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Version 0: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
In “mFusion: A multiscale fusion method for bridging neuroimaging traits to genes through neurotransmitter systems in
mental health disorders”, Cao et al develop a new method to weigh genes in terms of their relevance towards a specific
neuroimaging trait (e.g. case versus control cortical thickness difference in a disorder). This method combines the weights
from different PLS analyses, getting to the question of how a gene may be influencing a trait, how a protein (e.g.
neurotransmitter receptor) may be influencing a trait, and whether the gene influences the trait through the protein by way of
protein-protein interaction. The authors test the method via simulations and empirically and find that the weighing method
that involves genetic influence, protein influence, and crucially protein-protein interaction, outperforms other methods in
finding previously established (and possibly new) genes that are related to a disorder. Ultimately this work makes an
important contribution by demonstrating that consideration of the multiscale mechanisms in the brain - especially how they
interact with one another - helps in identifying potential pathological processes. I have several questions and suggestions
which I hope will improve the manuscript prior to publication. 

[1] I did not fully understand the mFusion method and hope my points of confusion will help clarify the manuscript. Much of
the confusion likely stems from unclear terminology. I am personally familiar with “weight” being the elements in the matrix U
and V after the decomposition of the covariance matrix into USV ( U are weights of the genes, S are singular values, and V
are weights of the trait/neurotransmitter receptor maps). “Score” refers to the product of the original data matrix (e.g. G_{n, u},
where n is number of regions and u is number of genes) with the gene weights (U_{u, l}, where l is number of latent variable).
“Latent variable” is the set of gene weights, singular value, and trait/receptor weight(s). It would be helpful if the authors
could define the terminology and avoid using terms like “weight”, “score”, and “latent variable” if they do not mean the
standard PLS definition of these terms. At least starting the PLS methodology with a definition of how PLS works and the
terms the authors are using throughout would be very helpful in understanding mFusion. 

[2] In Line 401, the authors define weight of the ith gene as the z-score of bootstrapped coefficients. Why not use the weight
of the ith gene as defined by the PLS decomposition in the first matrix U? 

[3] Line 409: I was confused by the definition of Z_{g, p}(i, j) - what is the ith gene weight for the jth receptor map? Given my
understanding of PLS (detailed in point 1), the ith gene weight would be U[i, 0] (for the first latent variable) and the jth
neurotransmission weight would be V[0, j] so where is Z(i, j) coming from? 

[4] I’m also confused by the terminology “neurotransmission-related neurotransmissions” (e.g. lines 407, 410). 

[5] I recommend explicitly reporting where data came from, for example the name of the toolbox (e.g. neuromaps,
enigmatoolbox) and link. I also strongly recommend citing the original study that collected this data. I noticed the authors
provide links to papers for each receptor image but do not seem to cite these papers despite using this data. 

[6] Where is the PD enigma data coming from? It is not included in the enigmatoolbox. 

[7] In line 345 the authors mention “cerebral metabolic maps” - what are these? And why are they being referred to as



neurotransmission images? Likewise, the list of neurotransmission images includes UCBJ, a tracer for SV2A which is not a
neurotransmitter receptor or transporter. 

[8] Quality of gene expression and PET receptor data may make a big difference to the results. It is likely difficult to address
how data quality impacts results but I at least recommend discussing this point in the limitations. For example, the authors
include a lot of neurotransmitter receptor/transporter maps, including many that overlap in terms of protein that they bind to
and even tracer. How reliable are these maps? Why not curate a more specialized list based on the quality of the image? Or
at least compare images that are mapping the same protein to assess reliability of these images. For the gene expression
data, the authors could filter out genes that have low reliability across donors (i.e. low differential stability). 

[9] I thought the inclusion of the PPI networks was interesting and was happy to see the superior performance of PPI
mFusion methods. I wonder if it’s possible to benchmark their performance against a null, to be convinced that it is the
biological relationship between gene and protein, as well as their specific topographic expression patterns across the brain,
that result in superior performance. For example, are the number of empirical hits significantly greater when using the
empirical PPI network than when using a random PPI network with equal density? 

[10] To continue on the point above: if the PLS is run with a randomly shuffled (or rotated, to preserve spatial autocorrelation)
gene or receptor matrix, do the number of gene hits significantly decrease? 

[11] Please list the seven morphological parameters referenced in line 373. 

[12] In regards to the following sentence (line 399): “We selected the first PLS component if it had a p-value < 0.05 by
permutation; otherwise, the component that explained the most variance of Y.” For the gene-trait and neurotransmission-trait
PLSs, there is only one latent variable, which makes this sentence confusing. Perhaps stating this sentence with respect to
the gene-neurotransmission PLS only? How common are non-significant latent variables in the empirical analyses? 

[13] I recommend reporting the median correlation between real and fusion gene weights in each bin such that readers know
by how much the different fusion methods improve the median correlation. (Fig 2a) 

[14] In the section starting at line 207, the authors compare how many gene hits are found using the meanPPI method vs
regular PLS. Could the authors also compare the average weight of these gene hits? I could imagine a possibility where the
PLS discovers fewer genes but these genes are all at the very top of the list, whereas with meanPPI it may be more difficult
to determine which genes are relevant and which are not, if no a priori information on relevant genes is known. 

[15] There were some parts of the Results I felt were better left for the Discussion, including the text starting at line 221 and
the entire section at line 241. 

[16] Could the authors discuss how the very different spatial resolutions of microarray-derived gene expression and PET-
derived receptor densities may impact the mFusion method? This could also be tested in the simulation by making the
simulated receptor data more smooth. 

[17] I recommend explaining how you are clustering disorders early in the section starting at line 253. 

[18] Although this method is being presented as a tool for finding gene hits in mental disorders, I see potential for this method
to be applied to any brain map. I recommend expanding on the different applications of this method in the Discussion. 

[19] Very minor but there is something wrong with the grammatical structure of the sentence beginning at line 150 (“On the
other hand, the number of hits in different top K genes…”). Please clarify. 

Reviewer #2 

(Remarks to the Author) 
Revealing the molecular pathways underling mental health disorders is critical for its diagnosis and treatment. In this work,
Cao et al. implemented a strategy for this task by integrating information from spatial gene expression, neuroimaging-based
traits and neurotransmitter systems. Although approaches have been proposed to link gene expression and traits, this
proposed method demonstrates its advance in bridging the gap from gene expression to disorders using PET images of
neurotransmitter receptors/transporters. The authors also showed that the usage of PPI effectively improve the accuracy of
their method for identifying disease-related genes. 

