Supplemental Table 1: Echocardiography results at TB diagnosis by HIV infection

status. Categoricalvariables as positive count (% of total count) and continuous variables as median and interquartile range (IQR). Participants for whom echocardiography results could not be determined were excluded.

Variable	Overall (N=286)	HIV-positive (N=109)	HIV-negative (N=177)
	n (%) / median (IQR)	n (%) / median (IQR)	n (%) / median (IQR)
Abnormal LV geometry	129 / 266 (48%)	57 / 102 (56%)	72 / 164 (44%)
concentric remodeling	112 (87%)	50 (88%)	62 (86%)
concentric hypertrophy	11 (9%)	4 (7%)	7 (10%)
eccentric hypertrophy	6 (5%)	3 (5%)	3 (4%)
Aortic root dilatation	3 / 241 (1%)	0 / 90 (0)	3 / 151 (2%)
Ascending aorta dilatation	3 / 230 (1%)	2 / 92 (2%)	1 / 138 (1%)
Relevant aortic valve disease	4 / 270 (1%)	4 / 107 (4%)	0 / 163 (0)
Aortic stenosis	0 / 4 (0)	0 / 4 (0)	0 / 0 (0)
Aortic regurgitation	4 / 4 (100%)	4 / 4 (100%)	0 / 0 (0)
Relevant mitral valve disease	3 / 270 (1%)	1 / 105 (1%)	2 / 165 (1%)
Mitral stenosis	0 / 3 (0)	0 / 1 (0)	0 / 2 (0)
Mitral regurgitation	0 / 3 (0)	0 / 1 (0)	0 / 2 (0)
Relevant tricuspid valve disease	2 / 266 (1%)	1 / 102 (1%)	1 / 164 (1%)
Tricuspid stenosis	0 / 2 (0)	0 / 1 (0)	0 / 1 (0)
Tricuspid regurgitation	2 / 2 (100%)	1 / 1 (100%)	1 / 1 (100%)
LVEF (%, visually assessed)	60.0(55.0-65.0)	60.0 (55.0-65.0)	65.0 (60.0-65.0)
LVEF (%, Simpson BP)	60.3 (56.3 – 65.0)	59.5 (55.7-63.7)	60.8 (57.7-65.0)
LV systolic dysfunction	3 / 283 (1%)	2 / 108 (2%)	1 / 175 (1%)
Diastolic dysfunction	8 / 86 (9%)	6 / 33 (18%)	2 / 53 (4%)
LV dilatation	2 / 262 (1%)	0 / 98 (0)	2 / 164 (1%)
LA dilatation	44 / 266 (17%)	19 / 106 (18%)	25 / 160 (16%)
RV dilatation	15 / 240 (6%)	5 / 92 (5%)	10 / 148 (7%)
RA dilatation	27 / 227 (12%)	14 / 89 (16%)	13 / 138 (9%)
TAPSE (mm)	22.3 (19.5-25.0)	21.9 (19.0-24.0)	22.6 (19.9-25.1)
TV annulus DTI S' (cm/sec)	13.0 (12.0-14.7)	13.8 (12.7-15.9)	13.0 (11.8-14.2)
RV longitudinal dysfunction	11 / 264 (4%)	8 / 101 (8%)	3 / 163 (2%)
RV FAC (%)	46.7 (42.1-51.5)	46.7 (42.2-51.6)	46.7 (42.1-51.5)
RV global dysfunction	0 / 227 (0)	0 / 89 (0)	0 / 138 (0)
RV/RA Gradient (mmHg)	21.1 (18.6 – 27.5)	20.6 (19.5 – 26.5)	23.0 (17.6-29.1)
Pericardial effusion	134 / 286 (47%)	55 / 109 (50%)	79 / 177 (45%)
Mild	109 (81%)	46 (84%)	63 (80%)
Moderate	22 (16%)	9 (16%)	13 (16%)
Large	3 (2%)	0 (0)	3 (4%)
Pericardial thickening	86 / 286 (30%)	38 / 109 (35%)	48 / 177 (27%)
Pericardial calcification	7 / 285 (2%)	2 / 109 (2%)	5 / 176 (3%)
Signs of constrictions	103 / 244 (42%)	38 / 91 (42%)	65 / 153 (42%)
Definite diagnosis of constriction	13 / 105 (12%)	5 / 43 (12%)	8 / 62 (13%)
Estimated central venous pressure	10 (5-15)	10 (9-15)	10 (5-10)
(mmHg)			

LV = left ventricular; LVEF = left ventricular ejection fraction; LA = left atrial; RV = right ventricular; RA = right atrial; TAPSE = tricuspid annular plane systolic excursion; TV annulus DTI S' = derived tricuspid lateral annular systolic velocity wave S'; FAC = fractional area change

Supplemental Table 2: Echocardiography results at anti-TB treatment end by HIV

infection status. Categorical variables as positive count (% of total count) and continuous variables as medianand interquartile range (IQR). Participants for whom echocardiography results could not be determined were excluded.

