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Supporting Information Text 
 
S.1 Stochastic Susceptible-Infected Process on Graphs. Each node is initially in the 
susceptible (S) state. At 𝑡 = 0, a single node is randomly selected and set to the infected (I) state. 
At each following time step where 𝑡 > 0, we assume that there is a fixed probability 𝑝 = 0.1 for 
any infected node to infect their susceptible neighbors, i.e. any nodes that are in the susceptible 
state and are connected to the infected node by an edge. In this simple SI process, it is assumed 
that infected nodes do not recover or become immune - once infected, they remain infected 
indefinitely with the same constant probability of onward transmission, 𝑝, throughout the rest of 
the simulation. This process continues until a certain proportion of nodes are infected, as 
specified by a target 𝐼/𝑁 value, where 𝐼 is the number infected nodes and 𝑁 is the total number 
of nodes in the graph. Different values of 𝐼/𝑁 indicate different stages of outbreak progression at 
the time of disease surveillance. 
 
An important implication resulting from the assumptions made in the SI process as described, is 
that a node can only be infected if at least one of its immediate neighbors is also infected (with 
the exception of the initially infected node), i.e. all infected nodes must be connected in the graph. 
This implies that there can only be a single infected region, however with potentially multiple 
uninfected regions and therefore multiple decision-boundaries (lines or surfaces separating 
infected and uninfected regions). The distribution of these decision-boundaries in a network 
varies between outbreaks depending on both the network structure and the stage of outbreak 
progression (proportion of nodes that are infected). 
 
S.2 Conditional Autoregressive Model (CAR) as A Surrogate Model. The Conditional 
Autoregressive (CAR) model (1) is widely used in the small area estimation domain, where data 
typically consist of observations 𝒚 = [𝑦!, 𝑦", … , 𝑦#] over a set of 𝑛 spatial units, which in the 
context of our study represent the observed infection status of a subset of locations in a mobility 
network. The CAR model assumes that the value of a variable at one location (e.g., infection 
status) depends on the values at neighboring locations, with weights specified by a spatial 
adjacency matrix 𝑨. For unweighted models, such as the one we work with in this paper, the 
adjacency matrix 𝑨 is binary, capturing the presence or absence of edges between corresponding 
nodes. The spatial random effect 𝒇 = [𝑓!, 𝑓", … , 𝑓#] follows a multivariate normal prior with 
precision matrix 𝑸: 
 

𝑓 ∼ 𝒩(0,𝑸$!) 
[ 1 ] 

 
𝑸 = 𝜏(𝑫 − 𝛼𝑨) 

[ 2 ] 
 
where 𝑫 is a diagonal matrix with diagonal elements corresponding to the number of neighbors 
each location has. The parameter 𝛼 captures the amount of spatial correlation between 
connected locations and can take any value between 0 and 1 (inclusive). If 𝛼 = 0, the model 
reduces to a set of independent errors at each location, whereas if 𝛼 = 1, the model reduces to 
the ICAR (intrinsic conditional autoregressive model) - another, but less flexible model. In this 
study, we fixed 𝛼 at 0.95 to clearly separate the task of spatial inference from the task of 
optimization, and use 𝜏 ∼ 𝑙𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(0,0.1) as the prior on the marginal precision. 
 
Much like Gaussian Processes (GPs) (2, 3) are a standard model of choice for continuous space 
modelling, CAR (and ICAR) are the default model choices for spatial statistics over a discrete 
areas. Future work should explore a wider range of surrogates, such as label propagation (4), 
Graph Neural Networks (GNNs) (5), and GPs on graphs when no knowledge about the spread of 
the disease is available, or spatially explicit mechanistic models like SIR and SEIR when the 
underlying transmission mechanics are known. 
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S.3 Bayesian Active Learning by Disagreement (BALD). Bayesian Active Learning by 
Disagreement (BALD) (6) is one of the state-of-the-art acquisition policies in active learning. It 
selects the data instances that maximise the decrease in expected posterior entropy, 
 

𝑣%&! = argmax
'∈)

𝐼(𝜃; 𝑦|𝑣, 𝑫𝒓) 

[ 3 ] 
 
where 𝜃 is the latent parameters and 𝑫𝒓 is the set of data instances labelled up to iteration 𝑟, and 
the mutual information, 𝐼, is defined as follows: 
 