This work is important, and the data analyses are comprehensive. I recommend publication if the following concerns are
properly addressed: 

Major concerns: 
1. In both numeric simulation and real-world applications, the meanGPT and maxGPT approach demonstrated similar, if not
worse, performance as PLS in several tasks (e.g. Figure 2a and Figure 3). Does it mean the inclusion of PET image alone is
not helpful? On the other hand, approaches using PPI showed robust outperformance. Could the authors provide the
rationale/evidence why PPI is important and how it benefits the approach? 



2. Several points in Figure 2 need to be clarified. 
1) The visibility of key elements in the boxplot of Figure 2a needs to be improved. The median value is hardly visible in any
boxes. Additionally, why are the ranges of correlations so narrow for mFusion method but wide for PLS? 
2) In Figure 2c, the AUC-ROC of maxPPI is 1, why is this possible? Could the authors provide details for generating the
ROC curve? 
3) In the simulation analyses, the authors used w ̃_X×w ̃_M^T to represent the PPI network. How much does this reflect the
PPI in real world? 

Minor concerns: 
1. In Figure 2, 3, 5 and 6, the authors used PLS as the target for comparison. How was PLS performed? More details need to
be provided. 

2. The title for Figure 3, “Performance with different threshold for pruning the PPI network”, does not match its figures. 

3. The authors claimed that Table S6-7 showed the outperformance of meanPPI. But these tables only provide the
mFusion/PLS scores. 

4. P-values and statistical tests need to be provided whenever necessary, for example: 
“Among the ASD related genes in the DisGeNet database, the number of hit genes in the top K gene sets identified by the
meanPPI method was also significantly greater than that identified by other five methods”. 

5. What’s the y-axis of Figure 5 a-b? 

6. In Figure 6 e-f, does the color shade represents Z-scores? If yes, why are the z-scores ranging from <(-15) to >15? What’s
the meaning of shapes in front of gene names? 

7. Website needs detailed user instructions. 

8. The following sentences are broken: 
1) “Complex interactions across multiple scales from genes, through neurotransmitters, to neural networks.” 
2) “On the other hand, the number of hits in different top K genes (ranging from 41 to 1,541 genes; 1,541 is 10% of the total
15,408 genes) referring to knowledge databases (Figure 3 c-j; Table 1).” 

Version 1: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
The authors have appropriately addressed all my comments and I endorse the publication of this manuscript. 

Reviewer #2 

(Remarks to the Author) 
The authors have adequately addressed the concerns, and I agree to its publication. 
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Dear Editors and Reviewers: 

 

Thank you for giving us this opportunity to submit a revised version of our manuscript 

(ID: COMMSBIO-24-4155). Those comments are all valuable and very helpful for 

revising and improving this manuscript. We have studied comments carefully and have 

made correction which we hope meet with approval. Revised portion are marked with 

different colors in the paper. The main corrections in the paper and the responds to the 

reviewer’s comments one by one are as flowing: 

 

Reviewer 1: 

 

We thank the Reviewer for endorsing our approach of considering the multiscale 

mechanisms in the brain to help in identifying potential pathological processes. We also 

thank the Reviewer for the insightful comments. By following these comments, we 

have now significantly improved the manuscript. Our reply to each comment and the 

corresponding revisions are provided in detail below. 

 

[1] I did not fully understand the mFusion method and hope my points of confusion will 

help clarify the manuscript. Much of the confusion likely stems from unclear 

terminology. I am personally familiar with “weight” being the elements in the matrix 

U and V after the decomposition of the covariance matrix into USV ( U are weights of 

the genes, S are singular values, and V are weights of the trait/neurotransmitter 

receptor maps). “Score” refers to the product of the original data matrix (e.g. G_{n, u}, 

where n is number of regions and u is number of genes) with the gene weights (U_{u, 

l}, where l is number of latent variable). “Latent variable” is the set of gene weights, 

singular value, and trait/receptor weight(s). It would be helpful if the authors could 

define the terminology and avoid using terms like “weight”, “score”, and “latent 

variable” if they do not mean the standard PLS definition of these terms. At least 

starting the PLS methodology with a definition of how PLS works and the terms the 

authors are using throughout would be very helpful in understanding mFusion. 

 

--Thanks for this comment. Sorry we haven’t made it clear. We have now clarified the 

PLS regression method and the definitions in the Methods and unified the terminology 

used throughout the manuscript. 

 

Methods  

“We examined three types of associations, including gene-trait, PET-trait, and gene-

PET associations. Each type of association was separately estimated by partial least 

squares (PLS) regression, a widely employed method for evaluating the association 

between a 1-dimention response variable (𝒀𝑛×1 ) and a multidimensional predictor 
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(𝑿𝑛×𝑝), where n is the sample size and p is the dimension of predictors1-3. Let L be the 

rank of matrix X, the PLS regression iteratively computes L latent variables (i.e., 

components) for X by singular value decomposition (SVD). Suppose the data matrices 

have already been normalized, if not, we normalize (i.e., Z-score) them before entering 

the algorithm. At the initial step, the covariance matrix was decomposed by SVD as 

𝑿𝑛×𝑝
T 𝒀𝑛×1 = 𝑼𝑝×1 × 𝑠, where 𝑼 is an orthogonal vector and 𝑠 is the corresponding 

singular value. The first component of was X formed as 𝒕1 = 𝑿𝑛×𝑝 × 𝑼𝑝×1. Therefore, 

𝑼  specifies the weight of each predictor for the first component (note as 𝑢𝑖 , 𝑖 =

1,2, ⋯ , 𝑛). Next, data X is regressed on the first component 𝒕1 and the residuals �̃�𝑛×𝑝 

are used as the data for the next iteration. The second component is given by applying 

the SVD to �̃�𝑛×𝑝
T 𝒀𝑛×1 . The iteration stops when L components are established as 

(𝒕1, 𝒕𝟐, ⋯ , 𝒕𝐿). 

 

For each component (𝒕𝑙 , 𝑙 = 𝟏, 𝟐, ⋯ , 𝐿)  established from X, the effect size of its 

association with 𝒀 can be estimated by the variance explained in the linear regression 

of 𝒀 on this component. The significance of this association was assessed by 1,000 

permutations, i.e., randomly shuffling the elements of 𝒀  to re-conduct the PLS 

regression and re-calculate the variance explained. Following the literature1, the 

estimation error in each weight 𝑢𝑖 is established empirically by 1,000 bootstraps as 

the standard error in the bootstrapped estimations (𝜎𝑖) and is adjusted for by 𝑢𝑖/𝜎𝑖 . 

The error-adjusted weights entered the following analyses. For brevity, the error-

adjusted weight was referred to as the Z-score in the following texts.” (Line 456~480) 

 

 

[2] In Line 401, the authors define weight of the ith gene as the z-score of bootstrapped 

coefficients. Why not use the weight of the ith gene as defined by the PLS decomposition 

in the first matrix U?  