Variable	Overall (N=105)	HIV-positive (N=43)	HIV-negative (N=62)
	n (%) / median (IQR)	n (%) / median (IQR)	n (%) / median (IQR)
Abnormal LV geometry	45 / 87 (52%)	22 / 35 (63%)	23 / 52 (44%)
concentric remodeling	43 (96%)	21 (95%)	22 (96%)
concentric hypertrophy	2 (4%)	1 (5%)	1 (4%)
eccentric hypertrophy	0 (0)	0 (0)	0 (0)
Aortic root dilatation	0 / 86 (0)	0 / 39 (0)	0 / 47 (0)
Ascending aorta dilatation	1 / 84 (1%)	1 / 37 (3%)	0 / 47 (0)
Relevant aortic valve disease	0 / 90 (0)	0 / 38 (0)	0 / 52 (0)
Aortic stenosis	0 / 0 (0)	0 / 0 (0)	0 / 0 (0)
Aortic regurgitation	0 / 0 (0)	0 / 0 (0)	0 / 0 (0)
Relevant mitral valve disease	1 / 89 (1%)	0 / 36 (0)	1 / 53 (2%)
Mitral stenosis	0 / 1 (0)	0 / 0 (0)	0 / 1 (0)
Mitral regurgitation	1 / 1 (100%)	0 / 0 (0)	1 / 1 (100%)
Relevant tricuspid valve disease	0 / 83 (0)	0 / 35 (0)	0 / 48 (0)
Tricuspid stenosis	0 / 0 (0)	0 / 0 (0)	0 / 0 (0)
Tricuspid regurgitation	0 / 0 (0)	0 / 0 (0)	0 / 0 (0)
LVEF (%, visually assessed)	60.0 (55.0-65.0)	60.0 (55.0-65.0)	60.0 (55.0-65.0)
LVEF (%, Simpson BP)	59.5 (56.5-65.0)	59.1 (55.6-61.6)	60.1 (5765.4)
LV systolic dysfunction	1 / 103 (1%)	1 / 43 (2%)	0 / 60 (0)
Diastolic dysfunction	3 / 57 (5%)	3 / 23 (13%)	0 / 34 (0)
LV dilatation	0 / 86 (0)	0 / 35 (0)	0 / 51 (0)
LA dilatation	6 / 86 (7%)	5 / 36 (14%)	1 / 50 (2%)
RV dilatation	1 / 72 (1%)	1 / 25 (4%)	0 / 47 (0)
RA dilatation	7 / 71 (10%)	0 / 26 (0)	7 / 45 (16%)
TAPSE (mm)	23.6 (21.0-26.0)	23.6 (21.2-26.0)	23.6 (20.9-26.0)
TV annulus DTI S' (cm/sec)	12.7 (11.6-14.0)	13.0 (12.2-14.0)	12.5 (11.2-13.9)
RV longitudinal dysfunction	3 / 97 (3%)	1 / 40 (2%)	2 / 57 (4%)
RV FAC (%)	44.4 (38.4-48.1)	45.4 (39.8-49.3)	42.8 (37.9-47.5)
RV global dysfunction	1 / 68 (1%)	0 / 24 (0)	1 / 44 (2%)
RV/RA Gradient (mmHg)	22.6(18.2 - 27.7)	24.5(18.2 - 31.5)	22.2(21.1 - 23.7)
Pericardial effusion	16 / 98 (16%)	8 / 41 (20%)	8 / 57 (14%)
Mild	14 (88%)	8 (100%)	6 (75%)
Moderate	2 (12%)	0 (0)	2 (25%)
Large	0 (0)	0(0)	0 (0)
Pericardial thickening	15 / 102 (15%)	4 / 42 (10%)	11 / 60 (18%)
Pericardial calcification	1 / 100 (1%)	1 / 41 (2%)	0 / 59 (0)
Signs of constrictions	33 / 88 (38%)	12 / 39 (31%)	21 / 49 (43%)
Definite diagnosis of constriction	9 / 65 (14%)	2 / 28 (7%)	7 / 37 (19%)
Est. central venous pressure (mmHg)	10 (10-10)	10 (10-10)	10 (10-10)

