Supporting Information: A Convergent Concordant Mode Approach for Molecular Vibrations: CMA-2

Nathaniel L. Kitzmiller,^{†¶} Mitchell E. Lahm,[†] Laura N. Olive Dornshuld,[†] Jincan Jin, Wesley D. Allen,^{‡†} and Henry F. Schaefer, III[†]

[†] Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602 United States

[‡] Allen Heritage Foundation, Dickson, TN 37055, United States

¶ Indiana Wesleyan University, Marion, Indiana 46953, USA

Contents

$\mathbf{S1}$	S1 Internal Coordinate Definitions S5						
$\mathbf{S2}$	CMA-	2A Summary Statistics Plots	$\mathbf{S6}$				
$\mathbf{S3}$	1-(1H-	pyrrol-3-yl)ethanol Cartesian coordinates	S 8				
$\mathbf{S4}$	CMA-	2A Frequencies	S 9				
	S4.1	cyclopropane	$\mathbf{S9}$				
	S4.2	methane	S13				
	S4.3	ammonia	S16				
	S4.4	silane	S19				
	S4.5	benzene	S22				
	S4.6	cvclopropene	S26				
	S4.7	allene	S29				
	S4.8	spiropentane	S32				
	S4.9	aluminum trichloride	S36				
	S4.10	aluminum trifluoride	S39				
	S4.11	boron trichloride	S42				
	S4.12	boron trifluoride	S45				
	S4.13	tetrachloromethane	S48				
	S4.14	tetrafluoromethane	S51				
	S4.15	dichloromethane	S54				
	S4.16	difluoromethane	S57				
	S4.17	formic acid	S60				
	S4.18	formaldehyde	S63				
	S4.19	singlet methylene	S66				
	S4.20	chloromethane	S69				
	S4.21	thiomethanol	S72				
	S4.22	$trichloromethane \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	S75				
	S4.23	${\rm trifluoromethane}\ \ldots\ \ldots\$	S78				
	S4.24	methyl nitrite	S81				
	S4.25	nitromethane \ldots	S84				
	S4.26	$methylamine \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	S87				
	S4.27	$ethylene\ldots$	S90				
	S4.28	$tetrafluoroethylene \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	S93				
	S4.29	$tetrachloroethylene\ldots$	S96				
	S4.30	acetylene	S99				
	S4.31	glyoxal	S102				
	S4.32	ketene	S105				
	S4.33	vinyl fluoride	S108				
	S4.34	vinyl chloride	S111				
	S4.35	acetyl chloride	S114				
	S4.36	acetyl fluoride	S117				
	S4.37	acetic acid	S120				
	S4.38	methyl formate	S124				
	S4.39	acetaldehyde	S128				
	S4.40	ethyl chloride	S131				
	S4.41	ethane	S135				
	S4.42	dimethyl ether	S139				
	S4.43	ethanol	S143				
	S4.44	acetonitrile	S147				
	S4.45	propyne	S150				
	S4.46	trifluoroacetonitrile	S153				
	S4.47	silicon tetrachloride	S156				
	S4.48	silicon tetrafluoride	S159				

S4.49	disilane
S4.50	methyl silane
S4.51	phosphane
S4.52	phosphorus trifluoride
S4.53	hypochlorous acid
S4.54	nitrosyl chloride
S4.55	ozone S182
S4 56	oxygen difluoride
S4 57	water S180
S4 58	trifluoroamine
S4.50	chlorine trifluoride
S4.60	hydrogen perovide
S4.60	carbonyl fluorido
S4.61	singlet silvlone
S4.02 S4.62	singlet silvene
54.05	
54.04	$ny drazine \dots \dots$
54.00	cyanogen
54.00	
S4.67	
S4.68	dimethylamine
S4.69	ethylamine
S4.70	acetone
S4.71	1-chloropropane
S4.72	methoxyethane
S4.73	isopropyl alcohol
S4.74	propane
S4.75	acrylonitrile
S4.76	trimethylamine $\ldots \ldots \ldots$
S4.77	isobutane $\ldots \ldots \ldots$
S4.78	<i>n</i> -butane
S4.79	furan
S4.80	$1,3$ -butadiene \ldots $S270$
S4.81	2-butyne
S4.82	bicyclobutane
S4.83	cyclobutene
S4.84	methylenecyclopropane
S4.85	cyclobutane
S4.86	isobutene
S4.87	pyrrole
S4.88	sulfur dioxide
S4.89	hydrogen sulfide
S4.90	carbonyl sulfide
S4.91	thiirane
S4.92	dimethyl sulfide
S4.93	thioethanol
S4 94	dimethyl sulfoxide
S4 95	thiophene S32
S4 96	methanol S33(
S4.90 S4.97	
S4 08	ovirane C22
S4.90 S4.00	hydrogon evanida
54.99 SA 100	triplet methylone
S4.100 S4.101	tampiet metnyiene
54.101 \$4.100	ringi radical
54.102 64.102	viiiyi radical
54.103	auctyr raucal
34.104	nyuroxymetnyi radicai

S4.105	triplet silylene
S4.106	silyl radical
S4.107	phosphino radical
S4.108	nitrogen dioxide
S4.109	amino radical
S4.110	ethyl radical
S4.111	tert-butyl radical

S1 Internal Coordinate Definitions

The following are mathematical and qualitative definitions of the symbols utilized to represent different internal coordinate motions in the definition of the symmetrized, unnormalized natural internal coordinates that follow below.

Vector directed from atom i to atom j.

$$\mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i$$

Unit vector directed from atom i to atom j.

$$\mathbf{e}_{ij} = \frac{\mathbf{r}_{ij}}{|\mathbf{r}_{ij}|}$$

Bond distance between atoms i and j.

$$r_{ij} = |\mathbf{r}_{ij}| \quad 0 < r_{ij} < \infty$$

Bond angle defined by atoms i, j, and k, where j lies at the center of the bend.

 $\phi_{ijk} = \cos^{-1}(\mathbf{e}_{jk} \cdot \mathbf{e}_{ji}) \quad 0 < \phi_{ijk} < \pi$

Torsional angle between the planes defined by i, j, k and j, k, l.

$$\tau_{ijkl} = \sin^{-1}(\mathbf{e}_{ji} \cdot (\mathbf{e}_{kj} \times \mathbf{e}_{kl}) / [\sin\phi_{ijk}\sin\phi_{jkl}]) - \pi/2 < \tau_{ijkl} < 3\pi/2$$

$$\tau_{ijkl} = \cos^{-1}((\mathbf{e}_{ji} \times \mathbf{e}_{jk}) \cdot (\mathbf{e}_{kj} \times \mathbf{e}_{kl}) / [\sin\phi_{ijk}\sin\phi_{jkl}])$$

Out-of-plane bend of the i, j bond out of the plane defined by the l, j, k atoms.

$$\gamma_{ijkl} = \sin^{-1}(\mathbf{e}_{ji} \cdot (\mathbf{e}_{jk} \times \mathbf{e}_{jl}) / [\sin\phi_{jkl}]) \qquad -\pi < \gamma_{ijkl} < \pi$$

Linear bend, where \mathbf{e}_X is a fixed direction vector perpendicular to the bending plane defined by a dummy atom, X.

$$\theta_{ijkX} = \sin^{-1}[\mathbf{e}_X \cdot (\mathbf{e}_{jk} \times \mathbf{e}_{ji})]$$

Linear bend involving the x component of the $k \to l$ unit vector in the local coordinate system in which the $j \to k$ vector defines the +z axis and the *i* atom lies in the xz plane in the +x direction.

$$\alpha_{ijkl}^x = (\cos\tau_{ijkl})(\sin\phi_{jkl})$$

Linear bend involving the y component of the $k \to l$ unit vector in the local coordinate system in which the $j \to k$ vector defines the +z axis and the i atom lies in the xz plane in the +x direction.

$$\alpha_{ijkl}^y = (\sin\tau_{ijkl})(\sin\phi_{jkl})$$

S2 CMA-2A Summary Statistics Plots

Figure S1: The CMA-2A ϵ_{max} of the 1501 CCSD(T)/cc-pVTZ benchmark frequencies plotted as a function of η , where Level C = HF and the basis set is the same as employed in Level B

Figure S2: The CMA-2A RMSD of the 1501 CCSD(T)/cc-pVTZ benchmark frequencies plotted as a function of η , where Level C = HF and the basis set is the same as employed in Level B

Figure S3: The CMA-2A ϵ_{max} of the 1501 CCSD(T)/cc-pVTZ benchmark frequencies plotted as a function of % non-zero off-diagonal matrix elements included in $\mathbf{F}_{CMA}(\mathbf{A})$

Figure S4: The CMA-2A RMSD of the 1501 CCSD(T)/cc-pVTZ benchmark frequencies plotted as a function of % non-zero off-diagonal matrix elements included in $\mathbf{F}_{CMA}(\mathbf{A})$

S3 1-(1H-pyrrol-3-yl)ethanol Cartesian coordinates

	Х	Υ	Z
С	0.8489210988	2.3962115053	0.4203945397
Ν	-1.1201865791	4.0834566335	0.2686904537
\mathbf{C}	-3.2513769142	2.8724591283	-0.5805249925
\mathbf{C}	-2.6398153189	0.3695666414	-0.9764274613
\mathbf{C}	-0.0288888907	0.0573454839	-0.3406827522
\mathbf{C}	1.5445264120	-2.3095417503	-0.4898725561
\mathbf{C}	0.0435751715	-4.6686200430	0.2150310576
Ο	3.7681500684	-2.0852206753	1.0289210816
Η	2.7056367112	2.9688534454	1.0228631156
Η	-1.0206755773	5.9182273921	0.7349311276
Η	-5.0097116242	3.8697874150	-0.8189836650
Η	-3.9213447769	-1.0670336997	-1.6430077479
Η	-1.5524659377	-4.9402871086	-1.0652587012
Η	-0.6990000579	-4.4948396251	2.1360793372
Η	2.2745647786	-2.5369365388	-2.4101383043
Η	1.2622541295	-6.3283654748	0.1161828771
Н	3.1939069316	-1.7609707648	2.7260744609

1-(1H-pyrrol-3-yl)ethanol Cartesian coordinates in bohr, optimized at $\rm CCSD(T)/cc\mathcharcepVTZ$

S4 CMA-2A Frequencies

S4.1 cyclopropane

Table S1: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-1.42667652	0.00000000	-0.82369207
2	С	-0.00000000	0.00000000	1.64738415
3	С	1.42667652	-0.00000000	-0.82369207
4	Η	-2.37936667	1.72210724	-1.37372799
5	Η	-2.37936667	-1.72210724	-1.37372799
6	Η	-0.00000000	-1.72210724	2.74745597
7	Η	-0.00000000	1.72210724	2.74745597
8	Η	2.37936667	1.72210724	-1.37372799
9	Η	2.37936667	-1.72210724	-1.37372799

