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Supplement Methods on pre-process of AHBA gene expression data 

We used microarray data of brain tissues from 6 neurotypical donors provided by the Allen human brain 

atlas (AHBA) (http://human.brain-map.org). In this database, gene expressions were normalized across 

all samples and genes using BF normalization methods. We followed the AHBA pre-processing pipeline 

suggested by Arnatkevic̆iūtė et al.1 and implemented in our previous publication2, including the 

following steps: 

1) Probe-to-gene re-annotation: This reannotation was done by using the reference genome assembly 



GRCh38.p12 (released in 2017/12). Following the research of Shen et al2, 45,461 (77.5%) probes were 

annotated to unique genes. This re-annotated set of 45,461 probes corresponded to 19,951 unique genes. 

2) Data filtering: The AHBA provided a binary indicator for those expressions did not exceed the 

background in at least 50% of all cortical and subcortical samples across all subjects. Excluding these 

probes gave a set of 31,342 probes and 15,409 unique genes.  

3) Probe selection: As recommended by Arnatkevic̆iūtė et al, expressions were averaged among probes 

assigned to the same gene. As reported in our previous publication2, the mean approach and the max 

approach gave highly correlated gene expressions (r=0.88).  

4) Using the Harvard-Oxford atlas, the samples were separated into the cortical and the subcortical areas. 

Only the samples in the left hemisphere were used in the following analyses, since the samples in the 

right hemisphere were collected from only 2 of the 6 donors.  

5) Normalization: The expression data were first normalized within sample and across-gene, and then 

normalized across samples. Given the systematic differences in gene expressions between the cortical 

and the subcortical areas, the normalizations were conducted separately for the samples from the 

subcortical and the cortical tissues. One gene failed the normalization and therefore was deleted, resulting 

15,408 unique genes.  

 

 

Supplement Methods of Partial Least Squares (PLS) regression process 

Partial Least Squares (PLS) regression employs an iterative approach to compute latent variables via 

Singular Value Decomposition (SVD). Each iteration yields a set of orthogonal latent variables for both 

the predictor matrix X and the response matrix Y, along with their respective regression coefficients. The 



procedure can be delineated as follows: 

1). Standardization: Initially, the predictor matrix X and the response matrix Y are standardized, as 

usually we used Z-scores. This step ensures that each variable has a mean of zero and a standard deviation 

of one. We defined the covariance matrix as R1 = XY. 

2). Covariance Decomposition: Subsequently, the covariance matrix R1 is decomposed using SVD, 

yielding the matrices U, S, and V, such that 𝑹𝑹1 = 𝑼𝑼𝑼𝑼𝑼𝑼𝑇𝑇. The first pair of singular vectors (i.e., the first 

columns of U and V) are denoted as u1 and v1 and the first singular value (i.e., the first diagonal entry of 

S) is denoted s1. The first singular value represents the maximum covariance between the singular vectors.  

3). Selection of Weights and Formation of Latent Variables: The u1 and v1, are extracted as the weights 

for X and Y, respectively. And we derive the first pair of latent variables (i.e. components), tX and tY, by 

𝒕𝒕𝑿𝑿 = 𝑿𝑿 × 𝒖𝒖𝟏𝟏 and 𝒕𝒕𝒀𝒀 = 𝒀𝒀 × 𝒗𝒗𝟏𝟏. Concurrently, regression models are constructed: X is regressed onto tX 

to yield 𝑿𝑿�𝟏𝟏, and Y is regressed onto tY to yield 𝒀𝒀�𝟏𝟏, where 𝑿𝑿�𝟏𝟏 = 𝒕𝒕𝑿𝑿 × 𝒕𝒕𝑿𝑿𝑻𝑻 × 𝑿𝑿 and 𝒀𝒀�𝟏𝟏 = 𝒕𝒕𝒀𝒀 × 𝒗𝒗𝟏𝟏𝑻𝑻. 