LV = left ventricular; LVEF = left ventricular ejection fraction; LA = left atrial; RV = right ventricular; RA = right atrial; TAPSE = tricuspid annular plane systolic excursion; TV annulus DTI S' = derived tricuspid lateral annular systolic velocity wave S'; FAC = fractional area change

Supplemental Table 3: Changes in pericardial pathologies between TB diagnosis and end of anti-TBtreatment in a complete case analysis and in an imputed data analysis of all patients.

Sample proportion (%) of patients with pericardial abnormalities (in % with 95%-confidence interval [CI] in brackets) at TB diagnosis and end of anti-TB treatment. The proportions are compared with a test for equal proportions. **Panel A**: Complete case analysis of all patients (N=286); **Panel B**: Imputed data analysis of all patients; **Panel C**: Complete case analysis of patients with follow-up visits (N=105); **Panel D**: Imputed data analysis of patients with follow-up visits.

Abnormality	At TB diagnosis	End of TB treatment	Comparis	on
	Prop. (95%-CI)	Prop. (95%-CI)	Diff. (95%-CI)	p-value
Panel A: Complete case ana	lysis of all patients			
Pericardial effusion	47 (41 – 53)	16 (9 – 24)	-31 (21 – 40)	< 0.001
Pericardial thickening	30 (25 – 35)	15 (8 – 22)	-15 (7 – 24)	0.002
Pericardial calcification	2 (1 – 4)	1 (-1 – 3)	-1 (-1 - 4)	0.38
Signs of constriction	42 (36 – 48)	38 (27 – 48)	-5 (-7 – 17)	0.44
Definite diagnosis of	12 (6 – 19)	14 (5 – 22)	1 (-12 – 9)	0.78
constriction				
Panel B: Imputed data anal	ysis of all patients			
Pericardial effusion	47 (41 – 53)	18 (11 – 29)	-28 (-39 – -18)	< 0.001
Pericardial thickening	30 (25 – 36)	20 (12 – 30)	-10 (-21 – 0)	0.06
Pericardial calcification	2 (1 – 5)	1 (0-6)	-1 (-4 – -2)	0.37
Signs of constriction	41 (35 – 48)	39 (28 – 51)	-3 (-16 – 11)	0.70
Definite diagnosis of	18 (11 – 29)	12 (6 – 22)	-6 (-18 – 5)	0.29
constriction				
Panel C: Complete case ana	lysis of patients with follo	ow-up visits		
Pericardial effusion	58 (49 – 68)	16 (9 – 24)	-42 (30 – 54)	<0.001
Pericardial thickening	40 (31 – 49)	15 (8 – 22)	-25 (14 – 37)	< 0.001
Pericardial calcification	5 (1 – 9)	1 (-1 – 3)	-4 (-1-8)	0.11
Signs of constriction	48 (37 – 59)	38 (27 – 48)	-11 (-4 – 26)	0.16
Definite diagnosis of	31 (6 – 56)	14 (5 – 22)	-17 (-10 – 43)	0.14
constriction				
Panel D: Imputed data anal	ysis of patients with follo	w-up visits		
Pericardial effusion	58 (48 – 67)	17 (11 – 26)	-41 (-53 – -29)	< 0.001
Pericardial thickening	40 (31 – 50)	15 (10 – 24)	-25 (-36 – -13)	< 0.001
Pericardial calcification	5 (2 – 12)	1 (0 – 7)	-4 (-9 – 1)	0.10
Signs of constriction	45 (35 – 56)	36 (27 – 46)	-10 (-24 – 5)	0.19
Definite diagnosis of	19 (12 – 30)	12 (6 – 22)	-7 (-19 – 5)	0.24
constriction				

Supplemental Table 4: Association of patient characteristics with pericardial abnormalities at anti-TB diagnosis.