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1^{'})$	3156.95	3171.65	3156.94	3156.94	3297.40	3156.93	3156.93
$\omega_2(a_1^{'})$	1528.61	1524.50	1528.58	1528.58	1555.22	1527.57	1528.63
$\omega_{3}(a_{1}^{'})$	1214.39	1217.37	1214.43	1214.43	1250.91	1215.76	1214.42
$\omega_4(a_2^{'})$	1160.87	1163.77	1160.87	1160.87	1172.69	1160.87	1160.87
$\omega_{5\mathrm{a}}(e^{'})$	3146.29	3163.15	3146.29	3146.29	3284.42	3146.28	3146.28
$\omega_{5\mathrm{b}}(e^{'})$	3146.29	3163.10	3146.29	3146.29	3284.37	3146.28	3146.28
$\omega_{6\mathrm{a}}(e^{'})$	1478.32	1478.46	1478.31	1478.31	1489.43	1478.26	1478.26
$\omega_{6\mathrm{b}}(e^{'})$	1478.32	1478.46	1478.31	1478.31	1489.43	1478.26	1478.26
$\omega_{7\mathrm{a}}(e^{'})$	1060.52	1047.53	1060.34	1060.34	1083.50	1059.32	1060.57
$\omega_{7\mathrm{b}}(e^{'})$	1060.52	1047.48	1060.34	1060.34	1083.44	1059.32	1060.57
$\omega_{8\mathrm{a}}(e^{'})$	891.96	894.37	892.19	892.19	923.73	893.53	892.03
$\omega_{8\mathrm{b}}(e^{'})$	891.96	894.34	892.19	892.19	923.70	893.52	892.03
$\omega_9(a_1^{\prime\prime})$	1088.57	1077.76	1088.57	1088.57	1100.41	1088.57	1088.57
$\omega_{10}(a_2^{\prime\prime})$	3248.62	3271.17	3248.62	3248.62	3399.21	3248.61	3248.61
$\omega_{11}(a_2^{\prime\prime})$	857.68	860.46	857.69	857.69	870.33	857.73	857.73
$\omega_{12\mathrm{a}}(e^{''})$	3228.73	3252.66	3228.73	3228.73	3380.28	3228.72	3228.72
$\omega_{12\mathrm{b}}(e^{''})$	3228.73	3252.60	3228.73	3228.73	3380.22	3228.72	3228.72
$\omega_{13\mathrm{a}}(e^{''})$	1217.35	1213.99	1217.35	1217.35	1227.23	1217.34	1217.34
$\omega_{13\mathrm{b}}(e^{''})$	1217.35	1213.98	1217.35	1217.35	1227.22	1217.34	1217.34
$\omega_{14\mathrm{a}}(e^{''})$	740.85	740.69	740.86	740.86	749.03	740.89	740.89
$\omega_{14\mathrm{b}}(e^{''})$	740.85	740.68	740.86	740.86	749.02	740.89	740.89

Table S2: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1^{'})$	3167.76	3156.90	3156.90
$\omega_{2}(a_{1}^{'})$	1515.16	1528.61	1528.61
$\omega_{3}(a_{1}^{'})$	1214.85	1214.51	1214.51
$\omega_4(a_2^{'})$	1157.21	1160.87	1160.87
$\omega_{5\mathrm{a}}(e^{'})$	3159.72	3146.30	3146.30
$\omega_{5\mathrm{b}}(e^{'})$	3158.86	3146.27	3146.27
$\omega_{6\mathrm{a}}(e^{'})$	1475.90	1478.28	1478.28
$\omega_{6\mathrm{b}}(e^{'})$	1474.44	1478.28	1478.28
$\omega_{7\mathrm{a}}(e^{'})$	1065.26	1060.56	1060.56
$\omega_{7\mathrm{b}}(e^{'})$	1064.70	1060.49	1060.49
$\omega_{8\mathrm{a}}(e^{'})$	887.43	892.06	892.06
$\omega_{8\mathrm{b}}(e^{'})$	887.18	892.05	892.05
$\omega_9(a_1^{''})$	1093.92	1088.57	1088.57
$\omega_{10}(a_2^{\prime\prime})$	3264.39	3248.62	3248.62
$\omega_{11}(a_2^{\prime\prime})$	859.41	857.68	857.68
$\omega_{12\mathrm{a}}(e^{''})$	3241.72	3228.73	3228.73
$\omega_{12\mathrm{b}}(e^{''})$	3241.11	3228.73	3228.73
$\omega_{13\mathrm{a}}(e^{''})$	1215.33	1217.34	1217.34
$\omega_{13\mathrm{b}}(e^{''})$	1214.95	1217.34	1217.34
$\omega_{14\mathrm{a}}(e^{''})$	739.17	740.87	740.87
$\omega_{14\mathrm{b}}(e^{''})$	738.89	740.87	740.87

Table S3: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S4: Symmetrized, unnormalized natural internal coordinates for cyclopropane.

- 1 $r_{2,3} + r_{1,2} + r_{1,3}$
- $2 \qquad 2r_{2,3} r_{1,2} r_{1,3}$
- $3 r_{1,2} r_{1,3}$
- $4 \qquad r_{1,4} + r_{1,5} + r_{2,7} + r_{2,6} + r_{3,8} + r_{3,9}$
- 5 $2r_{1,4} + 2r_{1,5} r_{2,7} r_{2,6} r_{3,8} r_{3,9}$
- $6 \qquad r_{2,7} + r_{2,6} r_{3,8} r_{3,9}$
- $7 \qquad r_{1,4} r_{1,5} + r_{2,7} r_{2,6} + r_{3,8} r_{3,9}$
- $8 \qquad 2r_{1,4} 2r_{1,5} r_{2,7} + r_{2,6} r_{3,8} + r_{3,9}$
- 9 $r_{2,7} r_{2,6} r_{3,8} + r_{3,9}$
- 10 $4\phi_{4,1,5} \phi_{4,1,2} \phi_{4,1,3} \phi_{5,1,2} \phi_{5,1,3} + 4\phi_{6,2,7} \phi_{7,2,3} \phi_{7,2,1} \phi_{6,2,3} \phi_{6,2,1} + 4\phi_{8,3,9} \phi_{8,3,1} \phi_{8,3,2} \phi_{9,3,1} \phi_{9,3,2}$
- 11 $\begin{array}{rrr} 8\phi_{4,1,5}-2\phi_{4,1,2}-2\phi_{4,1,3}-2\phi_{5,1,2}-2\phi_{5,1,3}-4\phi_{6,2,7}+\phi_{7,2,3}+\phi_{7,2,1}+\phi_{6,2,3}+\phi_{6,2,1}\\ -4\phi_{8,3,9}+\phi_{8,3,1}+\phi_{8,3,2}+\phi_{9,3,1}+\phi_{9,3,2} \end{array}$
- $12 \quad 4\phi_{6,2,7} \phi_{7,2,3} \phi_{7,2,1} \phi_{6,2,3} \phi_{6,2,1} 4\phi_{8,3,9} + \phi_{8,3,1} + \phi_{8,3,2} + \phi_{9,3,1} + \phi_{9,3,2}$
- 13 $\phi_{4,1,2} + \phi_{4,1,3} \phi_{5,1,2} \phi_{5,1,3} + \phi_{7,2,3} + \phi_{7,2,1} \phi_{6,2,3} \phi_{6,2,1} + \phi_{8,3,1} + \phi_{8,3,2} \phi_{9,3,1} \phi_{9,3,2}$
- $\begin{array}{rl} 14 & 2\phi_{4,1,2}+2\phi_{4,1,3}-2\phi_{5,1,2}-2\phi_{5,1,3}-\phi_{7,2,3}-\phi_{7,2,1}+\phi_{6,2,3}+\phi_{6,2,1}-\phi_{8,3,1}-\phi_{8,3,2}\\ & +\phi_{9,3,1}+\phi_{9,3,2} \end{array}$
- 15 $\phi_{7,2,3} + \phi_{7,2,1} \phi_{6,2,3} \phi_{6,2,1} \phi_{8,3,1} \phi_{8,3,2} + \phi_{9,3,1} + \phi_{9,3,2}$
- 16 $\phi_{4,1,2} \phi_{4,1,3} + \phi_{5,1,2} \phi_{5,1,3} + \phi_{7,2,3} \phi_{7,2,1} + \phi_{6,2,3} \phi_{6,2,1} + \phi_{8,3,1} \phi_{8,3,2} + \phi_{9,3,1} \phi_{9,3,2}$
- 17 $2\phi_{4,1,2} 2\phi_{4,1,3} + 2\phi_{5,1,2} 2\phi_{5,1,3} \phi_{7,2,3} + \phi_{7,2,1} \phi_{6,2,3} + \phi_{6,2,1} \phi_{8,3,1} + \phi_{8,3,2} \phi_{9,3,1} + \phi_{9,3,2}$
- 18 $\phi_{7,2,3} \phi_{7,2,1} + \phi_{6,2,3} \phi_{6,2,1} \phi_{8,3,1} + \phi_{8,3,2} \phi_{9,3,1} + \phi_{9,3,2}$
- 19 $\phi_{4,1,2} \phi_{4,1,3} \phi_{5,1,2} + \phi_{5,1,3} + \phi_{7,2,3} \phi_{7,2,1} \phi_{6,2,3} + \phi_{6,2,1} + \phi_{8,3,1} \phi_{8,3,2} \phi_{9,3,1} + \phi_{9,3,2}$
- 20 $2\phi_{4,1,2} 2\phi_{4,1,3} 2\phi_{5,1,2} + 2\phi_{5,1,3} \phi_{7,2,3} + \phi_{7,2,1} + \phi_{6,2,3} \phi_{6,2,1} \phi_{8,3,1} + \phi_{8,3,2} + \phi_{9,3,1} \phi_{9,3,2}$
- 21 $\phi_{7,2,3} \phi_{7,2,1} \phi_{6,2,3} + \phi_{6,2,1} \phi_{8,3,1} + \phi_{8,3,2} + \phi_{9,3,1} \phi_{9,3,2}$

S4.2 methane

Table S5: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	0.00000000	0.00000000	0.00000000
2	Η	0.00000000	-1.68028027	1.18813758
3	Η	0.00000000	1.68028027	1.18813758
4	Η	1.68028027	0.00000000	-1.18813758
5	Η	-1.68028027	-0.00000000	-1.18813758

Table S6: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	CCSD(T)/	MP2/	MP2/	MP2/	CCSD(T)/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3034.66	3045.57	3034.66	3034.66	3167.65	3034.66	3034.66
$\omega_{2a}(e)$	1570.80	1578.61	1570.80	1570.80	1581.56	1570.80	1570.80
$\omega_{2\mathrm{b}}(e)$	1570.80	1578.60	1570.80	1570.80	1581.55	1570.80	1570.80
$\omega_{3\mathrm{a}}(t_2)$	3153.78	3179.02	3153.78	3153.78	3312.67	3153.74	3153.74
$\omega_{3\mathrm{b}}(t_2)$	3153.78	3178.77	3153.78	3153.78	3312.41	3153.74	3153.74
$\omega_{3\mathrm{c}}(t_2)$	3153.78	3178.77	3153.78	3153.78	3312.41	3153.74	3153.74
$\omega_{4\mathrm{a}}(t_2)$	1343.99	1343.24	1344.00	1344.00	1359.68	1344.11	1344.11
$\omega_{4\mathrm{b}}(t_2)$	1343.99	1343.17	1344.00	1344.00	1359.63	1344.11	1344.11
$\omega_{4\mathrm{c}}(t_2)$	1343.99	1343.17	1344.00	1344.00	1359.63	1344.11	1344.11