 

--Thank you for the comment. By following the literature (Vértes et.al. 2016), the 

estimation error (𝜎𝑖) in its weight 𝑢𝑖 for the 𝑖th gene is empirically established by 

bootstraps, so as to account for the potentially sampling bias. After adjusting for the 

estimation error, the genes can then be ranked by the error-adjusted weight (𝑢𝑖/𝜎𝑖). We 

apologize for not making this clear. To clarify this point, we have now revised the 

Methods section as below: 

 

Methods 

“Following the literature1, the estimation error in each weight 𝑢𝑖  is established 

empirically by 1,000 bootstraps as the standard error in the bootstrapped estimations 
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(𝜎𝑖 ) and is adjusted for by 𝑢𝑖/𝜎𝑖 .  The error-adjusted weights entered the following 

analyses.” (Line 476~480) 

 

Reference 

Vértes, P. E. et al. Gene transcription profiles associated with inter-modular 

hubs and connection distance in human functional magnetic resonance imaging 

networks. Philos Trans R Soc Lond B Biol Sci 371, doi:10.1098/rstb.2015.0362 

(2016). 

 

 

[3] Line 409: I was confused by the definition of Z_{g, p}(i, j) - what is the ith gene 

weight for the jth receptor map? Given my understanding of PLS (detailed in point 1), 

the ith gene weight would be U[i, 0] (for the first latent variable) and the jth 

neurotransmission weight would be V[0, j] so where is Z(i, j) coming from? 

 

--We apologize for not making this clear. We used the PLS regression instead of the 

PLS correlation. We have now described this method carefully as detailed in our reply 

to your first comment. To make it clear, we have replaced the expression of ‘correlation’ 

with ‘association’. For example, we changed ‘multiscale correlations’ into ‘multiscale 

associations’, and also used terms of ‘gene-trait association’, ‘gene-PET association’, 

‘PET-trait association’.  

 

Particularly, for the gene-PET association, instead of calculating the PLS correlation 

between 45 PET maps and 15,408 genes, we conducted 45 different PLS regressions 

for each of the PET maps separately. Therefore, for the jth PET map, a PLS regression 

was used to establish the PLS-weights for the associations of this PET map with all 

genes, noted by Z𝑔,𝑝(𝑖, 𝑗)  ( 𝑖 = 1,2, ⋯ ,15408 ). When we completed all 45 PLS 

regressions, we established this PLS-weight matrix for the gene-PET associations as 

Z𝑔,𝑝(𝑖, 𝑗) (𝑖 = 1,2, ⋯ ,15408; 𝑗 = 1,2, ⋯ ,45). We have now clarified this definition in 

the Methods. 

 

Methods 

“The gene-PET associations were assessed by 45 PLS regressions separately for each 

of the 45 PET maps, and the regional gene expression matrix 𝑿𝑛×𝑝 was the predictors. 

Therefore, for the j-th PET map (𝑗 = 1,2, ⋯ , 𝑣), the normalized Z-score Z𝑔,𝑝(𝑖, 𝑗) was 

used to measure the association of the i-th gene to this PET map (𝑖 = 1,2, ⋯ , 𝑛).” (Line 

491~494) 

 

 

[4] I’m also confused by the terminology “neurotransmission-related 

neurotransmissions” (e.g. lines 407, 410). 

 

--Thank you for your careful review. To make it clear, we have changed all these terms 
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to “Neurotransmission-related PET maps”.  

 

 

[5] I recommend explicitly reporting where data came from, for example the name of 

the toolbox (e.g. neuromaps, enigmatoolbox) and link. I also strongly recommend citing 

the original study that collected this data. I noticed the authors provide links to papers 

for each receptor image but do not seem to cite these papers despite using this data. 

 

--Thank you for this comment. We have now provided both the links and the citations 

for the toolboxes from which we had extracted the neuroimaging trait data, including 

the neurompas, enigma toolbox, and JuSpace. Now, we have included a new table 

(Table 2) in the main text to list all the PET maps used in the current study. In this table, 

we have listed the targeted protein, corresponding neurotransmitter, tracer, sample 

demographics, and citation. In Table S1, we have also provided the links to the data sets 

we used in this study. 

 

Methods 

 “In this study, we curated a comprehensive database comprising 45 

neurotransmission-related PET maps for 9 neurotransmitter systems and synaptic 

density. Among them, 36 maps were provided in the neuromaps toolbox 

(https://netneurolab.github.io/neuromaps/index.html )4, 6 were available through the 

JuSpace toolbox (https://github.com/juryxy/JuSpace )5, and 3 were available at the PET 

imaging database provided by Hansen et. al.6 

( https://github.com/netneurolab/hansen_receptors/tree/main/data/PET_nifti_images ).” 

(Line 402~408) 

 

 

 “The ENIGMA consortium and ENIGMA toolbox (https://enigma-

toolbox.readthedocs.io/en/latest/index.html# )7 have provided the structural case-

control differences for eight mental disorders,…” (Line 426~428) 

 

 

 “Table 2. Neurotransmission-related PET maps included in analyses. BPND: 

parametric and regional non-displaceable binding potential.; Bmax: density (pmol ml−1) 

converted from binding potential (5-HT) or distributional volume (GABA) using 

autoradiography-derived densities. VT: tracer distribution volume. SUVR: 

standardized uptake value ratio. Values in parentheses (under n) indicate the number of 

females. The Protein column indicate the protein names in the STRING database. 

Supplementary Table S1 also includes more extensive methodological details, such as 

Excitatory/Inhibitory, Ionotropic/Metabotropic, and Source toolkit.” (Line 993~1001) 

 

 

[6] Where is the PD enigma data coming from? It is not included in the enigmatoolbox. 

 

https://netneurolab.github.io/neuromaps/index.html
https://github.com/juryxy/JuSpace
https://github.com/netneurolab/hansen_receptors/tree/main/data/PET_nifti_images
https://enigma-toolbox.readthedocs.io/en/latest/index.html
https://enigma-toolbox.readthedocs.io/en/latest/index.html
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--This data set has been published by the ENIGMA-Parkinson’s Study (Lannsma, et al. 

Mov Disord. 2021). We have now clarified this point and cited the corresponding 

reference. 

 

Methods 

“The ENIGMA consortium and ENIGMA toolbox (https://enigma-

toolbox.readthedocs.io/en/latest/index.html# )7 have provided the structural case-

control differences for eight mental disorders, …, Parkinson’s disease (PD)8, …” 

(Line426~428) 

 

Reference: 

Laansma, M. A. et al. International Multicenter Analysis of Brain Structure 

Across Clinical Stages of Parkinson's Disease. Mov Disord 36, 2583-2594, 

doi:10.1002/mds.28706 (2021). 