𝐼(𝜃; 𝑦|𝑣, 𝑫𝒓	) = 𝐻(𝜃|𝑫𝒓) − 𝔼+∼-.𝑦/𝑣,𝑫𝒓0
𝐻(𝜃|𝑦, 𝑣, 𝑫𝒓)	

= 𝐻(𝑦|𝑣,𝑫𝒓) − 𝔼1∼-.𝜃/𝑫𝒓0
𝐻(𝑦|𝜃, 𝑣, 𝑫𝒓)	

= 𝐻∫ 𝑝(𝑦|𝑣, 𝜃)𝑝(𝜃|𝑫𝒓)𝑑𝜃 − ∫𝐻[𝑝(𝑦|𝑣, 𝜃)]𝑝(𝜃|𝑫𝒓)𝑑𝜃	

≈ 𝐻 S
1
𝑛T𝑝(𝑦|𝑣, 𝜃2)

#

23!

U −
1
𝑛T𝐻[𝑝(𝑦|𝑣, 𝜃2)]

#

23!

 

[ 4 ] 
 
where 𝜃2 ∼ 𝑝(𝜃|𝑫𝒓). 
 
For Gaussian Process classification tasks, Houlsby et al. (2011) (6) provided approximations of 
BALD. This formulation highlights that the mutual information can be approximated using 
posteriors obtained numerically. Hence, one can use surrogates of any complexity as long as 
their parameters can be estimated in a Bayesian manner. 
 
S.4 Selection by Least-Confidence (LC) and Node-Entropy (NE). The policy Least-Confidence 
(LC) (4) selects the node for which the surrogate model is the least confident about its label 
prediction (label with the highest estimated probability among possible labels). More formally, this 
can be written as 
 

𝑣%&! = argmax
'∈)

max
+∈4

𝑝(𝑦|𝑣,𝑫𝒓) 

[ 5 ] 
 
where 𝑌 is the set of possible labels, 𝑉 is the set of unlabelled nodes available for selection, and 
𝑝(𝑦|𝑣,𝑫𝒓) is the estimated probability of node 𝑣 having label 𝑦, conditioned on the observed data 
up to iteration 𝑟,	𝑫𝒓. In the special case of binary classification where 𝑌 ∈ {0,1}, since the most 
likely label must by definition have an estimated probability greater than 0.5, this policy reduces to 
selecting the node with an estimated probability of having either label that is closest to 0.5. 
Without loss of generality, if we let 𝑝(𝑦|𝑣,𝑫𝒓) denote the probability of node 𝑣 having label 𝑦 = 1 
conditioned on the observed data up to iteration 𝑟, the policy LC can then be written as 
 

𝑣%&! = argmin
'∈)

|𝑝(𝑦|𝑣, 𝑫𝒓) − 0.5| 

[ 6 ] 
 
The policy Node-Entropy (NE) (7) selects the node with the highest entropy in predicted label 
distribution, i.e. 
 

𝑣%&! = argmax
'∈)

𝐻[𝑝(𝑦|𝑣,𝑫𝒓)] 

[ 7 ] 
 
where 
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𝐻[𝑝(𝑦|𝑣,𝑫𝒓)] = −T𝑝(𝑦|𝑣,𝑫𝒓) log 𝑝(𝑦|𝑣, 𝑫𝒓)
+∈4

 

[ 8 ] 
 
In the special case of binary classification, this expression reduces to 
 

𝐻[𝑝(𝑦|𝑣,𝑫𝒓)] = 𝐻[𝑝(𝑣|𝑫𝒓)] = −	𝑝(𝑣|𝑫𝒓) log 𝑝(𝑣|𝑫𝒓) − [1 − 𝑝(𝑣|𝑫𝒓)] log[1 − 𝑝(𝑣|𝑫𝒓)] 
[ 9 ] 

 
with 𝑝(𝑣|𝑫𝒓), again, being the probability of node 𝑣 having label 𝑦 = 1, conditioned on the 
observed data up to iteration 𝑟. 
 
