch with probability 0.22
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under a force of inoculation of 0.5 bites per year, but a substantially higher probability of 0.55

under a more intense force of inoculation of 2 bites per year. To characterise genetic relation-

ships between successive recurrences, we would need to couple our within-host framework of

recurrence to a comparative model of genetic similarity of sporozoites within vs between batches

— which, in turn, would exhibit dependence on transmission intensity.

Thesis 8

A remarkably high proportion of acute infections with Plasmodium falciparum are followed by

an episode of P. vivax infection. The proportion is currently 30% in Thailand and 50% in

Myanmar. The intervals between the acute P. falciparum malaria illness and the subsequent P.

vivax malaria are similar to those between acute P. vivax malaria and the subsequent P. vivax

relapse. The epidemiological characteristics suggest that these are all relapses.

Survival curves for the time to first vivax recurrence following falciparum monoinfection, with

treatment arms matched for the history of vivax malaria and seasonality (Figure A.2B) suggest

that mefloquine eliminates bloodstream infections which emerge in the first month after treat-

ment. After adjusting for post-treatment prophylaxis, the exponential clock model is generally

able to explain observed rates of vivax malaria following falciparum monoinfections treated with

artesunate-mefloquine combination therapy. In contrast, the model is unable to capture the

substantially higher observed rates of vivax malaria following falciparum monoinfections treated

with artesunate monotherapy. This could be explained by an external triggering mechanism,

but on a time scale that is overwhelmed by the extended duration of prophylactic protection

provided by mefloquine treatment i.e. we hypothesise that hypnozoites that undergo activa-

tion following the febrile falciparum stimulus malaria are often unable to establish bloodstream

infections because they are eliminated by mefloquine post-treatment prophylaxis.
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