 

 

[7] In line 345 the authors mention “cerebral metabolic maps” - what are these? And 

why are they being referred to as neurotransmission images? Likewise, the list of 

neurotransmission images includes UCBJ, a tracer for SV2A which is not a 

neurotransmitter receptor or transporter. 

 

--We apologize for this overlooking, that the PET map for cerebral metabolism was not 

used in the final analyses as they are not directly related to neurotransmission. We have 

now removed this mentioning.  

 

Regarding the SV2A, it is a widely distributed synaptic vesicle membrane glycoprotein 

in the brain, is associated with the regulation of a variety of neurotransmitter systems 

(Finnema, et.al. Sci Transl Med. 2016). This including inhibitory neurotransmitter such 

as the release of GABA (gamma-aminobutyric acid) (Tokudome, et. al. Scientific 

Report. 2016), excitatory neurotransmitters such as glutamate (Rossi, et. al. Front 

Neurosci. 2022). Moreover, SV2s is associated with several kinds of nervous system 

diseases such as epilepsy and AD, also shows that it is very important to the normal 

function of the nervous system9. Therefore, SV2A is taken into consideration in this 

paper. We have now emphasized this point in Table 2. 

 

Table 2 

“*: The synaptic vesicle glycoprotein 2A(SV2A) is targeted by PET imaging to quantify 

synaptic density in human brains10.” (Line 1000~1001) 

 

Reference: 

Finnema, S. J. et al. Imaging synaptic density in the living human brain. Sci Transl 

Med 8, 348ra396, doi:10.1126/scitranslmed.aaf6667 (2016). 

Tokudome, K. et al. Synaptic vesicle glycoprotein 2A (SV2A) regulates kindling 

epileptogenesis via GABAergic neurotransmission. Scientific Reports 6, 27420, 

https://enigma-toolbox.readthedocs.io/en/latest/index.html
https://enigma-toolbox.readthedocs.io/en/latest/index.html


6 

 

doi:10.1038/srep27420 (2016). 

Rossi, R., Arjmand, S., Bærentzen, S. L., Gjedde, A. & Landau, A. M. Synaptic Vesicle 

Glycoprotein 2A: Features and Functions. Front Neurosci 16, 864514, 

doi:10.3389/fnins.2022.864514 (2022). 

 

 

[8] Quality of gene expression and PET receptor data may make a big difference to the 

results. It is likely difficult to address how data quality impacts results but I at least 

recommend discussing this point in the limitations. For example, the authors include a 

lot of neurotransmitter receptor/transporter maps, including many that overlap in terms 

of protein that they bind to and even tracer. How reliable are these maps? Why not 

curate a more specialized list based on the quality of the image? Or at least compare 

images that are mapping the same protein to assess reliability of these images. For the 

gene expression data, the authors could filter out genes that have low reliability across 

donors (i.e. low differential stability). 

 

--Thank you for your recommendation, the quality of gene expression data obtained 

from the AHBA is an important factor. We have described in detail the processing 

pipeline and the algorithm parameters in the supplementary Methods. To emphasize 

this point, we have now included one more limitation. 

 

Limitations 

“Second, the choice of processing parameters may influence the AHBA gene expression 

data11. To mitigate this challenge, we had normalized the expression values and focused 

only on analyses related to the relative rank of genes as opposed to the absolute values.” 

(Line 367~370) 

 

 

--As we do not have the raw data for these PET images, it is difficult for us to evaluate 

their quality. However, as the maps have already been published in the literatures, their 

quality control procedures have been verified in these previous publications. Here, to 

enrich the amount of data, we used all the PET maps we could collected.  

 

As you recommended, for PET receptor data that overlap in terms of protein, we 

calculated there spatial Pearson correlation at DK308 parcellation atlas (showed in 

Supplementary Figure S12), we found a significant positive association (p<0.01) 

between all overlapped maps except for one PET map of Dopamine Receptor. The 

results were consistent with a previous report (Hansen et al. 2022). These correlations 

have now been provided in the Supplementary Figure S12. 

 

Reference 

Hansen, J. Y. et al. Mapping neurotransmitter systems to the structural and 

functional organization of the human neocortex. Nature Neuroscience 25, 1569-

1581, doi:10.1038/s41593-022-01186-3 (2022). 
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We also averaged the PET maps for the same molecule to have 20 distinct maps, and 

reconducted the main analysis. We found that the gene scores given by the mFusion 

method were significantly correlated with those reported in the main text (spearman 

correlation for gene scores was r=0.97, p<2e-16, and r=0.98, p<2e-16, respectively). 

The verification analysis has now been reported in the Methods, Results, and Figure 

S8-S9.  

 

Methods 

“Furthermore, we averaged the PET maps measuring the same molecule and got 20 

PET maps each of which measured a different molecule (Figure S18). To test the 

potential bias introduced by the redundant PET maps for some molecules, we compared 

the gene scores given the mFusion using these 20 unique PET maps with the gene scores 

given by using all the 45 PET maps. If these scores are significantly correlated with 

each other, there is little evidence for the bias.” (Line 630~635) 

 

Results 

“To assess the effect of the quality of PET maps on the results, the 45 redundant maps 

were synthesized and averaged into 20 unique maps (Figure S8). Subsequently, the 

characteristics of SCZ and ASD were reanalyzed (Figures S9-S10). The meanPPI 

method demonstrated remarkable consistency with the primary findings regarding the 

identification of disease risk genes, exhibiting a spearman correlation for gene scores 

of r = 0.97 (p < 2e-16) and r = 0.98 (p < 2e-16), respectively (Figure S9). Furthermore, 

both the meanPPI and maxPPI methods emerged as the most effective approaches 

(Figure S10).” (Line 213~220) 

 

Supplementary Figure S8. Distribution and correlation plot for PET maps of 12 

kinds of overlapped proteins. *: Because the “RACLOPRIDE” PET of protein “D2R” 

is negatively associated with the other 4 maps, the “Mean_D23R”is calculated using 

the average of the other 4 maps except the “RACLOPRIDE. 
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Supplementary Figure S9. Performance when using 20 non-repetitive maps to 

different fusion methods at DisGeNet database for SCZ (A: AUC-ROC curve, B: AUC-

PR curve) and ASD (D: AUC-ROC, E: AUC-PR). C and F: Comparison the gene scores 

of meanPPI method when using 45 PET maps or 20 PET maps for SCZ and ASD, 

separately. 
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Supplementary Figure S10. Number of overlapped genes for SCZ (A~D) and ASD 

(E~H) disease in different standard databases when using 20 non-repetitive PET maps 

at different top K genes. 