Table S7: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3063.69	3034.66	3034.66
$\omega_{2a}(e)$	1570.30	1570.80	1570.80
$\omega_{2\mathrm{b}}(e)$	1570.25	1570.80	1570.80
$\omega_{3a}(t_2)$	3176.73	3153.78	3153.78
$\omega_{3\mathrm{b}}(t_2)$	3176.53	3153.78	3153.78
$\omega_{3c}(t_2)$	3176.53	3153.78	3153.78
$\omega_{4\mathrm{a}}(t_2)$	1351.95	1343.99	1343.99
$\omega_{4\mathrm{b}}(t_2)$	1351.95	1343.99	1343.99
$\omega_{4\mathrm{c}}(t_2)$	1351.94	1343.99	1343.99

Table S8: Symmetrized, unnormalized natural internal coordinates for methane.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4} + r_{1,5}$
- $2 \quad -r_{1,2} r_{1,3} + r_{1,4} + r_{1,5}$
- $3 \quad -r_{1,2} + r_{1,3} r_{1,4} + r_{1,5}$
- $4 \quad r_{1,2} r_{1,3} r_{1,4} + r_{1,5}$
- $5 \quad 2\phi_{2,1,3} + 2\phi_{4,1,5} \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5}$
- $6 \quad \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} + \phi_{3,1,5}$
- 7 $-\phi_{2,1,3} + \phi_{4,1,5}$
- 8 $-\phi_{2,1,4} + \phi_{3,1,5}$
- 9 $\phi_{2,1,5} \phi_{3,1,4}$

S4.3 ammonia

Table S9: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Ν	-0.13335323	-0.00000078	-0.00000000
2	Η	0.61762190	-1.76309423	-0.00000000
3	Η	0.61761729	0.88155253	1.52688219
4	Η	0.61761729	0.88155253	-1.52688219

Table S10: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc-pVTZ	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3471.91	3483.02	3471.91	3471.91	3575.04	3471.81	3471.91
$\omega_2(a_1)$	1109.21	1097.96	1109.22	1109.22	1097.45	1109.52	1109.21
$\omega_{3\mathrm{a}}(e)$	3597.54	3623.57	3597.54	3597.54	3720.21	3597.51	3597.51
$\omega_{3\mathrm{b}}(e)$	3597.54	3623.41	3597.54	3597.54	3720.03	3597.51	3597.51
$\omega_{4a}(e)$	1687.93	1683.58	1687.93	1687.93	1688.35	1687.99	1687.99
$\omega_{4\mathrm{b}}(e)$	1687.93	1683.53	1687.93	1687.93	1688.30	1687.99	1687.99

Table S11: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3494.96	3471.91	3471.91
$\omega_2(a_1)$	1093.50	1109.22	1109.22
$\omega_{3a}(e)$	3614.73	3597.53	3597.53
$\omega_{3b}(e)$	3614.55	3597.53	3597.53
$\omega_{4a}(e)$	1683.34	1687.94	1687.94
$\omega_{4\mathrm{b}}(e)$	1683.25	1687.94	1687.94

Table S12: Symmetrized, unnormalized natural internal coordinates for ammonia.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4}$
- $2 \quad 2r_{1,2} r_{1,3} r_{1,4}$
- 3 $r_{1,3} r_{1,4}$
- $4 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 5 $\phi_{2,1,4} \phi_{3,1,4}$
- $6 \quad \gamma_{2,1,3,4} + \gamma_{3,1,4,2} + \gamma_{4,1,2,3}$

S4.4 silane

Table S13: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Si	0.00000000	0.00000000	0.00000000
2	Η	0.00000000	-2.28308541	1.61437763
3	Η	0.00000000	2.28308541	1.61437763
4	Η	2.28308541	0.00000000	-1.61437763
5	Η	-2.28308541	0.00000000	-1.61437763

Table S14: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc- $pVDZ$
$\omega_1(a_1)$	2250.62	2284.43	2250.62	2250.62	2277.03	2250.62	2250.62
$\omega_{2a}(e)$	985.49	1001.77	985.48	985.48	989.05	985.49	985.49
$\omega_{2\mathrm{b}}(e)$	985.48	1001.76	985.48	985.48	989.05	985.48	985.48
$\omega_{3\mathrm{a}}(t_2)$	2255.36	2291.66	2255.36	2255.36	2287.50	2255.36	2255.36
$\omega_{3\mathrm{b}}(t_2)$	2255.36	2291.56	2255.36	2255.36	2287.41	2255.36	2255.36
$\omega_{3\mathrm{c}}(t_2)$	2255.36	2291.56	2255.35	2255.35	2287.41	2255.36	2255.36
$\omega_{4\mathrm{a}}(t_2)$	933.80	948.87	933.80	933.80	940.48	933.80	933.80
$\omega_{4\mathrm{b}}(t_2)$	933.80	948.82	933.80	933.80	940.43	933.79	933.79
$\omega_{4\mathrm{c}}(t_2)$	933.79	948.81	933.79	933.79	940.43	933.79	933.79

Table S15: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2df,p)$
$\omega_1(a_1)$	2261.16	2250.62	2250.62
$\omega_{2a}(e)$	979.64	985.49	985.49
$\omega_{2\mathrm{b}}(e)$	979.50	985.48	985.48
$\omega_{3\mathrm{a}}(t_2)$	2271.95	2255.37	2255.37
$\omega_{3\mathrm{b}}(t_2)$	2271.15	2255.36	2255.36
$\omega_{3c}(t_2)$	2271.15	2255.34	2255.34
$\omega_{4\mathrm{a}}(t_2)$	921.81	933.80	933.80
$\omega_{4\mathrm{b}}(t_2)$	921.35	933.79	933.79
$\omega_{4\mathrm{c}}(t_2)$	921.34	933.79	933.79

Table S16: Symmetrized, unnormalized natural internal coordinates for silane.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4} + r_{1,5}$
- $2 \quad -r_{1,2} r_{1,3} + r_{1,4} + r_{1,5}$
- $3 \quad -r_{1,2} + r_{1,3} r_{1,4} + r_{1,5}$
- $4 \quad r_{1,2} r_{1,3} r_{1,4} + r_{1,5}$
- $5 \quad 2\phi_{2,1,3} + 2\phi_{4,1,5} \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5}$
- $6 \quad \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} + \phi_{3,1,5}$
- 7 $-\phi_{2,1,3} + \phi_{4,1,5}$
- 8 $-\phi_{2,1,4} + \phi_{3,1,5}$
- 9 $\phi_{2,1,5} \phi_{3,1,4}$

Table S17: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	С	0.00000000	2.64096559	-0.00000000
2	С	-2.28714329	1.32048279	-0.00000000
3	С	-2.28714329	-1.32048279	0.00000000
4	\mathbf{C}	-0.00000000	-2.64096559	0.00000000
5	\mathbf{C}	2.28714329	-1.32048279	0.00000000
6	С	2.28714329	1.32048279	-0.00000000
7	Η	0.00000000	4.68777554	-0.00000000
8	Η	-4.05973271	2.34388777	-0.00000000
9	Η	-4.05973271	-2.34388777	0.00000000
10	Η	-0.00000000	-4.68777554	0.00000000
11	Η	4.05973271	-2.34388777	0.00000000
12	Н	4.05973271	2.34388777	-0.00000000

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_{1g})$	3209.15	3224.30	3209.15	3209.15	3348.27	3209.14	3209.14
$\omega_2(a_{1\mathrm{g}})$	1004.54	1003.25	1004.54	1004.54	1041.17	1004.55	1004.55
$\omega_3(a_{2g})$	1370.18	1364.96	1370.18	1370.18	1386.82	1370.18	1370.18
$\omega_4(a_{2\mathrm{u}})$	685.29	687.72	685.29	685.29	694.05	685.29	685.29
$\omega_5(b_{1\mathrm{u}})$	3169.39	3186.60	3169.39	3169.39	3308.98	3169.39	3169.39
$\omega_6(b_{1\mathrm{u}})$	1010.33	1012.70	1010.33	1010.33	1015.18	1010.34	1010.34
$\omega_7(b_{2\mathrm{g}})$	966.66	971.83	966.57	966.66	978.12	966.05	966.66
$\omega_8(b_{2\mathrm{g}})$	674.67	682.19	674.80	674.67	644.35	675.54	674.67
$\omega_9(b_{2\mathrm{u}})$	1328.17	1439.45	1323.88	1328.17	1413.84	1326.49	1328.17
$\omega_{10}(b_{2\mathrm{u}})$	1158.88	1164.22	1163.78	1158.88	1182.54	1160.80	1158.88
$\omega_{11a}(e_{1g})$	856.44	859.05	856.44	856.44	870.81	856.44	856.44
$\omega_{11\mathrm{b}}(e_{1\mathrm{g}})$	856.44	859.05	856.44	856.44	870.80	856.44	856.44
$\omega_{12a}(e_{1u})$	3198.33	3214.58	3198.33	3198.33	3337.35	3198.33	3198.33
$\omega_{12b}(e_{1u})$	3198.33	3214.52	3198.33	3198.33	3337.29	3198.33	3198.33
$\omega_{13a}(e_{1u})$	1506.94	1497.86	1506.94	1506.94	1542.40	1506.49	1506.94
$\omega_{13b}(e_{1u})$	1506.94	1497.84	1506.94	1506.94	1542.39	1506.48	1506.94
$\omega_{14a}(e_{1u})$	1054.36	1053.53	1054.37	1054.36	1084.14	1055.03	1054.38
$\omega_{14\mathrm{b}}(e_{1\mathrm{u}})$	1054.36	1053.52	1054.37	1054.36	1084.12	1055.03	1054.38
$\omega_{15a}(e_{2g})$	3180.74	3198.12	3180.74	3180.74	3319.85	3180.73	3180.73
$\omega_{15\mathrm{b}}(e_{2\mathrm{g}})$	3180.74	3198.06	3180.74	3180.74	3319.79	3180.73	3180.73
$\omega_{16a}(e_{2g})$	1637.23	1624.59	1637.21	1637.23	1699.02	1636.82	1637.20
$\omega_{16b}(e_{2g})$	1637.23	1624.57	1637.21	1637.23	1699.01	1636.82	1637.20
$\omega_{17a}(e_{2g})$	1190.57	1190.38	1190.61	1190.57	1211.98	1191.10	1190.58
$\omega_{17b}(e_{2g})$	1190.57	1190.38	1190.61	1190.57	1211.98	1191.10	1190.58
$\omega_{18a}(e_{2g})$	607.13	603.08	607.14	607.14	617.60	607.22	607.22
$\omega_{18b}(e_{2g})$	607.13	603.07	607.14	607.14	617.60	607.22	607.22
$\omega_{19a}(e_{2u})$	959.08	958.05	959.08	959.08	974.01	959.07	959.08
$\omega_{19\mathrm{b}}(e_{2\mathrm{u}})$	959.08	958.03	959.08	959.08	974.00	959.07	959.08
$\omega_{20a}(e_{2u})$	401.34	402.88	401.34	401.34	404.15	401.36	401.34
$\omega_{20\mathrm{b}}(e_{2\mathrm{u}})$	401.34	402.87	401.34	401.34	404.15	401.36	401.34