Characteristic		Univariate ana	lysis	Multivariate ana	lysis
	n (%)	OR (95%-CI)	p-value	OR (95%-CI)	p-value
Pericardial effusion	134 (47%)				
Age>=25 (reference)	112 (84)				
Age<25	22 (16%)	1.48 (0.76 – 2.92)	0.25	1.74 (0.86 – 3.51)	0.12
Male (reference)	104 (78%)				
Female	30 (22%)	0.85 (0.49 – 1.48)	0.58	0.76 (0.42 – 1.35)	0.34
HIV-negative (reference)	79 (51%)				
HIV-positive	55 (41%)	1.26(0.78 - 2.04)	0.35	1.39(0.84 - 2.32)	0.20
New case (reference)	100 (75%)				
Relapse case	34 (25%)	1.15 (0.67 – 1.99)	0.61	1.15(0.66 - 2.01)	0.62
Pericardial thickening	86 (30%)				
Age>=25 (reference)	74 (86%)				
Age<25	12 (14%)	0.88 (0.42 – 1.85)	0.74	1.06 (0.49 – 2.28)	0.89
Male (reference)	68 (79%)				
Female	18 (21%)	0.88(0.47 - 1.65)	0.70	0.80(0.42 - 1.53)	0.50
HIV-negative (reference)	48 (56%)				
HIV-positive	38 (44%)	1.62(0.95 - 2.75)	0.07	1.67 (0.96 – 2.92)	0.07
New case (reference)	62 (72%)				
Relapse case	24 (28%)	1.21 (0.68 – 2.18)	0.52	1.10(0.60 - 2.02)	0.76
Signs of constriction	103 (42%)				
Age>=25 (reference)	83 (81%)				
Age<25	20 (19%)	1.71 (0.83 – 3.52)	0.15	1.74(0.82 - 3.68)	0.15
Male (reference)	77 (75%)				
Female	26 (25%)	1.17 (0.64 – 2.13)	0.61	1.09(0.59 - 2.03)	0.78
HIV-negative (reference)	65 (63%)				
HIV-positive	38 (37%)	1.06(0.62 - 1.82)	0.82	1.15(0.65 - 2.02)	0.64
New case (reference)	79 (77%)				
Relapse case	24 (23%)	0.91 (0.49 - 1.67)	0.76	0.97 (0.52 – 1.81)	0.92

Supplemental Table 5: Association of patient characteristics with pericardial abnormalities at the endof anti-TB treatment.

Characteristic		Univariable and	alysis	Multivariable an	nalysis
	n (%)	OR (95%-CI)	p-value	OR (95%-CI)	p-value
Pericardial effusion	16/98				
	(16%)				
Age>=25 (reference)	13				
	(81%)				
Age<25	3 (19%)	1.23 (0.31 – 4.91)	0.77	2.05(0.44 - 9.65)	0.36
Male (reference)	14				
	(88%)		0.57		0.46
Female	2 (12%)	0.63(0.13 - 3.07)	0.57	0.52 (0.09 – 3.00)	0.46
HIV-negative (reference)	8 (50%)	1 49 (0 50 4 24)	0.49	1 50 (0 42 5 25)	0.52
HIV-positive	8 (50%)	1.48 (0.50 – 4.34)	0.48	1.50 (0.43 – 5.25)	0.53
New case (reference)	9 (30%)	2.44(0.80, 7.42)	0.12	220(0.70 + 9.16)	0.17
Relapse case	/ (44%)	2.44 (0.80 - 7.42)	0.12	2.39 (0.70 - 8.10)	0.17
Pericardial thickening	15/102				
$\Lambda = 25$ (materian eq)	(15%)				
Age>=25 (reference)	(87%)				
Age < 25	2 (13%)	0.79(0.16 - 3.90)	0.77	0.65(0.12 - 3.51)	0.62
Male (reference)	2 (1370)	0.79 (0.10 5.90)	0.77	0.05 (0.12 5.51)	0.02
While (Pererence)	(93%)				
Female	1 (7%)	0.35(0.04 - 2.85)	0.32	0.38(0.04 - 3.64)	0.40
HIV-negative (reference)	11 (73%)	· · · · ·			
HIV-positive	4 (27%)	0.50 (0.15 - 1.68)	0.26	0.75 (0.19 – 2.98)	0.68
New case (reference)	13				
	(87%)				
Relapse case	2 (13%)	0.33(0.07 - 1.57)	0.16	0.32 (0.06 - 1.68)	0.18
Signs of constriction	33/88				
	(38%)				
Age>=25 (reference)	27				
	(82%)				
Age<25	6 (18%)	1.51 (0.46 – 4.99)	0.50	1.34 (0.37 – 4.83)	0.66
Male (reference)	29 (88)		a 1a		
Female	4 (12%)	0.60 (0.17 – 2.09)	0.42	0.53 (0.13 – 2.14)	0.37
HIV-negative (reference)	21				
	(64%)				
HIV-positive	12	0.62 (0.25 – 1.50)	0.29	0.96 (0.34 – 2.73)	0.94
	(30%)				
New case (reference)	(82%)				
Delonse coso	(0270) 6 (1904)	0.38(0.12, 1.00)	0.07	0.30(0.12 + 1.21)	0.10
Ketapse case	0 (1070)	0.38 (0.13 - 1.09)	0.07	0.39(0.13 - 1.21)	0.10

Supplemental Figure 1: Timepoints of transthoracic echocardiography (TTE); TB, tuberculosis.