 

 

[9] I thought the inclusion of the PPI networks was interesting and was happy to see 

the superior performance of PPI mFusion methods. I wonder if it’s possible to 

benchmark their performance against a null, to be convinced that it is the biological 

relationship between gene and protein, as well as their specific topographic expression 

patterns across the brain, that result in superior performance. For example, are the 

number of empirical hits significantly greater when using the empirical PPI network 
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than when using a random PPI network with equal density? 

 

--Thank you for your valuable advice. We curated a null distribution of PPI by 

permuting the nodes of STRING (v11.5) PPI 500 times, and re-analyzed SCZ and ASD 

disease by mFusion using these PPIs. We found that the true PPI information 

significantly enhanced the ability of the mFusion-meanPPI method to find disease-

associated genes. We have now included these details in the Methods, Results, and 

Supplementary Figure S7 A-B.  

 

Methods 

“To assess the influence of PPI information on the mFusion method, 500 times of 

shuffling were conducted on the nodes within the STRING PPI networks. This type of 

shift preserved the network properties of the original PPI and the characteristics of the 

node itself, while modifying the neighbor relationship of each node. The null 

distribution of results in random PPI networks was obtained and compared with results 

from the real STRING PPI networks.” (Line 619~624) 

 

Results 

“In order to evaluate the importance of PPIs in the context of the mFusion-meanPPI 

methodology, a comparative analysis was conducted on SCZ and ASD phenotypes 

separately. The analysis comprised a computational evaluation of 500 randomly 

generated PPIs for each disease, with the resulting null distribution of the number of hit 

genes presented in Figure S7. The results demonstrated that the application of the 

meanPPI method using real PPI data markedly augmented the capacity to identify hit 

genes compared to the use of random PPI.” (line 201~207) 

 

Supplementary Figure S7. “The distribution of hit gene numbers of SCZ and ASD 

disease on DisGeNet database. A-B: The meanPPI method uses real or shuffled PPIs to 

obtain the number of hits in the top K gene. C-D: The meanPPI method uses real or 

shuffled PET maps to obtain the number of hits in the top K gene. .” 
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[10] To continue on the point above: if the PLS is run with a randomly shuffled (or 

rotated, to preserve spatial autocorrelation) gene or receptor matrix, do the number of 

gene hits significantly decrease?  

 

--Per your suggestion, we have now randomly shuffled each of the PET maps for 500 

times, and indeed found that the number of gene hits significantly decreased. We found 

that these results significantly strengthened our findings. We have now updated the 

Methods, Results and included new Supplementary Figure S7 C-D.  

 

Methods 

“Similarly, we permutated the 45 PET maps 500 times (by shuffling the order of brain 

regions across 45 maps concurrently at each time) to evaluate their contributions to the 

mFusion methodology. If the number of hit genes significantly reduced, the molecular 

distributions given by the real PET maps contributed significantly to mFusion.” (Line 

624~628) 

 

Results 
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“In addition, a similar permutation was made for the 45 PET maps (see Methods) and 

reapplied to the analysis of the SCZ and ASD disease. The results in Figure S7 C-D 

revealed a marked reduction in the ability of the meanPPI method in pinpointing 

disease-associated genes, thereby indicating that real PET maps are pivotal in the 

meanPPI method.” (Line 207~211) 

 

 

[11] Please list the seven morphological parameters referenced in line 373. 

 

--We have now listed these parameters as the following:  

 

Methods 

 “In our investigation, we incorporated a brain map depicting case-control differences 

in morphological similarity, specifically the correlation of seven morphological 

parameters (i.e., the gray matter volume, surface area, cortical thickness, Gaussian 

curvature, mean curvature, fractional anisotropy, and mean diffusivity) derived from 

MRI and diffusion-weighted imaging data, concerning schizophrenia.” (Line 437~441) 

 

 

[12] In regards to the following sentence (line 399): “We selected the first PLS 

component if it had a p-value < 0.05 by permutation; otherwise, the component that 

explained the most variance of Y.” For the gene-trait and neurotransmission-trait PLSs, 

there is only one latent variable, which makes this sentence confusing. Perhaps stating 

this sentence with respect to the gene-neurotransmission PLS only? How common are 

non-significant latent variables in the empirical analyses? 

 

--We apologize for not making this clear. In our PLS regressions, the outcome was 

always 1-dim, while the predictors had multiple dimensions. Therefore, the PLS 

regressions could give many components of predictors. We needed to test the 

significance of these correlations between these components and the outcome variable 

by permutations. We have now clarified the PLS regression method as detailed in our 

reply to your first comment.  

 

Empirically, in the current study, the PLS regression could not identify significant 

components for three (i.e., epilepsy, OCD, and ASD) out of eight diseases. Therefore, 

in these cases, we used the components explaining the most variance in the outcome 

variables. 

 

 

[13] I recommend reporting the median correlation between real and fusion gene 

weights in each bin such that readers know by how much the different fusion methods 

improve the median correlation. (Fig 2a) 

 

--Thank you for your advice. We have now reported these medians in the Figure 2a.  
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Line 1018: “Figure 2. Evaluation of fusion methods from simulated datasets. a: The 

correlation between real gene weights and fusion weights measured by different fusion 

methods of 500 simulated experiments. The number next to bar represents the median 

of the population (using unpaired Wilcoxon test).” 

 

 

[14] In the section starting at line 207, the authors compare how many gene hits are 

found using the meanPPI method vs regular PLS. Could the authors also compare the 

average weight of these gene hits? I could imagine a possibility where the PLS 

discovers fewer genes but these genes are all at the very top of the list, whereas with 

meanPPI it may be more difficult to determine which genes are relevant and which are 

not, if no a priori information on relevant genes is known. 

 

--Yes, the genes ranked first by the regular PLS regression had higher PLS-regression 

weights as shown in Figure 6 a-b. And we newly clarified this meaning at manuscript: 

“a-b: Gene scores from meanPPI method and PLS method.” (Line 1061) 

 

However, the higher PLS-regression weight alone identified many genes that could not 

be found in the reference gene sets for SCZ and ASD. In another words, there were 
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many false positives, since the PLS-regression is essentially a multivariate approach 

which is prone to overfitting. Using the meanPPI, we had successfully reduced the false 

positives, as the hit rate was higher in genes with high meanPPI scores than that in 

genes with high PLS-regression weights. 

 

 

Results 

“By comparing gene scores with disease-related genes listed in the DisGeNet database, 

we observed that higher meanPPI fusion scores were associated with higher hit rates. 