Table S18: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6-31\mathrm{G}(2df,p)$	$6-31\mathrm{G}(2df,p)$	$6-31\mathrm{G}(2df,p)$
$\omega_1(a_{1g})$	3219.15	3209.14	3209.14
$\omega_2(a_{1\mathrm{g}})$	1006.60	1004.55	1004.55
$\omega_3(a_{2g})$	1373.98	1370.18	1370.18
$\omega_4(a_{2\mathrm{u}})$	696.71	685.29	685.29
$\omega_5(b_{1\mathrm{u}})$	3180.31	3169.39	3169.39
$\omega_6(b_{1\mathrm{u}})$	1013.66	1010.34	1010.34
$\omega_7(b_{2\mathrm{g}})$	1008.62	964.26	966.66
$\omega_8(b_{2\mathrm{g}})$	715.75	678.10	674.67
$\omega_9(b_{2\mathrm{u}})$	1324.89	1327.54	1328.17
$\omega_{10}(b_{2\mathrm{u}})$	1173.75	1159.61	1158.88
$\omega_{11a}(e_{1g})$	871.46	856.44	856.44
$\omega_{11\mathrm{b}}(e_{1\mathrm{g}})$	867.18	856.44	856.44
$\omega_{12a}(e_{1u})$	3210.35	3198.33	3198.33
$\omega_{12\mathrm{b}}(e_{1\mathrm{u}})$	3205.93	3198.32	3198.32
$\omega_{13a}(e_{1u})$	1509.58	1506.94	1506.95
$\omega_{13b}(e_{1u})$	1505.76	1506.91	1506.91
$\omega_{14a}(e_{1u})$	1054.26	1054.44	1054.44
$\omega_{14\mathrm{b}}(e_{1\mathrm{u}})$	1053.31	1054.39	1054.37
$\omega_{15a}(e_{2g})$	3197.58	3180.76	3180.76
$\omega_{15\mathrm{b}}(e_{2\mathrm{g}})$	3188.11	3180.64	3180.64
$\omega_{16a}(e_{2g})$	1630.26	1637.28	1637.28
$\omega_{16\mathrm{b}}(e_{2\mathrm{g}})$	1628.96	1637.20	1637.20
$\omega_{17a}(e_{2g})$	1201.32	1190.65	1190.65
$\omega_{17\mathrm{b}}(e_{2\mathrm{g}})$	1192.60	1190.59	1190.59
$\omega_{18a}(e_{2g})$	614.75	607.19	607.19
$\omega_{18b}(e_{2g})$	612.79	607.16	607.16
$\omega_{19a}(e_{2u})$	984.82	959.07	959.07
$\omega_{19\mathrm{b}}(e_{2\mathrm{u}})$	978.47	959.04	959.04
$\omega_{20a}(e_{2u})$	411.47	401.44	401.44
$\omega_{20\mathrm{b}}(e_{2\mathrm{u}})$	406.67	401.37	401.37

Table S19: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S20: Symmetrized, unnormalized natural internal coordinates for benzene.

 $r_{1,2} + r_{2,3} + r_{3,4} + r_{4,5} + r_{5,6} + r_{6,1}$ $r_{1,2} - r_{2,3} + r_{3,4} - r_{4,5} + r_{5,6} - r_{6,1}$ $2r_{1,2} + r_{2,3} - r_{3,4} - 2r_{4,5} - r_{5,6} + r_{6,1}$ $r_{2,3} + r_{3,4} - r_{5,6} - r_{6,1}$ $2r_{1,2} - r_{2,3} - r_{3,4} + 2r_{4,5} - r_{5,6} - r_{6,1}$ $r_{2,3} - r_{3,4} + r_{5,6} - r_{6,1}$ $r_{1,7} + r_{2,8} + r_{3,9} + r_{4,10} + r_{5,11} + r_{6,12}$ $r_{1,7} - r_{2,8} + r_{3,9} - r_{4,10} + r_{5,11} - r_{6,12}$ $2r_{1,7} + r_{2,8} - r_{3,9} - 2r_{4,10} - r_{5,11} + r_{6,12}$ $10 \quad r_{2,8} + r_{3,9} - r_{5,11} - r_{6,12}$ 11 $2r_{1,7} - r_{2,8} - r_{3,9} + 2r_{4,10} - r_{5,11} - r_{6,12}$ 12 $r_{2,8} - r_{3,9} + r_{5,11} - r_{6,12}$ 13 $\phi_{6,1,2} - \phi_{1,2,3} + \phi_{2,3,4} - \phi_{3,4,5} + \phi_{4,5,6} - \phi_{5,6,1}$ 14 $2\phi_{6,1,2} - \phi_{1,2,3} - \phi_{2,3,4} + 2\phi_{3,4,5} - \phi_{4,5,6} - \phi_{5,6,1}$ 15 $\phi_{1,2,3} - \phi_{2,3,4} + \phi_{4,5,6} - \phi_{5,6,1}$ $16 \quad \phi_{7,1,2} - \phi_{7,1,6} + \phi_{8,2,3} - \phi_{8,2,1} + \phi_{9,3,4} - \phi_{9,3,2} + \phi_{10,4,5} - \phi_{10,4,3} + \phi_{11,5,6} - \phi_{11,5,4}$ $+\phi_{12,6,1}-\phi_{12,6,5}$ 17 $\phi_{7,1,2} - \phi_{7,1,6} - \phi_{8,2,3} + \phi_{8,2,1} + \phi_{9,3,4} - \phi_{9,3,2} - \phi_{10,4,5} + \phi_{10,4,3} + \phi_{11,5,6} - \phi_{11,5,4}$ $-\phi_{12,6,1}+\phi_{12,6,5}$ $18 \quad 2\phi_{7,1,2} - 2\phi_{7,1,6} + \phi_{8,2,3} - \phi_{8,2,1} - \phi_{9,3,4} + \phi_{9,3,2} - 2\phi_{10,4,5} + 2\phi_{10,4,3} - \phi_{11,5,6} + \phi_{11,5,4} +$ $+\phi_{12.6.1} - \phi_{12.6.5}$ 19 $\phi_{8,2,3} - \phi_{8,2,1} + \phi_{9,3,4} - \phi_{9,3,2} - \phi_{11,5,6} + \phi_{11,5,4} - \phi_{12,6,1} + \phi_{12,6,5}$ $20 \quad 2\phi_{7,1,2} - 2\phi_{7,1,6} - \phi_{8,2,3} + \phi_{8,2,1} - \phi_{9,3,4} + \phi_{9,3,2} + 2\phi_{10,4,5} - 2\phi_{10,4,3} - \phi_{11,5,6} + \phi_{11,5,4} +$ $-\phi_{12,6,1} + \phi_{12,6,5}$ $21 \quad \phi_{8,2,3} - \phi_{8,2,1} - \phi_{9,3,4} + \phi_{9,3,2} + \phi_{11,5,6} - \phi_{11,5,4} - \phi_{12,6,1} + \phi_{12,6,5}$ 22 $\tau_{1,2,3,4} - \tau_{2,3,4,5} + \tau_{3,4,5,6} - \tau_{4,5,6,1} + \tau_{5,6,1,2} - \tau_{6,1,2,3}$ 23 $\tau_{1,2,3,4} - \tau_{3,4,5,6} + \tau_{4,5,6,1} - \tau_{6,1,2,3}$ 24 $-\tau_{1,2,3,4} + 2\tau_{2,3,4,5} - \tau_{3,4,5,6} - \tau_{4,5,6,1} + 2\tau_{5,6,1,2} - \tau_{6,1,2,3}$ 25 $\gamma_{7,1,2,6} + \gamma_{8,2,3,1} + \gamma_{9,3,4,2} + \gamma_{10,4,5,3} + \gamma_{11,5,6,4} + \gamma_{12,6,1,5}$ 26 $\gamma_{7,1,2,6} - \gamma_{8,2,3,1} + \gamma_{9,3,4,2} - \gamma_{10,4,5,3} + \gamma_{11,5,6,4} - \gamma_{12,6,1,5}$ 27 $2\gamma_{7,1,2,6} + \gamma_{8,2,3,1} - \gamma_{9,3,4,2} - 2\gamma_{10,4,5,3} - \gamma_{11,5,6,4} + \gamma_{12,6,1,5}$ 28 $\gamma_{8,2,3,1} + \gamma_{9,3,4,2} - \gamma_{11,5,6,4} - \gamma_{12,6,1,5}$ $29 \quad 2\gamma_{7,1,2,6} - \gamma_{8,2,3,1} - \gamma_{9,3,4,2} + 2\gamma_{10,4,5,3} - \gamma_{11,5,6,4} - \gamma_{12,6,1,5}$ $30 \quad \gamma_{8,2,3,1} - \gamma_{9,3,4,2} + \gamma_{11,5,6,4} - \gamma_{12,6,1,5}$

1

23

4

5

6 7

8

9

Table S21: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	С	-0.00000000	-0.00000000	1.67420069
2	Η	0.00001614	-1.72642240	2.78915742
3	Н	-0.00001614	1.72642240	2.78915742
4	С	1.22917808	0.00000291	-0.90945117
5	С	-1.22917808	-0.00000291	-0.90945117
6	Η	2.98721276	-0.00000494	-1.92768856
$\overline{7}$	Η	-2.98721276	0.00000494	-1.92768856

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3310.75	3326.62	3310.74	3310.74	3455.70	3310.74	3310.74
$\omega_2(a_1)$	3071.86	3088.42	3071.85	3071.85	3215.34	3071.83	3071.83
$\omega_3(a_1)$	1682.96	1677.34	1682.94	1682.96	1762.81	1682.20	1682.95
$\omega_4(a_1)$	1524.77	1526.62	1524.75	1524.72	1542.79	1525.33	1524.51
$\omega_5(a_1)$	1158.16	1153.88	1158.16	1158.23	1204.62	1158.19	1158.55
$\omega_6(a_1)$	927.46	929.75	927.54	927.46	941.05	927.98	927.53
$\omega_7(a_2)$	1020.59	1023.63	1020.28	1020.59	1028.28	1020.58	1020.59
$\omega_8(a_2)$	824.74	838.84	825.12	824.74	834.90	824.74	824.74
$\omega_9(b_1)$	3143.03	3167.07	3143.02	3143.02	3299.00	3143.02	3143.02
$\omega_{10}(b_1)$	1108.96	1111.63	1108.97	1108.97	1119.07	1108.96	1108.96
$\omega_{11}(b_1)$	575.68	584.69	575.69	575.68	588.05	575.70	575.70
$\omega_{12}(b_2)$	3264.57	3280.37	3264.57	3264.57	3410.21	3264.57	3264.57
$\omega_{13}(b_2)$	1074.23	1064.44	1073.27	1073.31	1087.58	1072.83	1072.83
$\omega_{14}(b_2)$	1042.08	1033.50	1042.89	1042.89	1057.50	1042.77	1043.19
$\omega_{15}(b_2)$	791.69	790.47	791.95	791.89	813.75	792.70	792.13