From Eq. (9), it is straightforward to see that 𝐻[𝑝(𝑣|𝑫𝒓)] is a concave function of 𝑝(𝑣|𝑫𝒓) that is 
symmetric about the line 𝑝(𝑣|𝑫𝒓) = 0.5, i.e. when there is an equal probability of node 𝑣 having 
either label. As a result, the node with an estimated probability 𝑝(𝑣|𝑫𝒓) that is closest to 0.5 must 
also be the node with the highest entropy	𝐻[𝑝(𝑣|𝑫𝒓)]. Therefore, in the special case of binary 
classification, the policy LC always selects the same node as the policy NE at each iteration. 
 
S.5 Generating Random Graphs with Community Structure Using the Stochastic Block 
Model. We used the stochastic block (SB) model (8) to generate random graphs with different 
levels of community structure. We began by first specifying the number of communities, 𝑘, and 
the size of each community. In this study, we set 𝑘 to 5 with the size of each community selected 
at random while keeping the total number of nodes in the graph at 160. To control the level of 
community structure, we varied the value of parameters 𝑝2#5%6 and 𝑝2#57%, i.e. the probability of 
connection within a community and between communities, respectively. For example, a high 
𝑝2#5%6 with a low 𝑝2#57% indicates a strong community structure, with nodes within communities 
being tightly connected and only sparse connections between communities. To generate a 
random graph with a high level of community structure, we set the parameters to (𝑝2#5%6, 𝑝2#57%) =
(0.14, 0.001); and to generate a random graph with a lower level of community structure, we set 
(𝑝2#5%6, 𝑝2#57%) = (0.08, 0.005). 
 
One common way to quantify the level of community structure present in a graph is to compute its 
modularity (9). The modularity of a graph is a measure of the degree to which it can be partitioned 
into distinct modules or communities; it is defined as the fraction of the edges that fall within 
communities minus the expected fraction of edges that would fall within communities if edges 
were distributed randomly. Give a graph with adjacency matrix 𝑨, its modularity is given by 
 

𝑄 =
1
2𝑚Te𝐴28 −

𝑘2𝑘8
2𝑚 g𝛿i𝑐2 , 𝑐8k

28

 

[ 10 ] 
 
where 𝑚 is the total number of edges in the graph, 𝑘2 and 𝑘8 are the degrees of node 𝑖 and 𝑗, and 
𝛿(𝑐2 , 𝑐8) is 1 if node 𝑖 and 𝑗 are in the same community, and 0 otherwise. 
 
Applying the above formula shows that the random graph generated using the SB model with a 
high level of community structure has a modularity of 0.72, whereas the random graph with a 
lower level of community structure has a modularity of 0.62. 
 
S.6 Pre-Processing of Within-Country Human Mobility Data Collected at Provincial Level in 
Italy. A dataset containing daily aggregated mobility data collected from mobile phone users in 
Italy at provincial level, covering the period between 18 January and 26 June 2020 (10), was 
downloaded from https://covid19mm.github.io/data.html on 26 February 2024. The data consists 
of the daily number of smartphone users moving both within and between 107 provinces, 
normalized by the number of active users each week, which has been shown to be roughly 

https://covid19mm.github.io/data.html


 
 

4 
 

constant throughout the collection period (3). Here we focus our analysis on the period between 
March and May (inclusive), during which a national lockdown (from 9 March to 18 May, 2020) 
was imposed by the Italian government in response to the emerging COVID-19 outbreak. 
 
To construct a static graph from the mobility data, we first summed the mobility flows over both 
directions for each pair of provinces to obtain a symmetric matrix for each day, which was then 
averaged across the 3-month period. The resulting matrix was then converted into an unweighted 
graph using a procedure known as graph-thinning. In this process, edges representing pairs of 
provinces were ranked according to their total mobility flow as calculated earlier; edges were then 
removed one at a time starting from those ranked the lowest while ensuring that the graph 
remained connected. This iterative process continued until a certain target proportion of the 
original edges remained; this target proportion is known as the thinning-threshold. Finally, all 
edge weights are removed. 
 
The choice of this threshold takes into consideration the balance between 1) the need to remove 
edges with very low mobility flows and are therefore less relevant to the overall structure of the 
graph, versus 2) the need to retain enough edges in order to preserve important structural 
properties (e.g., presence of travel hubs and community structure) of the graph. With these in 
mind, the thinning-thresholds of 10%, 15% and 20% were specified. To ensure robustness, the 
same experiments were repeated on each of the resulting graphs (see Fig. S3); however, only 
results from experiments performed on the graph with a thinning-threshold of 15% are presented 
in Fig. 4. 
 