Since the PLS-regression is essentially a multivariate approach, which is prone to 

overfitting, we found more false positives in the genes with high PLS-regression 

weights. In contrast, we demonstrated that the mFusion-meanPPI approach reduced the 

false positive rate by combining the information from multiscale.” (Line 252~258) 

 

[15] There were some parts of the Results I felt were better left for the Discussion, 

including the text starting at line 221 and the entire section at line 241. 

 

--Thank you for your suggestion. We have now moved these parts to the discussion 

section between line331~360.  

 

[16] Could the authors discuss how the very different spatial resolutions of microarray-

derived gene expression and PET-derived receptor densities may impact the mFusion 

method? This could also be tested in the simulation by making the simulated receptor 

data smoother. 

 

--Thank you for this insightful comment. We have now conducted the simulation 

experiment per your suggestion. When we changed the number of brain regions n to100, 

200, or 500, the simulation results showed that the higher the spatial resolution was, the 

better the mFusion performed. We have now reported these simulations as follows: 

 

Methods 

“Thirdly, we changed the dimension of X, Y, and Z matrix (i.e., the brain regions n 

ranges in 100, 200, or 500) to investigate the influence of varying spatial resolutions of 

microarray-derived gene expression and PET-derived receptor maps to the mFusion 

method.” (Line 573~576) 

 

Results 

“Thirdly, we conducted a simulation of brain maps at three distinct spatial resolutions. 

Specifically, the number of brain regions (n) was varied between 100, 200, and 500 (see 

Methods for further details), as delineated in Figure S3. The results of this simulation 

demonstrated a positive correlation between the spatial resolution of the X, Y, and Z 

matrices and the efficacy of the methods in identifying activated genes. Notably, the 

meanPPI and maxPPI methodologies consistently exhibited superior performance 

compared to other methods, exhibiting a level of stability that highlights their 
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robustness in high-resolution brain mapping analyses.” (Line 152~159) 

 

Figure S3: Evaluation of fusion methods from simulated datasets with different 

spatial resolution of brain maps. A: When the number of brain regions n is 100, the 

correlation between real gene weights and fusion weights measured by different fusion 

methods of 500 simulated experiments. B: When n is 100, average hit rates of genes in 

all 500 simulations. The hit rate was measured by the rate of really active genes in top 

K genes ranked by specific fusion method. C: When n is 200 (the same as in Figure 2a), 

correlation bar plot of 500 simulations. D: When n is 200 (the same as in Figure 2b), 

average hit rates of genes. E: When n is 500, correlation bar plot of 500 simulations. F: 

When n is 500, average hit rates of genes. 

 

 

 

[17] I recommend explaining how you are clustering disorders early in the section 

starting at line 253. 

 

--Thanks for your recommendation, and we added more explanation on the clustering 
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process at this section.  

 

Results  

“We applied the mFusion-meanPPI algorithm to neuroimaging traits of eight disorder 

cohorts separately (Figure 7a, see Methods section), and prioritized top 10% genes 

based on their Z-scores. Spearman correlation analysis of these genes was performed 

to assess the similarity between each pair of disorders. Following this, hierarchical 

clustering was applied to the spearman correlation coefficients among these diseases, 

resulting in the identification of three distinct clusters. These clusters reflected the 

expressional association among these diseases, as inferred from the gene Z-scores.” 

(Line 280~286) 

 

[18] Although this method is being presented as a tool for finding gene hits in mental 

disorders, I see potential for this method to be applied to any brain map. I recommend 

expanding on the different applications of this method in the Discussion. 

 

--Thanks for you this suggestion. To emphasize this point, we have now revised the 

Discussion as the following:  

 

Discussion 

“In the current study, we demonstrated the performance of the proposed mFusion as a 

tool for finding gene hits in mental disorders using the PET maps, it is worth noting 

that the method could be applied to any brain maps, such as the functional MRI or 

magnetoencephalography, single-photon emission computed tomography, etc.” (Line 

325~329) 

 

[19] Very minor but there is something wrong with the grammatical structure of the 

sentence beginning at line 150 (“On the other hand, the number of hits in different top 

K genes…”). Please clarify. 

 

--Thank you for your careful review. It has now been corrected.  

 

Results  

“On the other hand, we compared the number of hits in the top K genes given by various 

methods. When we varied the parameter K from 41 to 1541, where 1541 was 10% of 

the total of 15,408 genes, we found that the proposed methods had consistently more 

hits as compared with the other algorithms (Figure 3 c-j).” (Line 167~170) 

 

Reviewer 2:  

Thank you for endorsing our work as both important and comprehensive. By following 

your comments, we have significantly improved the manuscripts. Our reply to each of 

the comment is detailed below.  
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1. In both numeric simulation and real-world applications, the meanGPT and maxGPT 

approach demonstrated similar, if not worse, performance as PLS in several tasks (e.g. 

Figure 2a and Figure 3). Does it mean the inclusion of PET image alone is not 

helpful?On the other hand, approaches using PPI showed robust outperformance. 

Could the authors provide the rationale/evidence why PPI is important and how it 

benefits the approach? 

 

--Thank you for the comment. The reason might be that the use of PPI in the meanPPI 

method works as a filter of noise. In the GPT approach, all PET-molecules were 

considered. However, the PLS regression, a multivariate approach, is prone to over-

fitting. Therefore, significant noises were introduced by those over-fitted PET-gene 

associations. In contrast, by restricting our considerations within those PET-molecules 

that had PPI-connectivity with the genes, the PPI approaches significantly reduced such 

noises. To demonstrate this point, we have now permuted the PPI network for 500 times 

and found that the PPI indeed significantly improved the algorithm performances.   

 

Methods 

“To assess the influence of PPI information on the mFusion method, 500 times of 

shuffling were conducted on the nodes within the STRING PPI networks. This type of 

shift preserved the network properties of the original PPI and the characteristics of the 

node itself, while modifying the neighbor relationship of each node. The null 

distribution of results in random PPI networks was obtained and compared with results 

from the real STRING PPI networks.” (Line 619~624) 

 

Results 

“In order to evaluate the importance of PPIs in the context of the mFusion-meanPPI 

methodology, a comparative analysis was conducted on SCZ and ASD phenotypes 

separately. The analysis comprised a computational evaluation of 500 randomly 

generated PPIs for each disease, with the resulting null distribution of the number of hit 

genes presented in Figure S7. The results demonstrated that the application of the 

meanPPI method using real PPI data markedly augmented the capacity to identify hit 

genes compared to the use of random PPI.” (Line 201~207) 

 

Supplementary Figure S7. “The distribution of hit gene numbers of SCZ and ASD 

disease on DisGeNet database. A-B: The meanPPI method uses real or shuffled PPIs to 

obtain the number of hits in the top K gene. C-D: The meanPPI method uses real or 

shuffled PET maps to obtain the number of hits in the top K genes.” 
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2. Several points in Figure 2 need to be clarified. 