Table S22: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

Table S23: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3322.40	3310.74	3310.74
$\omega_2(a_1)$	3079.98	3071.82	3071.82
$\omega_3(a_1)$	1697.21	1682.89	1682.93
$\omega_4(a_1)$	1520.62	1524.73	1524.69
$\omega_5(a_1)$	1149.08	1158.35	1158.36
$\omega_6(a_1)$	935.81	927.54	927.52
$\omega_7(a_2)$	1019.44	1020.59	1020.59
$\omega_8(a_2)$	867.26	824.74	824.74
$\omega_9(b_1)$	3153.06	3143.03	3143.03
$\omega_{10}(b_1)$	1116.51	1108.91	1108.91
$\omega_{11}(b_1)$	622.99	575.79	575.79
$\omega_{12}(b_2)$	3277.11	3264.56	3264.56
$\omega_{13}(b_2)$	1080.52	1073.70	1073.70
$\omega_{14}(b_2)$	1035.81	1042.62	1042.62
$\omega_{15}(b_2)$	785.27	791.74	791.74

Table S24: Symmetrized, unnormalized natural internal coordinates for cyclopropene.

1	$r_{1,4} + r_{1,5} + r_{4,5}$
2	$r_{1,4} - r_{1,5}$
3	$-r_{1,4} - r_{1,5} + 2r_{4,5}$
4	$r_{1,2} + r_{1,3}$
5	$r_{1,2} - r_{1,3}$
6	$r_{4,6} + r_{5,7}$
7	$r_{4,6} - r_{5,7}$
8	$4\phi_{2,1,3} - \phi_{3,1,4} - \phi_{3,1,5} - \phi_{2,1,4} - \phi_{2,1,5}$
9	$\phi_{3,1,4} + \phi_{3,1,5} - \phi_{2,1,4} - \phi_{2,1,5}$
10	$\phi_{3,1,4} - \phi_{3,1,5} + \phi_{2,1,4} - \phi_{2,1,5}$
11	$\phi_{3,1,4} - \phi_{3,1,5} - \phi_{2,1,4} + \phi_{2,1,5}$
12	$\phi_{6,4,1} - \phi_{6,4,5} + \phi_{7,5,1} - \phi_{7,5,4}$
13	$\phi_{6,4,1} - \phi_{6,4,5} - \phi_{7,5,1} + \phi_{7,5,4}$
14	$ au_{7,5,4,6}$
15	$\gamma_{6,4,1,5} - \gamma_{7,5,1,4}$

Table S25: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	0.00000000	0.00000000	-0.00000001
2	С	0.00000000	0.00000000	-2.48178976
3	С	0.00000000	0.00000000	2.48178971
4	Η	-1.75641355	0.00000000	-3.53278972
5	Η	1.75641355	0.00000000	-3.53278972
6	Η	0.00000000	-1.75641338	3.53279007
7	Н	0.00000000	1.75641338	3.53279007

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3144.28	3159.70	3144.28	3144.28	3283.15	3144.27	3144.27
$\omega_2(a_1)$	1488.52	1481.35	1488.52	1488.52	1516.96	1487.82	1488.53
$\omega_3(a_1)$	1080.75	1082.06	1080.76	1080.76	1122.49	1081.75	1080.77
$\omega_4(b_1)$	870.31	892.05	870.31	870.31	875.85	870.31	870.31
$\omega_5(b_2)$	3142.75	3159.37	3142.75	3142.75	3282.49	3142.72	3142.72
$\omega_6(b_2)$	2012.15	2009.82	2012.12	2012.15	2109.08	2012.20	2012.20
$\omega_7(b_2)$	1438.38	1433.30	1438.41	1438.38	1455.27	1438.38	1438.38
$\omega_{8a}(e)$	3226.41	3247.74	3226.41	3226.41	3382.45	3226.40	3226.40
$\omega_{8\mathrm{b}}(e)$	3226.41	3247.56	3226.41	3226.41	3382.27	3226.40	3226.40
$\omega_{9\mathrm{a}}(e)$	1017.78	1011.11	1017.70	1017.70	1036.54	1017.83	1017.83
$\omega_{9\mathrm{b}}(e)$	1017.66	1011.09	1017.57	1017.57	1036.54	1017.70	1017.70
$\omega_{10a}(e)$	856.73	855.14	856.73	856.73	864.54	856.74	856.74
$\omega_{10\mathrm{b}}(e)$	856.73	855.11	856.73	856.73	864.50	856.74	856.74
$\omega_{11a}(e)$	347.95	356.61	348.21	348.20	356.67	347.96	347.95
$\omega_{11\mathrm{b}}(e)$	347.95	356.60	348.20	348.20	356.66	347.96	347.95

Table S26: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

Table S27: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Duro		CMA 2A
	r uie	OMA-0A	OMA-ZA
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2df,p)$	$6\text{-}31\mathrm{G}(2df,p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3155.65	3144.28	3144.28
$\omega_2(a_1)$	1471.11	1488.46	1488.46
$\omega_3(a_1)$	1087.83	1080.85	1080.85
$\omega_4(b_1)$	880.58	870.31	870.31
$\omega_5(b_2)$	3151.46	3142.66	3142.66
$\omega_6(b_2)$	2010.71	2012.19	2012.29
$\omega_7(b_2)$	1422.88	1438.51	1438.38
$\omega_{8a}(e)$	3239.52	3226.41	3226.41
$\omega_{8\mathrm{b}}(e)$	3239.38	3226.41	3226.41
$\omega_{9\mathrm{a}}(e)$	1019.56	1017.52	1017.52
$\omega_{9\mathrm{b}}(e)$	1019.49	1017.40	1017.40
$\omega_{10a}(e)$	863.17	856.86	856.86
$\omega_{10\mathrm{b}}(e)$	863.07	856.85	856.85
$\omega_{11a}(e)$	368.94	348.42	348.42
$\omega_{11\mathrm{b}}(e)$	368.91	348.41	348.41

Table S28: Symmetrized, unnormalized natural internal coordinates for allene.

- 1 $r_{1,2} + r_{1,3}$ 2 $r_{1,2} - r_{1,3}$ 3 $r_{2,4} + r_{2,5} + r_{3,6} + r_{3,7}$ 4 $r_{2,4} + r_{2,5} - r_{3,6} - r_{3,7}$ 5 $r_{2,4} - r_{2,5} + r_{3,6} - r_{3,7}$ 6 $r_{2,4} - r_{2,5} - r_{3,6} + r_{3,7}$ $\overline{7}$ $2\phi_{4,2,5} - \phi_{1,2,4} - \phi_{1,2,5} + 2\phi_{6,3,7} - \phi_{1,3,6} - \phi_{1,3,7}$ 8 $2\phi_{4,2,5} - \phi_{1,2,4} - \phi_{1,2,5} - 2\phi_{6,3,7} + \phi_{1,3,6} + \phi_{1,3,7}$ 9 $\phi_{1,2,4} - \phi_{1,2,5} + \phi_{1,3,6} - \phi_{1,3,7}$ 10 $\phi_{1,2,4} - \phi_{1,2,5} - \phi_{1,3,6} + \phi_{1,3,7}$ 11 $\tau_{4,2,3,6} + \tau_{4,2,3,7} + \tau_{5,2,3,6} + \tau_{5,2,3,7}$ 12 $\gamma_{1,2,4,5} + \gamma_{1,3,7,6}$ 13 $\gamma_{1,2,4,5} - \gamma_{1,3,7,6}$
- 14 $\alpha_{4,2,1,3}^x \alpha_{5,2,1,3}^x + \alpha_{6,3,1,2}^x \alpha_{7,3,1,2}^x$
- 15 $\alpha_{4,2,1,3}^x \alpha_{5,2,1,3}^x \alpha_{6,3,1,2}^x + \alpha_{7,3,1,2}^x$

Table S29: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	0.00000000	-0.00000000	0.00000000
2	С	-1.02524750	-1.02524750	-2.39918091
3	С	1.02524750	1.02524750	-2.39918091
4	С	1.02524750	-1.02524750	2.39918091
5	\mathbf{C}	-1.02524750	1.02524750	2.39918091
6	Η	-0.46577708	-2.91033012	-2.96611806
7	Η	-2.91033012	-0.46577708	-2.96611806
8	Η	0.46577708	2.91033012	-2.96611806
9	Η	2.91033012	0.46577708	-2.96611806
10	Η	0.46577708	-2.91033012	2.96611806
11	Η	2.91033012	-0.46577708	2.96611806
12	Η	-0.46577708	2.91033012	2.96611806
13	Н	-2.91033012	0.46577708	2.96611806