S.7 Pre-Processing of Between-Country Air Traffic Data Collected at Country Level. A 
dataset containing monthly air traffic data collected at country level, covering the period between 
January and March 2020 (11), was downloaded from https://zenodo.org/records/7472836 on 1 
March 2024. The data consists of the monthly number of air passengers travelling both within and 
between countries. To construct an undirected and unweighted graph from the data, the same 
procedure as described in S.6 was performed. Due to the much greater number of edges (as a 
result of a greater number of nodes and the presence of long-range movements in the air traffic 
network), a lower thinning-threshold was used to ensure the surrogate model can be fitted within 
a reasonable timeframe at each iteration given the available computational resources. With the 
considerations as described in S.6, the thinning-thresholds of 2.5%, 5% and 7.5% were specified. 
Again, the same experiments were repeated on each of the resulting graphs to ensure 
robustness of our results (see Fig. S4); however, only results from experiments performed on the 
graph with a thinning-threshold of 5% are presented in Fig. 4. 
 
S.8 Degree-Assortativity and Infection-Assortativity. Degree-assortativity of a network, 
commonly denoted as 𝑟degree, is a measure of the tendency for nodes to connect with other nodes 
with similar degrees. It can take any value between -1 and 1, with a positive value indicating that 
high-degree nodes are more likely to connect with other high-degree nodes, and similarly for low-
degree nodes (assortative mixing by degree). Conversely, a negative value indicates a tendency 
for high-degree nodes to connect with low-degree nodes, and vice versa (disassortative mixing by 
degree). 
 
The same idea of assortativity can be extended to other node attributes, including infection status 
as considered in this study. A positive assortativity by infection status (referred to as infection-
assortativity hereafter) indicates a tendency for infected nodes to connect with other infected 
nodes, and similarly for uninfected nodes (assortative mixing by infection status). We denote the 
infection-assortativity of a graph with a given underlying disease distribution as 𝑟infection. 
 
For a graph with an underlying disease distribution generated by a stochastic SI process (see 
S.1), we generally expect to observe a positive 𝑟infection, since a node can only be infected if at 
least one of its immediate neighbors is also infected. The exact value of 𝑟infection however depends 
on both the graph structure and the stage of outbreak progression (proportion of nodes infected) 
(see Fig. 3 and 4).