Supplemental Figure 2: Echocardiography diagnostic criteria algorithm for constrictive pericarditis.

Supplemental Figure S3: Proportions of pericardial abnormalities at baseline and end of anti-TB treatment. Proportion of patients (%) with a pericardial effusion, thickening, or calcification, or signs of constriction or definite diagnosis of constriction at treatment start (286 patients) and end (105 patients).

Acquisition Protocol¹

The echocardiogram is performed with the subject in a steep left lateral position for parasternal and apical views. Subcostal views are obtained when the patient is supine.

At least three cardiac cycles of each view should be recorded during quiet respiration. If the heart rhythm is irregular (i.e. atrial fibrillation) at least five beats should be recorded.

Echo images in each view are recorded first with a depth and sector width that encompasses all the structures in the image plane and then at a depth and sector width optimized for the structures of interest. Gain and compression should be optimized for each view.

All clips need to be recorded with an ECG racing and clear calibration markings.

The following baseline parameters need to be documented

- Date, Time
- Patient name
- Blood pressure
- Height
- Weight

The echocardiographic examination should include the following standard views

- Parasternal Long Axis (PLAX)
- Right Ventricular Inflow View
- Parasternal Short Axis (PSAX)
- Right Ventricular Outflow View
- Apical Four-chamber View
- Apical Five-chamber View
- Apical Two-Chamber View
- Apical Long-Axis (3-Chamber) View
- Subcostal 4-Chamber View
- Subcostal Short axis view

Image acquisition

View	Clip/still frame	
Parasternal long axis view	1) 2D of on-axis LAX of the LV	
	2) LV M-mode perpendicular to the long axis of the LV	EDP WIT
	3) Aortic valve M-mode tracing	Aortic Toot Left atrium

2D zoom of aortic root	
2D zoom of Mitral valve	LV LA
Color Doppler of Mitral regurgitation	FC VC
Color Doppler of LVOT/aortic valve for Aortic regurgitation	FC Jet Height

Right Ventricular Inflow View	2D of RA/TV/RV	RV-inflow RV RV RV RV RA VC IVC
	Color Doppler of Tricuspid Regurgitation	
	CW Doppler of Tricuspid valve	20 PARA TV
Parasternal Short Axis (PSAX)	2D mid-papillary muscle	PSAX-LV LV

2D mitral valve level	PSAX-MV RV LV PMVL
2D zoom aortic valve	RVOT R R L RA LA
Color Doppler aortic valve	
2D zoom pulmonary valve	PA Ao

	Color Doppler pulmonary valve	
	PW Doppler pulmonary valve	40dB 2 */+1/0/ 1 PW Depth = 72mm PW Gain = 0dB PV Vmax = 0.58 m/sec PK Grad = 1.3 mmHg PW-2MHZ .20 m/s
Right Ventricular Outflow View	2D of RVOT/pulmonary valve/Main pulmonary artery	RVOT Prox RVOT Distal
Apical Four- chamber View	2D view optimizing endocardial borders (required for GLS measurements)	RV LV RA LA

2D view focusing on RA/RV	RV LV Septal Ant. Leaflet
Tricuspid Annular M-Mode (lateral) to measure TAPSE	
Tricuspid Annular Tissue Doppler Systolic velocity	S' IVCT IVCT E' IVCT IVCT E' IVCT IVCT E' IVCT IVCT E' IVCT IVCT E'
2D zoom tricuspid valve	
Color Doppler tricuspid valve	

CW Doppler tricuspid valve	CW 18% 100 CW 105 100 CW 105 100 CW 105 100 CW 105 100 CW 105 100 CW 105 CW 105 CH 100 CH 100
2D zoom mitral valve	3.4cm
Color Doppler mitral valve	
2D view focusing on LA/LV (for GLS)	AP4 1/1 16:19:05 HR = 55 bpm ApS 22 HIS 21 BIS -16 -14 -26