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	CCSD(T)/	MP2/	MP2/	MP2/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVDZ$	cc- $pVDZ$	cc- $pVDZ$
$\omega_1(a_1)$	3134.85	3148.68	3134.85	3134.85	3271.74	3134.84	3134.84
$\omega_2(a_1)$	1501.43	1497.87	1501.40	1501.40	1520.29	1501.04	1501.04
$\omega_3(a_1)$	1076.02	1067.65	1072.42	1076.03	1111.28	1074.20	1076.31
$\omega_4(a_1)$	1054.41	1050.78	1058.08	1054.44	1074.83	1056.75	1054.60
$\omega_5(a_1)$	598.43	599.03	598.50	598.44	619.67	598.62	598.62
$\omega_6(a_2)$	3213.22	3236.81	3213.22	3213.22	3362.25	3213.22	3213.22
$\omega_7(a_2)$	1173.46	1171.62	1173.46	1173.46	1183.96	1173.45	1173.45
$\omega_8(a_2)$	840.13	838.36	840.14	840.14	846.55	840.17	840.17
$\omega_9(b_1)$	3212.32	3235.55	3212.32	3212.32	3361.43	3212.31	3212.31
$\omega_{10}(b_1)$	1183.50	1180.66	1183.45	1183.45	1193.46	1183.49	1183.49
$\omega_{11}(b_1)$	1027.32	1027.54	1027.39	1027.39	1036.53	1027.35	1027.35
$\omega_{12}(b_1)$	293.06	292.70	293.07	293.07	295.76	293.08	293.08
$\omega_{13}(b_2)$	3135.93	3151.11	3135.93	3135.93	3272.51	3135.91	3135.91
$\omega_{14}(b_2)$	1596.21	1586.54	1596.15	1596.16	1659.32	1595.02	1596.23
$\omega_{15}(b_2)$	1439.26	1439.83	1439.24	1439.23	1457.83	1440.45	1439.11
$\omega_{16}(b_2)$	1019.25	1006.35	1018.43	1019.33	1035.37	1018.33	1018.33
$\omega_{17}(b_2)$	900.83	898.59	901.91	900.88	935.80	902.14	902.14
$\omega_{18a}(e)$	3225.32	3247.93	3225.32	3225.32	3374.18	3225.32	3225.32
$\omega_{18b}(e)$	3225.32	3247.83	3225.32	3225.32	3374.09	3225.31	3225.31
$\omega_{19a}(e)$	3130.04	3146.14	3130.04	3130.04	3265.46	3130.02	3130.02
$\omega_{19b}(e)$	3130.04	3146.05	3130.04	3130.04	3265.38	3130.02	3130.02
$\omega_{20a}(e)$	1468.81	1467.34	1468.78	1468.78	1480.45	1468.73	1468.73
$\omega_{20\mathrm{b}}(e)$	1468.81	1467.34	1468.78	1468.78	1480.45	1468.73	1468.73
$\omega_{21a}(e)$	1189.88	1183.01	1189.86	1189.87	1211.60	1188.84	1189.47
$\omega_{21\mathrm{b}}(e)$	1189.88	1183.00	1189.86	1189.86	1211.59	1188.84	1189.47
$\omega_{22a}(e)$	1077.33	1064.21	1077.35	1077.35	1091.73	1077.58	1077.58
$\omega_{22b}(e)$	1077.33	1064.14	1077.35	1077.35	1091.65	1077.58	1077.58
$\omega_{23a}(e)$	897.42	896.84	897.50	897.50	925.98	898.68	897.85
$\omega_{23b}(e)$	897.42	896.82	897.50	897.49	925.96	898.68	897.85
$\omega_{24a}(e)$	786.27	787.58	786.27	786.27	797.89	786.36	786.36
$\omega_{24\mathrm{b}}(e)$	786.27	787.57	786.27	786.27	797.88	786.36	786.36
$\omega_{25a}(e)$	297.15	293.94	297.18	297.17	304.44	297.16	297.16
$\omega_{25b}(e)$	297.15	293.91	297.18	297.17	304.39	297.16	297.16

Table S30: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	6-31G(2df.p)	6-31G(2df,p)	6-31G(2df,p)
(u) (a)	3144.84	3134.82	3134.82
$\omega_1(a_1)$	1/01 71	1501.40	1501.40
$\omega_2(a_1)$	1070.37	1075 75	1076.06
$\omega_3(a_1)$	1079.57	1075.75	1070.00
$\omega_4(a_1)$	601.20	508.48	508 48
$\omega_5(a_1)$	3224 73	3913 99	3913 99
$\omega_6(a_2)$	3224.73 1171.94	5215.22 1172 45	5215.22 1172.45
$\omega_7(a_2)$	841 71	\$40.15	\$40.15
$\omega_8(a_2)$	041.71	040.10	040.10
$\omega_9(v_1)$	3223.17	3212.32	3212.32
$\omega_{10}(o_1)$	1181.33	1185.49	1185.49
$\omega_{11}(o_1)$	1026.79	1027.33	1027.33
$\omega_{12}(b_1)$	291.53	293.08	293.08
$\omega_{13}(b_2)$	3143.75	3135.87	3135.87
$\omega_{14}(b_2)$	1570.28	1596.25	1596.28
$\omega_{15}(b_2)$	1432.97	1439.24	1439.21
$\omega_{16}(b_2)$	1024.15	1019.28	1019.29
$\omega_{17}(b_2)$	896.49	900.98	900.96
$\omega_{18a}(e)$	3238.44	3225.33	3225.32
$\omega_{18b}(e)$	3237.91	3225.29	3225.32
$\omega_{19a}(e)$	3140.14	3130.04	3130.04
$\omega_{19\mathrm{b}}(e)$	3139.60	3130.03	3130.04
$\omega_{20a}(e)$	1463.30	1468.72	1468.81
$\omega_{20\mathrm{b}}(e)$	1462.26	1468.71	1468.81
$\omega_{21a}(e)$	1182.41	1189.82	1189.88
$\omega_{21\mathrm{b}}(e)$	1181.22	1189.81	1189.88
$\omega_{22a}(e)$	1080.64	1077.39	1077.33
$\omega_{22\mathrm{b}}(e)$	1080.43	1077.34	1077.33
$\omega_{23a}(e)$	888.36	897.65	897.42
$\omega_{23b}(e)$	887.91	897.60	897.42
$\omega_{24a}(e)$	786.42	786.35	786.27
$\omega_{24\mathrm{b}}(e)$	785.22	786.34	786.27
$\omega_{25a}(e)$	308.71	297.18	297.15
$\omega_{25b}(e)$	308.44	297.17	297.15

Table S31: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S32: Symmetrized, unnormalized natural internal coordinates for spiropentane.

```
1
                        r_{1,2} + r_{1,3} + r_{2,3} + r_{1,4} + r_{1,5} + r_{4,5}
\mathbf{2}
                        r_{1,2} + r_{1,3} + r_{2,3} - r_{1,4} - r_{1,5} - r_{4,5}
3
                        -r_{1,2} - r_{1,3} + 2r_{2,3} - r_{1,4} - r_{1,5} + 2r_{4,5}
4
                       -r_{1,2} - r_{1,3} + 2r_{2,3} + r_{1,4} + r_{1,5} - 2r_{4,5}
5
                       r_{1,2} - r_{1,3} + r_{1,4} - r_{1,5}
6
                       r_{1,2} - r_{1,3} - r_{1,4} + r_{1,5}
\overline{7}
                       r_{2,6} + r_{2,7} + r_{3,8} + r_{3,9} + r_{4,10} + r_{4,11} + r_{5,12} + r_{5,13}
8
                       r_{2,6} + r_{2,7} + r_{3,8} + r_{3,9} - r_{4,10} - r_{4,11} - r_{5,12} - r_{5,13}
9
                        r_{2,6} + r_{2,7} - r_{3,8} - r_{3,9} + r_{4,10} + r_{4,11} - r_{5,12} - r_{5,13}
10 \quad r_{2,6} + r_{2,7} - r_{3,8} - r_{3,9} - r_{4,10} - r_{4,11} + r_{5,12} + r_{5,13}
11
                       r_{2,6} - r_{2,7} + r_{3,8} - r_{3,9} + r_{4,10} - r_{4,11} + r_{5,12} - r_{5,13}
12 r_{2,6} - r_{2,7} + r_{3,8} - r_{3,9} - r_{4,10} + r_{4,11} - r_{5,12} + r_{5,13}
13 r_{2,6} - r_{2,7} - r_{3,8} + r_{3,9} + r_{4,10} - r_{4,11} - r_{5,12} + r_{5,13}
14 r_{2,6} - r_{2,7} - r_{3,8} + r_{3,9} - r_{4,10} + r_{4,11} + r_{5,12} - r_{5,13}
15
                       \phi_{2,1,4} + \phi_{3,1,4} - \phi_{2,1,5} - \phi_{3,1,5}
16 \phi_{2,1,4} - \phi_{3,1,4} + \phi_{2,1,5} - \phi_{3,1,5}
17
                         \phi_{2,1,4} - \phi_{3,1,4} - \phi_{2,1,5} + \phi_{3,1,5}
 18 4\phi_{6,2,7} - \phi_{6,2,1} - \phi_{6,2,3} - \phi_{7,2,1} - \phi_{7,2,3} + 4\phi_{8,3,9} - \phi_{8,3,1} - \phi_{8,3,2} - \phi_{9,3,1} - \phi_{9,3,2}
                          +4\phi_{10,4,11}-\phi_{10,4,1}-\phi_{10,4,5}-\phi_{11,4,1}-\phi_{11,4,5}+4\phi_{12,5,13}-\phi_{12,5,1}-\phi_{12,5,4}-\phi_{13,5,1}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{13,5,4}-\phi_{1
19 4\phi_{6,2,7} - \phi_{6,2,1} - \phi_{6,2,3} - \phi_{7,2,1} - \phi_{7,2,3} + 4\phi_{8,3,9} - \phi_{8,3,1} - \phi_{8,3,2} - \phi_{9,3,1} - \phi_{9,3,2}
                           -4\phi_{10,4,11} + \phi_{10,4,1} + \phi_{10,4,5} + \phi_{11,4,1} + \phi_{11,4,5} - 4\phi_{12,5,13} + \phi_{12,5,1} + \phi_{12,5,4} + \phi_{13,5,1} + \phi_{13,5,4} 
20 4\phi_{6,2,7} - \phi_{6,2,1} - \phi_{6,2,3} - \phi_{7,2,1} - \phi_{7,2,3} - 4\phi_{8,3,9} + \phi_{8,3,1} + \phi_{8,3,2} + \phi_{9,3,1} + \phi_{9,3,2}
                          +4\phi_{10,4,11}-\phi_{10,4,1}-\phi_{10,4,5}-\phi_{11,4,1}-\phi_{11,4,5}-4\phi_{12,5,13}+\phi_{12,5,1}+\phi_{12,5,4}+\phi_{13,5,1}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{13,5,4}+\phi_{1
21 4\phi_{6,2,7} - \phi_{6,2,1} - \phi_{6,2,3} - \phi_{7,2,1} - \phi_{7,2,3} - 4\phi_{8,3,9} + \phi_{8,3,1} + \phi_{8,3,2} + \phi_{9,3,1} + \phi_{9,3,2}
                           -4\phi_{10,4,11} + \phi_{10,4,1} + \phi_{10,4,5} + \phi_{11,4,1} + \phi_{11,4,5} + 4\phi_{12,5,13} - \phi_{12,5,1} - \phi_{12,5,4} - \phi_{13,5,1} - \phi_{13,5,4} 
22
                       \phi_{6,2,1} + \phi_{6,2,3} - \phi_{7,2,1} - \phi_{7,2,3} + \phi_{8,3,1} + \phi_{8,3,2} - \phi_{9,3,1} - \phi_{9,3,2} + \phi_{10,4,1} + \phi_{10,4,5}
                           -\phi_{11,4,1} - \phi_{11,4,5} + \phi_{12,5,1} + \phi_{12,5,4} - \phi_{13,5,1} - \phi_{13,5,4}
23 \phi_{6,2,1} + \phi_{6,2,3} - \phi_{7,2,1} - \phi_{7,2,3} + \phi_{8,3,1} + \phi_{8,3,2} - \phi_{9,3,1} - \phi_{9,3,2} - \phi_{10,4,1} - \phi_{10,4,5}
                          +\phi_{11,4,1}+\phi_{11,4,5}-\phi_{12,5,1}-\phi_{12,5,4}+\phi_{13,5,1}+\phi_{13,5,4}
24 \qquad \phi_{6,2,1} + \phi_{6,2,3} - \phi_{7,2,1} - \phi_{7,2,3} - \phi_{8,3,1} - \phi_{8,3,2} + \phi_{9,3,1} + \phi_{9,3,2} + \phi_{10,4,1} + \phi_{10,4,5}
                           -\phi_{11,4,1} - \phi_{11,4,5} - \phi_{12,5,1} - \phi_{12,5,4} + \phi_{13,5,1} + \phi_{13,5,4}
25
                       \phi_{6,2,1} + \phi_{6,2,3} - \phi_{7,2,1} - \phi_{7,2,3} - \phi_{8,3,1} - \phi_{8,3,2} + \phi_{9,3,1} + \phi_{9,3,2} - \phi_{10,4,1} - \phi_{10,4,5}
                          +\phi_{11,4,1}+\phi_{11,4,5}+\phi_{12,5,1}+\phi_{12,5,4}-\phi_{13,5,1}-\phi_{13,5,4}
26
                       \phi_{6,2,1} - \phi_{6,2,3} + \phi_{7,2,1} - \phi_{7,2,3} + \phi_{8,3,1} - \phi_{8,3,2} + \phi_{9,3,1} - \phi_{9,3,2} + \phi_{10,4,1} - \phi_{10,4,5}
                          +\phi_{11,4,1} - \phi_{11,4,5} + \phi_{12,5,1} - \phi_{12,5,4} + \phi_{13,5,1} - \phi_{13,5,4}
27
                         \phi_{6,2,1} - \phi_{6,2,3} + \phi_{7,2,1} - \phi_{7,2,3} + \phi_{8,3,1} - \phi_{8,3,2} + \phi_{9,3,1} - \phi_{9,3,2} - \phi_{10,4,1} + \phi_{10,4,5}
                          -\phi_{11,4,1} + \phi_{11,4,5} - \phi_{12,5,1} + \phi_{12,5,4} - \phi_{13,5,1} + \phi_{13,5,4}
28 \qquad \phi_{6,2,1} - \phi_{6,2,3} + \phi_{7,2,1} - \phi_{7,2,3} - \phi_{8,3,1} + \phi_{8,3,2} - \phi_{9,3,1} + \phi_{9,3,2} + \phi_{10,4,1} - \phi_{10,4,5}
                          +\phi_{11,4,1} - \phi_{11,4,5} - \phi_{12,5,1} + \phi_{12,5,4} - \phi_{13,5,1} + \phi_{13,5,4}
                        \phi_{6,2,1} - \phi_{6,2,3} + \phi_{7,2,1} - \phi_{7,2,3} - \phi_{8,3,1} + \phi_{8,3,2} - \phi_{9,3,1} + \phi_{9,3,2} - \phi_{10,4,1} + \phi_{10,4,5}
29
                           -\phi_{11,4,1} + \phi_{11,4,5} + \phi_{12,5,1} - \phi_{12,5,4} + \phi_{13,5,1} - \phi_{13,5,4}
30 \quad \phi_{6,2,1} - \phi_{6,2,3} - \phi_{7,2,1} + \phi_{7,2,3} + \phi_{8,3,1} - \phi_{8,3,2} - \phi_{9,3,1} + \phi_{9,3,2} + \phi_{10,4,1} - \phi_{10,4,5}
                           -\phi_{11,4,1} + \phi_{11,4,5} + \phi_{12,5,1} - \phi_{12,5,4} - \phi_{13,5,1} + \phi_{13,5,4}
31 \phi_{6,2,1} - \phi_{6,2,3} - \phi_{7,2,1} + \phi_{7,2,3} + \phi_{8,3,1} - \phi_{8,3,2} - \phi_{9,3,1} + \phi_{9,3,2} - \phi_{10,4,1} + \phi_{10,4,5}
                          +\phi_{11,4,1}-\phi_{11,4,5}-\phi_{12,5,1}+\phi_{12,5,4}+\phi_{13,5,1}-\phi_{13,5,4}
32 \quad \phi_{6,2,1} - \phi_{6,2,3} - \phi_{7,2,1} + \phi_{7,2,3} - \phi_{8,3,1} + \phi_{8,3,2} + \phi_{9,3,1} - \phi_{9,3,2} + \phi_{10,4,1} - \phi_{10,4,5}
                          -\phi_{11,4,1} + \phi_{11,4,5} - \phi_{12,5,1} + \phi_{12,5,4} + \phi_{13,5,1} - \phi_{13,5,4}
33 \phi_{6,2,1} - \phi_{6,2,3} - \phi_{7,2,1} + \phi_{7,2,3} - \phi_{8,3,1} + \phi_{8,3,2} + \phi_{9,3,1} - \phi_{9,3,2} - \phi_{10,4,1} + \phi_{10,4,5}
                          +\phi_{11,4,1} - \phi_{11,4,5} + \phi_{12,5,1} - \phi_{12,5,4} - \phi_{13,5,1} + \phi_{13,5,4}
```