1) The visibility of key elements in the boxplot of Figure 2a needs to be improved. The 

median value is hardly visible in any boxes. Additionally, why are the ranges of 

correlations so narrow for mFusion method but wide for PLS? 

 

--Thanks for your advice. We have annotated the median in Figure2a, and added 

captions for this. 

 

The correlation bar range of PLS is much larger than other methods, the reason is that 

the PLS method simply considers the correlation between variables X and Y, and is 

prone to overfitting and giving data-sensitive results. However, other methods have 

stable performance (i.e., the ranges of correlations are narrow) in all simulation 

experiments, because the influence of variable M on Y has also been taken into 

consideration in the mFusion framework.  
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Figure 2. Evaluation of fusion methods from simulated datasets. a: The correlation 

between real gene weights and fusion weights measured by different fusion methods of 

500 simulated experiments. The number next to bar represents the median of the 

population (using unpaired Wilcoxon test). b: Average hit rates of genes in all 500 

simulations. The hit rate was measured by the rate of really active genes in top K genes 

ranked by specific fusion method. c: ROC (Receiver Operating Characteristic) curve of 

different fusion methods on simulation data. d: PR (precision-recall) curve of different 

fusion methods on simulation data. e: AUC-ROC value of different fusion method when 

number of active genes changed. f: AUC-ROC value of different fusion method when 

covariance between latent variables changed. (Line 1015~1026) 

 

 

2) In Figure 2c, the AUC-ROC of maxPPI is 1, why is this possible? Could the authors 

provide details for generating the ROC curve? 

 

--Thanks for your comment on this point. In simulation experiments, �̃�𝑿 × �̃�𝑴
𝑻  is a 

completely accurate connection matrix, providing the perfect PPI information that 

greatly improves the performances of maxPPI and meanPPI methods, so the AUC-ROC 
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of maxPPI is 1. We add this description into the caption of Figure 2c. (Line 1021~1023) 

 

About the generation of the ROC curve: At each simulation, the first K genes with the 

highest score (the K was predefined) were predicted as active genes while others were 

deemed as inactive. So, the predictive question was seemed as a binary classification 

task, and the true positive rate and false positive rate was computed at each test. In this 

way, we generated the mean AUC-ROC curve of total 500 simulation results. We newly 

clarified this process at the manuscript: 

 

Methods: 

At each experiment, the first K genes with the highest score (the K was predefined) 

were predicted as active genes while others were deemed as inactive. A larger AUC-

ROC signifies a more robust classification ability of the model. We used R package 

“multiROC” to compute the mean value of true positive and false positive genes at all 

simulated experiment. (Line 585~589) 

  

 

3) In the simulation analyses, the authors used w ̃_X×w ̃_M^T to represent the PPI 

network. How much does this reflect the PPI in real world? 

 

--Thank you for this comment. In the current framework, the PPI is mainly used as a 

filter for noise. Therefore, in the simulation we did not seek for preserving the network 

properties of the real PPI. However, inspired by your comment, we realized that there 

was a difference between the real PPI and the simulated PPI, as the simulated PPI is 

completed recorded but the real PPI is only partially observed. Therefore, we conducted 

an additional simulation experiment by using different proportions of the true PPI 

information. We confirmed that the maxPPI and meanPPI methods performed 

consistently better than the other algorithms in these conditions. We have now reported 

these results as follows: 

 

 

Methods 

“Furthermore, to evaluate the impact of Protein-Protein Interaction (PPI) networks on 

the mFusion method, we conducted a series of perturbations on the PPI network. Firstly, 

30% of the elements within the adjacency matrix �̃�𝑿 × �̃�𝑴
𝑻  were randomly shuffled, 

thereby introducing a degree of artificiality to the PPI, akin to the inherent noise present 

in real-world PPI networks. Secondly, we set a minimum 30% of the elements in the 

adjacency matrix to zero, thereby simulating the incompleteness of PPI that is often 

encountered in biological systems. Thirdly, we changed the dimension of X, Y, and Z 

matrix (i.e., the brain regions n ranges in 100, 200, or 500) to investigate the influence 

of varying spatial resolutions of microarray-derived gene expression and PET maps to 

the mFusion method. In conclusion, we executed 500 repetitions of the mFusion 

method on these perturbed PPI matrices to evaluate the robustness and sensitivity to 

such perturbations.” (Line 567~578) 
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Results 

“And then, three kinds of perturbations were performed on the PPI networks to 

illustrated the influence of PPI information on the mFusion method for 500 repetitions: 

(1) randomly shuffle 30% of the elements within the adjacency matrix �̃�𝑿 × �̃�𝑴
𝑻 ; (2) 

set the minimum 30% of the elements in the adjacency matrix to be zero; (3) randomly 

shuffle 30% of the elements, and then set the minimum 30% of the elements in the 

adjacency matrix to be zero. We found that the meanPPI and maxPPI methods 

consistently outperformed their counterparts in all three conditions (Figure S2).” (Line 

144~150) 

 

Figure S2: Evaluation of fusion methods from simulated datasets with three kinds 

of PPI perturbation. A: At PPI perturbation 1 (i.e., randomly shuffled 30% of the 

elements within the adjacency matrix), the correlation between real gene weights and 

fusion weights measured by different fusion methods of 500 simulated experiments. 

The number next to bar represents the median of the population (using unpaired 

Wilcoxon test). B: At PPI perturbation 1, average hit rates of genes in all 500 

simulations. The hit rate was measured by the rate of really active genes in top K genes 

ranked by specific fusion method. C: correlation bar plot of 500 simulations at PPI 

perturbation 2 (i.e., set the minimum 30% of the elements in the adjacency matrix to be 

zero). D: average hit rates of genes at PPI perturbation 2. E: correlation bar plot of 500 

simulations at PPI perturbation 3 (i.e., randomly shuffled 30% of the elements, and then 

set the minimum 30% of the elements in the adjacency matrix to be zero). F: average 

hit rates of genes at PPI perturbation 3. 
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Minor concerns: 

1. In Figure 2, 3, 5 and 6, the authors used PLS as the target for comparison. How was 

PLS performed? More details need to be provided. 

 

--Thanks for your advice. We extended the explanation of PLS regression analysis in 

the Methods.  