4). Residual Calculation and Subsequent Component Extraction: A new covariance matrix R2 is 

constructed utilizing the residual information from X after accounting for tX (𝑿𝑿𝟏𝟏 = 𝑿𝑿 − 𝑿𝑿�𝟏𝟏) and Y after 

accounting for tY (𝒀𝒀𝟏𝟏 = 𝒀𝒀 − 𝒀𝒀�𝟏𝟏 ). This matrix serves as the input for the subsequent iteration of 

component extraction (R2 = X1×Y1). 

5). Iteration: Steps 2) to 4) are reiterated until the model's predictive accuracy reaches an acceptable 

threshold or until the predefined number of components l is attained, with the upper limit of l being the 

rank of matrix X. 

The statistical significance of these latent variables that guarantees the generality of results was 

determined by the percentage of variance explained by the regression model through 1,000 permutations, 

while the weight of each predictor that index signal reliability was assessed and normalizes as Z-score 



using 1,000 bootstraps3.  
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Supplementary Figures 

Figure S1. The working interface of mFusion toolkit. 

 

First, the user selects input files containing brain regions and their corresponding traits. Then, they choose 

the brain atlas, which serves as the standard coordinate system for input traits, AHBA gene expressions, 

and biomolecular PET maps. Next, users can configure the parameters of the PPI network. The “PPI 

database” contains protein full links or only physical links, the “PPI neighbor” (default = 1) defines the 

neighbor steps for a hub gene in the PPI network, the “PPI node” (default = 3) defines the which PET 

maps to consider in the PPI network, while the “PPI quantile” (default = 0.5) sets the edges’ interaction 

confidence or strength. Finally, users can initiate the analysis by clicking the “Load and Analysis” button 

to load AHBA gene expression data and biomolecular data as well as PPI network, and to run analysis to 

generate scores for all genes. 

 

 

 



Figure S2. Evaluation of fusion methods from simulated datasets with three kinds of PPI 

perturbation. 

 

A: At PPI perturbation 1 (i.e., randomly shuffled 30% of the elements within the adjacency matrix), the 

correlation between real gene weights and fusion weights measured by different fusion methods of 500 

simulated experiments. The lower whisker extends from the first quartile (Q1) to the smallest data 

point that is within 1.5 * interquartile range (IQR) below Q1. The upper whisker extends from the third 

quartile (Q3) to the largest data point that is within 1.5 * IQR above Q3. The number next to bar 

represents the median of the population (using unpaired Wilcoxon test). B: At PPI perturbation 1, 

average hit rates of genes in all 500 simulations. The hit rate was measured by the rate of really active 

genes in top K genes ranked by specific fusion method. C: correlation bar plot of 500 simulations at 



PPI perturbation 2 (i.e., set the minimum 30% of the elements in the adjacency matrix to be zero). D: 

average hit rates of genes at PPI perturbation 2. E: correlation bar plot of 500 simulations at PPI 

perturbation 3 (i.e., randomly shuffled 30% of the elements, and then set the minimum 30% of the 

elements in the adjacency matrix to be zero). F: average hit rates of genes at PPI perturbation 3. 

 

 

Figure S3. Evaluation of fusion methods from simulated datasets with different spatial resolution 

of brain maps. 

 



A: When the number of brain regions n is 100, the correlation between real gene weights and fusion 

weights measured by different fusion methods of 500 simulated experiments. B: When n is 100, 

average hit rates of genes in all 500 simulations. The hit rate was measured by the rate of really active 

genes in top K genes ranked by specific fusion method. C: When n is 200 (the same as in Figure 2a), 

correlation bar plot of 500 simulations. D: When n is 200 (the same as in Figure 2b), average hit rates 

of genes. E: When n is 500, correlation bar plot of 500 simulations. F: When n is 500, average hit rates 

of genes. 

 

 

Figure S4. Evaluation of fusion methods on DisGeNet database for two disease datasets when PPI 

depth was set as 2. 