S4.9 aluminum trichloride

Table S33: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Al	0.00000000	0.00000000	0.00000069
2	Cl	0.00000000	0.00000000	-3.92579486
3	Cl	0.00000000	3.39983903	1.96289716
4	Cl	0.00000000	-3.39983903	1.96289716
Table S34: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1^{'})$	388.75	393.29	388.75	388.75	391.81	388.75	388.75
$\omega_{2\mathrm{a}}(e^{'})$	628.44	636.71	628.44	628.44	639.39	628.44	628.44
$\omega_{2\mathrm{b}}(e^{'})$	628.44	636.70	628.44	628.44	639.38	628.44	628.44
$\omega_{3\mathrm{a}}(e^{'})$	147.29	146.42	147.29	147.29	152.03	147.29	147.29
$\omega_{3\mathrm{b}}(e^{'})$	147.27	146.41	147.27	147.27	152.02	147.27	147.27
$\omega_4(a_2^{\prime\prime})$	207.49	207.81	207.49	207.49	213.88	207.49	207.49

Table S35: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1^{'})$	381.99	388.75	388.75
$\omega_{2\mathrm{a}}(e^{'})$	631.04	628.42	628.46
$\omega_{2\mathrm{b}}(e^{'})$	621.41	628.40	628.41
$\omega_{3\mathrm{a}}(e^{'})$	153.90	147.50	147.30
$\omega_{3\mathrm{b}}(e^{'})$	147.70	147.30	147.28
$\omega_4(a_2^{\prime\prime})$	204.50	207.49	207.49

Table S36: Symmetrized, unnormalized natural internal coordinates for aluminum trichloride.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4}$
- 2 $2r_{1,2} r_{1,3} r_{1,4}$
- 3 $r_{1,3} r_{1,4}$
- $4 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 5 $\phi_{2,1,4} \phi_{3,1,4}$
- $6 \quad \gamma_{2,1,3,4} + \gamma_{3,1,4,2} + \gamma_{4,1,2,3}$

S4.10 aluminum trifluoride

Table S37: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Al	0.00000000	0.00000000	0.0000081
2	\mathbf{F}	0.00000000	0.00000000	-3.08479068
3	\mathbf{F}	0.00000000	2.67150833	1.54239476
4	\mathbf{F}	0.00000000	-2.67150833	1.54239476

Table S38: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1^{'})$	695.29	712.22	695.29	695.29	704.32	695.29	695.29
$\omega_{2\mathrm{a}}(e^{'})$	962.29	989.94	962.28	962.28	992.33	962.27	962.27
$\omega_{2\mathrm{b}}(e^{'})$	962.28	989.91	962.28	962.28	992.30	962.27	962.27
$\omega_{3\mathrm{a}}(e^{'})$	244.99	244.91	245.00	245.00	249.63	245.04	245.04
$\omega_{3\mathrm{b}}(e^{'})$	244.84	244.91	244.86	244.86	249.63	244.91	244.91
$\omega_4(a_2^{\prime\prime})$	301.32	305.56	301.32	301.32	301.15	301.32	301.32

Table S39: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1^{'})$	703.87	695.29	695.29
$\omega_{2\mathrm{a}}(e^{'})$	980.79	962.28	962.28
$\omega_{2\mathrm{b}}(e^{'})$	973.75	962.23	962.28
$\omega_{3\mathrm{a}}(e^{'})$	243.75	245.13	244.94
$\omega_{ m 3b}(e^{'})$	231.33	244.94	244.94
$\omega_4(a_2^{\prime\prime})$	297.95	301.32	301.32

Table S40: Symmetrized, unnormalized natural internal coordinates for aluminum trifluoride.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4}$
- 2 $2r_{1,2} r_{1,3} r_{1,4}$
- 3 $r_{1,3} r_{1,4}$
- $4 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 5 $\phi_{2,1,4} \phi_{3,1,4}$
- $6 \quad \gamma_{2,1,3,4} + \gamma_{3,1,4,2} + \gamma_{4,1,2,3}$

S4.11 boron trichloride

Table S41: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	В	0.00000000	0.00000000	0.00000105
2	Cl	0.00000000	0.00000000	-3.29682188
3	Cl	0.00000000	2.85513240	1.64841078
4	Cl	0.00000000	-2.85513240	1.64841078

Table S42: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1^{'})$	476.79	478.43	476.79	476.79	492.48	476.79	476.79
$\omega_{2\mathrm{a}}(e^{'})$	972.62	972.37	972.61	972.61	1020.71	972.61	972.61
$\omega_{2\mathrm{b}}(e^{'})$	972.61	972.33	972.61	972.61	1020.68	972.61	972.61
$\omega_{3\mathrm{a}}(e^{'})$	257.22	257.14	257.22	257.22	263.30	257.22	257.22
$\omega_{3\mathrm{b}}(e^{'})$	257.16	257.14	257.17	257.17	263.29	257.17	257.17
$\omega_4(a_2^{''})$	462.52	461.94	462.52	462.52	470.84	462.52	462.52

Table S43: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1^{'})$	474.80	476.79	476.79
$\omega_{2\mathrm{a}}(e^{'})$	952.45	972.60	972.61
$\omega_{2\mathrm{b}}(e^{'})$	950.35	972.59	972.60
$\omega_{3\mathrm{a}}(e^{'})$	254.15	257.32	257.25
$\omega_{3\mathrm{b}}(e^{'})$	250.13	257.20	257.20
$\omega_4(a_2^{\prime\prime})$	457.50	462.52	462.52

Table S44: Symmetrized, unnormalized natural internal coordinates for boron trichloride.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4}$
- 2 $2r_{1,2} r_{1,3} r_{1,4}$
- $3 r_{1,3} r_{1,4}$
- $4 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 5 $\phi_{2,1,4} \phi_{3,1,4}$
- $6 \quad \gamma_{2,1,3,4} + \gamma_{3,1,4,2} + \gamma_{4,1,2,3}$

S4.12 boron trifluoride

Table S45: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	В	0.00000000	0.00000000	-0.00000000
2	\mathbf{F}	0.00000000	-2.14848994	1.24043124
3	F	0.00000000	-0.00000000	-2.48086249
4	F	-0.00000000	2.14848994	1.24043124