https://zenodo.org/records/7472836
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Fig. S1. Full results from experiments with simulated outbreaks on synthetic graphs. Each row presents 
results from experiments with simulated outbreaks on a different synthetic graph (as indicated by labels on 
the right); each column corresponds to simulated outbreaks at a different stage of outbreak progression, as 
measured by the proportion of nodes infected (𝐼/𝑁 = 0.1, 0.3, 0.5; as indicated by labels at the top). Each plot 
shows the performance of policies considered in the corresponding experiment, as measured by the AUC; 
the shaded region represents the interquartile range and the solid line represents the median. The 
performance of each policy is shown up to the median number of test iterations required for all infected 
nodes to be observed among agents assigned to that policy, with the AUC at this cut-off indicated by a 
colored dot (unlike Fig. 3, where the performance of each policy is only shown up to the median number of 
test iterations required for all infected nodes to be observed among agents assigned to Reactive-Infected 
(RI)). 
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Fig. S2. Full results from experiments with simulated outbreaks on graphs derived from empirical human 
mobility data. Each row presents results from experiments with simulated outbreaks on a graph derived from 
a different empirical human mobility dataset (as indicated by labels on the right); each column corresponds 
to simulated outbreaks at a different stage of outbreak progression, as measured by the proportion of nodes 
infected (𝐼/𝑁 = 0.1, 0.3, 0.5; as indicated by labels at the top). Each plot shows the performance of policies 
considered in the corresponding experiment, as measured by the AUC; the shaded region represents the 
interquartile range and the solid line represents the median. The performance of each policy is shown up to 
the median number of test iterations required for all infected nodes to be observed among agents assigned 
to that policy, with the AUC at this cut-off indicated by a colored dot (unlike Fig. 3, where the performance of 
each policy is only shown up to the median number of test iterations required for all infected nodes to be 
observed among agents assigned to Reactive-Infected (RI)). 
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Fig. S3. Results from sensitivity analyses with simulated outbreaks on graphs derived from aggregated 
mobility data collected at provincial level in Italy. Each row corresponds to a different thinning-threshold 
(𝑇thinning = 10%, 15%, 20%; as indicated by labels on the right, with the number of nodes (𝑁) and edges (𝐸) 
remaining after graph-thinning also shown); each column corresponds to simulated outbreaks at a different 
stage of outbreak progression (𝐼/𝑁 = 0.1, 0.3, 0.5; as indicated by labels at the top). Each plot shows the 
performance of policies considered in the corresponding experiment, as measured by the AUC; shaded 
regions represent the interquartile range and the solid lines represent the median. Performance of each 
policy is only shown up to the median number of test iterations required for all infected nodes to be observed 
under the policy Reactive-Infected (RI). 
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Fig. S4. Results from sensitivity analyses with simulated outbreaks on graphs derived from air traffic data 
collected at country level. Each row corresponds to a different thinning-threshold (𝑇thinning = 2.5%, 5%, 7.5%; 
as indicated by labels on the right, with the number of nodes (𝑁) and edges (𝐸) remaining after graph-
thinning also shown); each column corresponds to simulated outbreaks at a different stage of outbreak 
progression (𝐼/𝑁 = 0.1, 0.3, 0.5; as indicated by labels at the top). Each plot shows the performance of 
policies considered in the corresponding experiment, as measured by the AUC; shaded regions represent 
the interquartile range and the solid lines represent the median. Performance of each policy is only shown 
up to the median number of test iterations required for all infected nodes to be observed under the policy 
Reactive-Infected (RI). 
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Fig. S5. Summary of top-ranking policies from experiments with simulated outbreaks on synthetic graphs. 
Each heat map presents results from experiments considering a different range of test budgets: low (up to 
one-third of the maximum test budget), medium (between one-third and two-thirds of the maximum), and 
high (above two-third of the maximum), with the maximum test budget determined by the median number of 
test iterations required by Reactive-Infected (RI) to identify all infected nodes (see Materials and Methods for 
more details). Each cell in a heat map corresponds to a specific synthetic graph (as indicated by labels on 
the left) and stage of outbreak progression (as indicated by labels at the bottom). The color of each cell 
indicates the policy that is most frequently ranked top across the test budget range, with the corresponding 
average top-ranking frequency represented by the size of the enclosed circle; the numerical value (to 2 
decimal places) is shown in the top-left corner of each cell. 
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Fig. S6. Summary of top-ranking policies from experiments with simulated outbreaks on graphs derived from 
empirical human mobility data. Each heat map presents results from experiments considering a different 
range of test budgets: low (up to one-third of the maximum test budget), medium (between one-third and 
two-thirds of the maximum), and high (above two-third of the maximum), with the maximum test budget 
determined by the median number of test iterations required by Reactive-Infected (RI) to identify all infected 
nodes (see Materials and Methods for more details). Each cell in a heat map corresponds to a specific 
synthetic graph (as indicated by labels on the left) and stage of outbreak progression (as indicated by labels 
at the bottom). The color of each cell indicates the policy that is most frequently ranked top across the test 
budget range, with the corresponding average top-ranking frequency represented by the size of the 
enclosed circle; the numerical value (to 2 decimal places) is shown in the top-left corner of each cell. 
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Table S1. Top-ranking frequencies of policies in experiments with simulated outbreaks on a periodic lattice 
graph (with square-tiling) at different test budget levels. 

* highest frequency: BOLD 
** second highest frequency: underlined 

Test Budget Level 

Stage of Outbreak 
Progression 

Policy Low (up to 1/3 of 
max.) 

Medium (between 
1/3 and 2/3 of max.) 

High (above 2/3 of 
max.) 