 

A: PR (precision-recall) curve of different fusion methods for SCZ. B: PR (precision-recall) curve of 

different fusion methods for ASD. C: PR (precision-recall) curve of meanPPI fusion method for SCZ at 



different PPI confidence when setting PPI depth as 1. D: PR (precision-recall) curve of meanPPI fusion 

method for ASD at different PPI confidence when setting PPI depth as 1. 

 

 

Figure S5. Evaluation of fusion methods for two disease datasets when using the full PPI when 

setting the depth as 2. 

 

A~H: Number of overlapped genes for SCZ (A~D) and ASD (E~H) in different standard datebases: 

DisGeNet, CTD, DISEASES, and PGC-GWAS datasets. 

 

 

Figure S6. Evaluation of fusion methods for two disease datasets when using the physical 

subnetwork of PPI when setting the depth as 1. 



 

A~H: Number of overlapped genes for SCZ (A~D) and ASD (E~H) in different standard datebases: 

DisGeNet, CTD, DISEASES, and PGC-GWAS datasets. 

 

 

Figure S7. The distribution of hit gene numbers of SCZ and ASD disease on DisGeNet database.



 

A-B: The meanPPI method uses real or shuffled PPIs to obtain the number of hits in the top K gene. C-

D: The meanPPI method uses real or shuffled PET maps to obtain the number of hits in the top K gene. 

The lower whisker extends from the first quartile (Q1) to the smallest data point that is within 1.5 * 

interquartile range (IQR) below Q1. The upper whisker extends from the third quartile (Q3) to the largest 

data point that is within 1.5 * IQR above Q3. 

 

 
Figure S8. Distribution and correlation plot for PET maps of 12 kinds of overlapped proteins. 



  

  

  



  

  

  
 
*: Because the “RACLOPRIDE” PET of protein “D2R” is negatively associated with the other 4 maps, 
the “Mean_D23R”is calculated using the average of the other 4 maps except the “RACLOPRIDE”. 

 



 

Figure S9. Performance when using 20 non-repetitive maps to different fusion methods at 
DisGeNet database for SCZ (A: AUC-ROC curve, B: AUC-PR curve) and ASD (D: AUC-ROC, 
E: AUC-PR). C and F: Comparison the gene scores of meanPPI method when using 45 PET 
maps or 20 PET maps for SCZ and ASD, separately. 

 

 

 

Figure S10. Number of overlapped genes for SCZ (A~D) and ASD (E~H) disease in different 

standard datebases when using 20 non-repetitive PET maps only at different top K genes. 



 
 

 

Figure S11. A: PPI network for gene KCNC1 with 20 neurochemical architectures (measured by 

PET maps) at STRING database with default parameters. B: Average scores of gene- 

neurotransmission -trait pathways across different neurotransmission types for eight disorders. 

 

 
 
Figure S12. Gene-neurotransmission- trait pathways database generated by mFusion method. 



 

A: Sanky plot of Gene-neurotransmission- trait pathway database, accessible var searchable web pages 

using the shinyAPPs platform (https://xomicsbio.shinyapps.io/mfusion_shiny/). Red edges indicate 

positive correlations, blue edges represent negative correlations. A wider the edge indicates a stronger 

correlation. B: This database contains 15,408 genes totally. The table on the right shows the top 10 

frequently occurring genes. C: Distribution curve of the strength of PLS associations (measured by Z 

values) between genes and neurotransmissions. D: This database contains a total of 20 

neurotransmissions (and correspond frequency). E: This database contains a total of 29 disease traits (and 

correspond frequency). Thin: thinning index generated from Cohen’s d value of cortical thickness; CT: 

cortical thickness; SA: surface area. F: Strength distribution curve of PLS associations (Z values) 

between neurotransmissions and traits. 

https://xomicsbio.shinyapps.io/mfusion_shiny/