PW Doppler mitral valve (mitral inflow pattern)	E 40 -120 E A -120 -120 -120 -120 -120 -120 -120 -120 -120 -120 -120 -120 -120 -120 -120 -120 -120 -100
Tissue Doppler myocardial velocities (septal, lateral side Mitral Annulus)	SV4 mm 12.4cm 10 10 12.4cm 12.4cm 12.4cm 12.4cm 12.4cm 13 14 15 15 15 15 15 15 15 15 15 15

	2D view with decreased depth focusing on LV (for GLS)	A4C A2C A4C A4C A4C A4C
Apical Five- chamber View	Color Doppler aortic valve	
	CW Doppler aortic valve	m/s 5.4 m/s AS-Jet Mean gradient of 77 mmHg

	PW Doppler LVOT	40dB 2 +/+1/0/ 1 PW Depth = 96mm PW Gate = 2.0mm PW Gain = 7dB PW:2MH22 m/s Pulsed 1.5 A
Apical Two- Chamber View	2D view optimizing endocardial borders (required for GLS measurements)	
	Color Doppler mitral valve	

Apical Long-Axis (3- Chamber) View	2D view optimizing endocardial borders (required for GLS measurements)	
	Color Doppler mitral valve / aortic valve	48 54626-1 169/96 48 48 48 48 48 48 48 48 48 48
Subcostal 4-Chamber View	2D optimizing endocardial borders of RV and LV	RV RA LV LA
	Size and respiratory variation in the inferior vena cava	RV IVC

Echocardiographic variables include left ventricular (LV) dimension (LVEDD, LVESD, IVSD, LVPWD in mm), LV geometry (according to LV RWT and LV mass index (g/m2)), LV systolic function (LV ejection fraction (LVEF in %)), LV diastolic function, Right ventricular (RV) dimension (RV base (mm)), RV systolic function (tricuspid annular plane excursion (TAPSE in mm), RV systolic-tissue Doppler imaging (S-TDI in cm/sec), Fractional area change (FAC in %)), Aortic valve assessment, Mitral valve assessment, Tricuspid valve assessment, Pulmonic valve assessment, Left atrial (LA) size (LA end-systolic diameter in parasternal long axis (mm) and LA volume biplane index (ml/m2)), Right atrial (RA) size (RA end-systolic area in cm2), Estimated pulmonary artery systolic pressure according (sPAP in mmHg), Estimated central venous pressure (inferior vena cava (IVC) diameter and respiratory variability), Pericardial effusion/thickening/calcification, aortic root (annulus, sinus of valsalva, sinotubular junction) and ascending aorta dimensions (mm).

Left ventricular (LV) dilatation was defined as LVEDD>58mm in men and 52mm in women, LV geometry was defined according to 2015 American Society of Echocardiography (ASE) and European Association of Cardiovascular Imaging (EACVI) recommendations.² Left ventricular (LV) systolic function was defined as LVEF<50% (according to Simpson Biplan or visual assessment). LV diastolic function was assessed according to 2016 ASE/EACVI guidelines.³ Right ventricular (RV) dilatation was defined as RV base >41mm. Right ventricular longitudinal dysfunction was defined as TAPSE <17mm or S-TDI <9.5cm/sec; RV global dysfunction was defined as FAC<35%. Diastolic function was assessed and classified according to ASE/EACVI guidelines.³ Inferior vena cava (IVC) normal diameter is <20mm; Normal RV/RA gradient is <30mmHg; Systolic pulmonary artery pressure (sPAP) was estimated by adding the estimated central venous pressure (CVP) to the RV/RA Gradient (SPAP = CVP + sPAP); PHT was defined as estimated sPAP> 40mmHg. Dimensions of aortic root (sinus of valsalva) and ascending aorta were assessed according to age and BSA separately for men and women.⁴

REFERENCES

1. Pilgrim T, Kalesan B, Karki P, Basnet A, Meier B, Urban P, et al. Protocol for a population-based study of rheumatic heart disease prevalence and cardiovascular outcomes among schoolchildren in Nepal. BMJ Open. 2012;2(3).

2. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.e14. Q8

3. Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left

ventricular diastolic function by echocardiography: an update from the American society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr. 2016;29(4):277–314.

4. Biaggi P, Matthews F, Braun J, Rousson V, Kaufmann PA, Jenni R. Gender, age, and body surface area are the major determinants of ascending aorta dimensions in subjects with apparently normal echocardiograms. J Am Soc Echocardiogr. 2009;22(6):720–725.