𝐼/𝑁 = 0.1 LE 0.219169 0.2132 0.199100 

NE 0.203815 0.2445 0.369300 

BALD 0.164185 0.1051 0.072167 

RI 0.246215 0.3431 0.302267 

RAND 0.166615 0.0941 0.057167 

𝐼/𝑁 = 0.3 LE 0.338489 0.273230 0.063056 

NE 0.248163 0.538637 0.771723 

BALD 0.169348 0.085289 0.022918 

RI 0.093067 0.051911 0.134338 

RAND 0.150933 0.050933 0.007964 

𝐼/𝑁 = 0.5 LE 0.380410 0.15483 0.061580 

NE 0.283737 0.77407 0.858502 

BALD 0.163385 0.04440 0.017790 

RI 0.027424 0.00158 0.059115 

RAND 0.145044 0.02512 0.003013 
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Table S2. Top-ranking frequencies of policies in experiments with simulated outbreaks on a graph 
generated by the stochastic block model with high-modularity settings at different test budget levels. 

* highest frequency: BOLD 
** second highest frequency: underlined 

Test Budget Level 

Stage of Outbreak 
Progression 

Policy Low (up to 1/3 of 
max.) 

Medium (between 
1/3 and 2/3 of max.) 

High (above 2/3 of 
max.) 

𝐼/𝑁 = 0.1 LE 0.203914 0.272657 0.363303 

NE 0.123886 0.172429 0.297600 

BALD 0.040057 0.007029 0.020267 

PC 0.229943 0.151914 0.087590 

DC 0.106943 0.061343 0.034769 

RI 0.174371 0.237314 0.118328 

RAND 0.120886 0.097314 0.078144 

𝐼/𝑁 = 0.3 LE 0.292496 0.318646 0.242381 

NE 0.188752 0.346246 0.414847 

BALD 0.023328 0.002985 0.002750 

PC 0.183072 0.093969 0.055608 

DC 0.072512 0.035831 0.033936 

RI 0.103104 0.119338 0.216172 

RAND 0.136736 0.082985 0.034306 

𝐼/𝑁 = 0.5 LE 0.330959 0.288663 0.264239 

NE 0.226094 0.445387 0.518526 

BALD 0.030486 0.032541 0.044090 

PC 0.103805 0.037050 0.006027 

DC 0.105103 0.042423 0.015525 

RI 0.037773 0.079088 0.128737 

RAND 0.165780 0.074847 0.022856 
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Table S3. Top-ranking frequencies of policies in experiments with simulated outbreaks on a graph 
generated by the stochastic block model with low-modularity settings at different test budget levels. 

* highest frequency: BOLD 
** second highest frequency: underlined 

Test Budget Level 

Stage of Outbreak 
Progression 

Policy Low (up to 1/3 of 
max.) 

Medium (between 
1/3 and 2/3 of max.) 

High (above 2/3 of 
max.) 

𝐼/𝑁 = 0.1 LE 0.169067 0.192613 0.209457 

NE 0.100693 0.075760 0.087429 

BALD 0.040053 0.007093 0.008400 

PC 0.228880 0.217120 0.202543 

DC 0.193867 0.200907 0.195543 

RI 0.169707 0.256640 0.257857 

RAND 0.097733 0.049867 0.038771 

𝐼/𝑁 = 0.3 LE 0.241110 0.252038 0.162840 

NE 0.107935 0.150200 0.225680 

BALD 0.022271 0.009125 0.032627 

PC 0.208942 0.186113 0.073040 

DC 0.205652 0.144838 0.072720 

RI 0.125871 0.210713 0.402493 

RAND 0.088219 0.046975 0.030600 

𝐼/𝑁 = 0.5 LE 0.251814 0.171265 0.112317 

NE 0.154642 0.310391 0.447413 

BALD 0.039507 0.123619 0.137083 

PC 0.161470 0.111767 0.034381 

DC 0.180130 0.104000 0.021162 

RI 0.085674 0.114735 0.222571 

RAND 0.126763 0.064223 0.025073 
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Table S4. Top-ranking frequencies of policies in experiments with simulated outbreaks on a graph 
generated by the Barabási-Albert model at different test budget levels. 

* highest frequency: BOLD 
** second highest frequency: underlined 

Test Budget Level 

Stage of Outbreak 
Progression 

Policy Low (up to 1/3 of 
max.) 

Medium (between 
1/3 and 2/3 of max.) 

High (above 2/3 of 
max.) 