 

Methods 

 “We examined three types of associations, including gene-trait, PET-trait, and gene-

PET associations. Each type of association was separately estimated by partial least 

squares (PLS) regression, a widely employed method for evaluating the association 

between a 1-dimention response variable (𝒀𝑛×1 ) and a multidimensional predictor 

(𝑿𝑛×𝑝), where n is the sample size and p is the dimension of predictors1-3. Let L be the 

rank of matrix X, the PLS regression iteratively computes L latent variables (i.e., 

components) for X by singular value decomposition (SVD). Suppose the data matrices 



24 

 

have already been normalized, if not, we normalize (i.e., Z-score) them before entering 

the algorithm. At the initial step, the covariance matrix was decomposed by SVD as 

𝑿𝑛×𝑝
T 𝒀𝑛×1 = 𝑼𝑝×1 × 𝑠, where 𝑼  is an orthogonal vector and 𝑠 is the corresponding 

singular value. The first component of was X formed as 𝒕1 = 𝑿𝑛×𝑝 × 𝑼𝑝×1. Therefore, 

𝑼  specifies the weight of each predictor for the first component (note as 𝑢𝑖 , 𝑖 =

1,2, ⋯ , 𝑛). Next, data X is regressed on the first component 𝒕1 and the residuals �̃�𝑛×𝑝 

are used as the data for the next iteration. The second component is given by applying 

the SVD to �̃�𝑛×𝑝
T 𝒀𝑛×1 . The iteration stops when L components are established as 

(𝒕1, 𝒕𝟐, ⋯ , 𝒕𝐿). 

 

For each component (𝒕𝑙 , 𝑙 = 𝟏, 𝟐, ⋯ , 𝐿)  established from X, the effect size of its 

association with 𝒀 can be estimated by the variance explained in the linear regression 

of 𝒀 on this component. The significance of this association was assessed by 1,000 

permutations, i.e., randomly shuffling the elements of 𝒀  to re-conduct the PLS 

regression and re-calculate the variance explained. Following the literature1, the 

estimation error in each weight 𝑢𝑖 is established empirically by 1,000 bootstraps as 

the standard error in the bootstrapped estimations (𝜎𝑖) and is adjusted for by 𝑢𝑖/𝜎𝑖 . 

The error-adjusted weights entered the following analyses. For brevity, the error-

adjusted weight was referred to as the Z-score in the following texts.” (Line 456~480) 

 

2. The title for Figure 3, “Performance with different threshold for pruning the PPI 

network”, does not match its figures. 

 

--Thanks for your careful review, we apologized for this typo and have corrected the 

title of Figure 3 as: “Figure 3. Performance on SCZ and ASD disease of fusion methods 

under different disease databases.” (Line 1030) 

 

3. The authors claimed that Table S6-7 showed the outperformance of meanPPI. But 

these tables only provide the mFusion/PLS scores. 

 

--Thanks for reminding. We apologized for not making this clear. The meaning here is 

the Figure 3c-j showed the outperformance of meanPPI, TableS6 is the dependent data 

of Figure 3c-g, TableS7 is the dependent data of Figure 3g-j. We have clarified this 

meaning in manuscript. 

 

“On the other hand, we compared the number of hits in the top K genes given by various 

methods. When we varied the parameter K from 41 to 1541, where 1541 was 10% of 

the total of 15,408 genes, we found that the proposed methods had consistently more 

hits as compared with the other algorithms (Figure 3 c-j).” (Line 167~170) 
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4. P-values and statistical tests need to be provided whenever necessary, for example: 

“Among the ASD related genes in the DisGeNet database, the number of hit genes in 

the top K gene sets identified by the meanPPI method was also significantly greater 

than that identified by other five methods”.  

 

--Thank you for your advice. We have checked and clarified P-values and statistical 

tests in this manuscript. 

Line 131: “Figure 2a, unpaired Wilcoxon test, 500 times of simulations” 

Line 172: “Figure 3c; p-value < 0.001, paired Wilcoxon test for meanPPI and PLS 

method.” 

Line 176: “Figure 3g; p-value < 0.001, paired Wilcoxon test for meanPPI and PLS 

method.” 

 

 

5. What’s the y-axis of Figure 5 a-b? 

 

--Sorry we haven’t made it clear. We append caption of Figure 5: “The Y-axis lists 

disease with categories in alphabetical order.” (Line 1048) 

 

 

6. In Figure 6 e-f, does the color shade represents Z-scores? If yes, why are the z-scores 

ranging from <(-15) to >15? What’s the meaning of shapes in front of gene names? 

 

--Thank you for your comments. The values and colors here represent the Z-scores of 

PLS performed by gene-PET pairs. And the z-scores range from -18.39~19.04. For the 

convenience of visualization. The legend has been modified into -20.0~20.0. 

 

Point shapes of genes in (e)-(f) means the same as in (a)-(b). We added texts to make it 

clear at line 1069: “Point shapes of genes in (e)-(f) means the same as in (a)-(b).” 

 

 

7. Website needs detailed user instructions. 

--Thank you for your recommendations. To make the mFusion method convenient to 

users, we've uploaded the toolkit source code on GitHub, and written the key pieces for 

using this toolkit. The GitHub website also contains the “Use instructions and parameter 

selection”, “Explanation of the output files”, and “Posthoc enrichment analysis with R 

code”.  

 

 

8. The following sentences are broken: 

1) “Complex interactions across multiple scales from genes, through neurotransmitters, 

to neural networks.”  
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--Thank you for your review. We have changed this sentence into: “There exists many 

complex interactions across multiple scales from genes, through neurotransmitters, to 

neural networks.” (Line 56) 

 

2) “On the other hand, the number of hits in different top K genes (ranging from 41 to 

1,541 genes; 1,541 is 10% of the total 15,408 genes) referring to knowledge databases 

(Figure 3 c-j; Table 1).”  

--Thank you for your review. We have changed this sentence into: “On the other hand, 

we compared the hit number of genes of various methods when taking different top K 

genes (K ranged from 41 to 1541 genes; 1541 is 10% of the total of 15,408 genes). 

Figure 3 c-j (corresponding to different reference knowledge bases in Table 1) shows 

that the two methods have higher hit numbers.” (Line 167~170) 
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Decision on manuscript:  

Your manuscript entitled "mFusion: A multiscale fusion method bridging neuroimages 

to genes through neurotransmissions in mental health disorders" has now been seen 

again by our referees, whose comments appear below. In light of their advice I am 

delighted to say that we are happy, in principle, to publish a suitably revised version in 

Communications Biology. 

 

REVIEWERS' COMMENTS: 

Reviewer #1 (Remarks to the Author): 

The authors have appropriately addressed all my comments and I endorse the 

publication of this manuscript. 

 

-- We thank you for your thoughtful assessment of our manuscript and for your 

suggestions to improve it. 
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The authors have adequately addressed the concerns, and I agree to its publication. 
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