𝐼/𝑁 = 0.1 LE 0.119113 0.063418 0.041085 

NE 0.050487 0.007673 0.001855 

BALD 0.063043 0.016218 0.007291 

PC 0.299600 0.386018 0.354448 

DC 0.296748 0.398673 0.419885 

RI 0.106557 0.108782 0.165873 

RAND 0.064452 0.019218 0.009564 

𝐼/𝑁 = 0.3 LE 0.114038 0.075800 0.066634 

NE 0.049943 0.010457 0.012517 

BALD 0.045381 0.040610 0.151161 

PC 0.315238 0.304905 0.063405 

DC 0.319629 0.382114 0.226098 

RI 0.098819 0.159800 0.435746 

RAND 0.056952 0.026314 0.044439 

𝐼/𝑁 = 0.5 LE 0.150328 0.073935 0.055966 

NE 0.103792 0.105976 0.177720 

BALD 0.141528 0.357869 0.366313 

PC 0.197864 0.106792 0.031547 

DC 0.190824 0.148465 0.067289 

RI 0.116312 0.152751 0.265550 

RAND 0.099352 0.054212 0.035614 
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Table S5. Top-ranking frequencies of policies in experiments with simulated outbreaks on a graph derived 
from within-country human mobility data (𝑇&'())()* = 15%)  at different test budget levels. 

* highest frequency: BOLD 
** second highest frequency: underlined 

Test Budget Level 

Stage of Outbreak 
Progression 

Policy Low (up to 1/3 of 
max.) 

Medium (between 
1/3 and 2/3 of max.) 

High (above 2/3 of 
max.) 

𝐼/𝑁 = 0.1 LE 0.219754 0.206427 0.242877 

NE 0.148102 0.219508 0.318305 

BALD 0.074824 0.022554 0.033323 

PC 0.158524 0.225227 0.166825 

DC 0.104304 0.034351 0.017657 

RI 0.188401 0.229539 0.164540 

RAND 0.106090 0.062394 0.056473 

𝐼/𝑁 = 0.3 LE 0.219780 0.239300 0.173316 

NE 0.159239 0.311060 0.394824 

BALD 0.048376 0.012331 0.045581 

PC 0.162251 0.060553 0.031986 

DC 0.154329 0.108904 0.045688 

RI 0.155200 0.203460 0.270589 

RAND 0.100824 0.064392 0.038016 

𝐼/𝑁 = 0.5 LE 0.261104 0.217568 0.170383 

NE 0.196256 0.337395 0.348633 

BALD 0.090016 0.118931 0.138441 

PC 0.132480 0.032816 0.011147 

DC 0.115040 0.069312 0.041220 

RI 0.066896 0.112088 0.228010 

RAND 0.138208 0.111891 0.062167 
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Table S6. Top-ranking frequencies of policies in experiments with simulated outbreaks on a graph derived 
from between-country air traffic data (𝑇&'())()* = 5%)  at different test budget levels. 

* highest frequency: BOLD 
** second highest frequency: underlined 

Test Budget Level 

Stage of Outbreak 
Progression 

Policy Low (up to 1/3 of 
max.) 

Medium (between 
1/3 and 2/3 of max.) 

High (above 2/3 of 
max.) 

𝐼/𝑁 = 0.1 LE 0.131639 0.081161 0.048880 

NE 0.092790 0.026459 0.029920 

BALD 0.116537 0.012156 0.003260 

PC 0.320390 0.478224 0.362887 

DC 0.220946 0.375717 0.526677 

RI 0.061844 0.012937 0.023157 

RAND 0.055854 0.013346 0.005220 

𝐼/𝑁 = 0.3 LE 0.117387 0.229433 0.245539 

NE 0.033120 0.126787 0.281207 

BALD 0.033460 0.000773 0.003817 

PC 0.330200 0.194087 0.015254 

DC 0.352613 0.294760 0.193668 

RI 0.101347 0.132787 0.249539 

RAND 0.031873 0.021373 0.010976 

𝐼/𝑁 = 0.5 LE 0.104297 0.138991 0.072240 

NE 0.066545 0.318454 0.242665 

BALD 0.027958 0.026412 0.133206 

PC 0.135867 0.012967 0.000474 

DC 0.321073 0.009600 0.013846 

RI 0.288491 0.431887 0.487163 

RAND 0.055770 0.061690 0.050406 
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