Table S46: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1^{'})$	899.30	900.36	899.30	899.30	905.94	899.30	899.30
$\omega_{2\mathrm{a}}(e^{'})$	1493.14	1493.05	1493.14	1493.14	1538.20	1493.14	1493.14
$\omega_{2\mathrm{b}}(e^{'})$	1493.14	1492.98	1493.14	1493.14	1538.14	1493.14	1493.14
$\omega_{3\mathrm{a}}(e^{'})$	483.70	483.55	483.71	483.71	498.44	483.71	483.71
$\omega_{3\mathrm{b}}(e^{'})$	483.70	483.54	483.71	483.71	498.43	483.71	483.71
$\omega_4(a_2^{\prime\prime})$	700.10	700.36	700.10	700.10	732.21	700.10	700.10

Table S47: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1^{'})$	897.08	899.30	899.30
$\omega_{2\mathrm{a}}(e^{'})$	1481.97	1493.08	1493.08
$\omega_{2\mathrm{b}}(e^{'})$	1481.64	1493.08	1493.08
$\omega_{3\mathrm{a}}(e^{'})$	468.24	483.89	483.89
$\omega_{3\mathrm{b}}(e^{'})$	467.65	483.88	483.88
$\omega_4(a_2^{\prime\prime})$	695.80	700.10	700.10

Table S48: Symmetrized, unnormalized natural internal coordinates for boron trifluoride.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4}$
- 2 $2r_{1,2} r_{1,3} r_{1,4}$
- $3 r_{1,3} r_{1,4}$
- $4 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 5 $\phi_{2,1,4} \phi_{3,1,4}$
- $6 \quad \gamma_{2,1,3,4} + \gamma_{3,1,4,2} + \gamma_{4,1,2,3}$

S4.13 tetrachloromethane

Table S49: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	0.00000000	0.00000000	0.00000006
2	Cl	0.00000000	-2.73683182	1.93523230
3	Cl	0.00000000	2.73683182	1.93523230
4	Cl	2.73683173	0.00000000	-1.93523231
5	Cl	-2.73683173	0.00000000	-1.93523231

Table S50: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/	Pure MP2/ cc-pVTZ	CMA-0A MP2/	CMA-2A MP2/	Pure CCSD(T)/	CMA-0A CCSD(T)/	CMA-2A CCSD(T)/
	cc-p+12	cc-p+12	cc-p v 12	cc-p v 12	сертии	серти	серты
$\omega_1(a_1)$	463.23	464.14	463.23	463.23	472.90	463.23	463.23
$\omega_{2a}(e)$	218.44	218.37	218.43	218.43	227.50	218.42	218.42
$\omega_{2\mathrm{b}}(e)$	218.41	218.37	218.42	218.42	227.49	218.42	218.42
$\omega_{3\mathrm{a}}(t_2)$	802.57	796.10	802.57	802.57	823.73	802.57	802.57
$\omega_{3\mathrm{b}}(t_2)$	802.56	796.03	802.55	802.55	823.65	802.55	802.55
$\omega_{3\mathrm{c}}(t_2)$	802.53	796.03	802.54	802.54	823.65	802.54	802.54
$\omega_{4\mathrm{a}}(t_2)$	316.79	317.04	316.76	316.76	327.40	316.77	316.77
$\omega_{4\mathrm{b}}(t_2)$	316.70	317.02	316.73	316.73	327.38	316.74	316.74
$\omega_{4\mathrm{c}}(t_2)$	316.69	317.02	316.69	316.69	327.38	316.71	316.71

Table S51: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)	CMA-0A B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)	CMA-2A B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)
$\omega_1(a_1)$	464.91	463.23	463.23
$\omega_{2a}(e)$	219.43	218.44	218.44
$\omega_{2\mathrm{b}}(e)$	218.27	218.41	218.41
$\omega_{3\mathrm{a}}(t_2)$	778.30	802.49	802.57
$\omega_{3\mathrm{b}}(t_2)$	777.58	802.49	802.55
$\omega_{3\mathrm{c}}(t_2)$	777.58	802.47	802.54
$\omega_{4\mathrm{a}}(t_2)$	319.03	316.93	316.76
$\omega_{4\mathrm{b}}(t_2)$	317.44	316.90	316.74
$\omega_{4\mathrm{c}}(t_2)$	317.44	316.89	316.70

Table S52: Symmetrized, unnormalized natural internal coordinates for tetrachloromethane.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4} + r_{1,5}$
- $2 \quad -r_{1,2} r_{1,3} + r_{1,4} + r_{1,5}$
- $3 \quad -r_{1,2} + r_{1,3} r_{1,4} + r_{1,5}$
- $4 \quad r_{1,2} r_{1,3} r_{1,4} + r_{1,5}$
- $5 \quad 2\phi_{2,1,3} + 2\phi_{4,1,5} \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5}$
- $6 \quad \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} + \phi_{3,1,5}$
- 7 $-\phi_{2,1,3} + \phi_{4,1,5}$
- 8 $-\phi_{2,1,4} + \phi_{3,1,5}$
- 9 $\phi_{2,1,5} \phi_{3,1,4}$

S4.14 tetrafluoromethane

Table S53: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-0.00000000	0.00000000	0.00000000
2	\mathbf{F}	0.00000000	-2.03544624	1.43927784
3	\mathbf{F}	-0.00000000	2.03544624	1.43927784
4	\mathbf{F}	2.03544624	0.00000000	-1.43927784
5	\mathbf{F}	-2.03544624	-0.00000000	-1.43927784

Table S54: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	923.21	925.21	923.21	923.21	932.56	923.21	923.21
$\omega_{2\mathrm{a}}(e)$	440.04	440.49	440.04	440.04	445.39	440.04	440.04
$\omega_{2\mathrm{b}}(e)$	440.04	440.48	440.04	440.04	445.39	440.04	440.04
$\omega_{3\mathrm{a}}(t_2)$	1323.00	1312.79	1323.00	1323.00	1368.72	1322.98	1322.98
$\omega_{3\mathrm{b}}(t_2)$	1323.00	1312.61	1323.00	1323.00	1368.55	1322.98	1322.98
$\omega_{3\mathrm{c}}(t_2)$	1323.00	1312.61	1323.00	1323.00	1368.55	1322.98	1322.98
$\omega_{4\mathrm{a}}(t_2)$	638.99	640.37	639.00	639.00	645.95	639.05	639.05
$\omega_{4\mathrm{b}}(t_2)$	638.99	640.34	639.00	639.00	645.92	639.05	639.05
$\omega_{4\mathrm{c}}(t_2)$	638.99	640.34	639.00	639.00	645.92	639.05	639.05

Table S55: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)	CMA-0A B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)	CMA-2A B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)
$\omega_1(a_1)$	929.65	923.21	923.21
$\omega_{2a}(e)$	434.21	440.04	440.04
$\omega_{2\mathrm{b}}(e)$	433.63	440.04	440.04
$\omega_{3\mathrm{a}}(t_2)$	1320.23	1323.00	1323.00
$\omega_{3\mathrm{b}}(t_2)$	1320.23	1323.00	1323.00
$\omega_{3\mathrm{c}}(t_2)$	1318.71	1323.00	1323.00
$\omega_{4\mathrm{a}}(t_2)$	633.97	639.00	639.00
$\omega_{4\mathrm{b}}(t_2)$	633.46	638.99	638.99
$\omega_{4\mathrm{c}}(t_2)$	633.46	638.99	638.99

Table S56: Symmetrized, unnormalized natural internal coordinates for tetrafluoromethane.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4} + r_{1,5}$
- $2 \quad -r_{1,2} r_{1,3} + r_{1,4} + r_{1,5}$
- $3 \quad -r_{1,2} + r_{1,3} r_{1,4} + r_{1,5}$
- $4 \quad r_{1,2} r_{1,3} r_{1,4} + r_{1,5}$
- $5 \quad 2\phi_{2,1,3} + 2\phi_{4,1,5} \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5}$
- $6 \quad \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} + \phi_{3,1,5}$
- 7 $-\phi_{2,1,3} + \phi_{4,1,5}$
- 8 $-\phi_{2,1,4} + \phi_{3,1,5}$
- 9 $\phi_{2,1,5} \phi_{3,1,4}$

S4.15 dichloromethane

Table S57: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-0.00000000	1.52259374	0.00000000
2	Cl	-2.78829097	-0.33831409	0.00000000
3	Cl	2.78829098	-0.33831426	0.00000000
4	Η	-0.00000018	2.67397215	-1.69354225
5	Η	-0.00000018	2.67397215	1.69354225

Table S58: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/ cc-pVTZ	Pure MP2/ cc-pVTZ	CMA-0A MP2/ cc-pVTZ	CMA-2A MP2/ cc-pVTZ	Pure CCSD(T)/ cc-pVDZ	CMA-0A CCSD(T)/ cc-pVDZ	CMA-2A CCSD(T)/ cc-pVDZ
$\omega_1(a_1)$	3127.54	3181.24	3127.54	3127.54	3285.55	3127.50	3127.50
$\omega_2(a_1)$	1474.48	1570.52	1474.48	1474.48	1565.32	1474.54	1474.54
$\omega_3(a_1)$	723.57	753.43	723.57	723.57	751.44	723.63	723.63
$\omega_4(a_1)$	284.60	301.28	284.63	284.63	304.57	284.65	284.65
$\omega_5(a_2)$	1180.95	1264.75	1180.95	1180.95	1262.27	1180.95	1180.95
$\omega_6(b_1)$	3202.53	3255.44	3202.51	3202.51	3375.46	3202.48	3202.48
$\omega_7(b_1)$	906.97	968.21	907.04	907.04	962.13	907.15	907.15
$\omega_8(b_2)$	1293.06	1391.40	1293.01	1293.01	1388.69	1292.98	1292.98
$\omega_9(b_2)$	776.83	812.87	776.92	776.92	808.65	776.97	776.97

Table S59: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure B3LYP/ 6-31G(2df.n)	CMA-0A B3LYP/ 6-31G(2df.n)	CMA-2A B3LYP/ 6-31G(2df.n)
	0 01 0 (- 0 <i>j</i> , <i>p</i>)	0 01 0 (- 0 <i>j</i>) <i>p</i>)	0 01 0 (- 0 <i>j</i> , <i>p</i>)
$\omega_1(a_1)$	3146.93	3127.53	3127.53
$\omega_2(a_1)$	1467.53	1474.50	1474.50
$\omega_3(a_1)$	724.41	723.58	723.58
$\omega_4(a_1)$	285.95	284.63	284.63
$\omega_5(a_2)$	1172.10	1180.95	1180.95
$\omega_6(b_1)$	3226.63	3202.52	3202.52
$\omega_7(b_1)$	907.13	907.01	907.01
$\omega_8(b_2)$	1293.52	1292.99	1293.06
$\omega_9(b_2)$	755.30	776.95	776.83

Table S60: Symmetrized, unnormalized natural internal coordinates for dichloromethane.

- $1 \quad r_{1,2} + r_{1,3}$
- 2 $r_{1,2} r_{1,3}$
- 3 $r_{1,4} + r_{1,5}$
- $4 r_{1,4} r_{1,5}$
- 5 $4\phi_{2,1,3} \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5}$
- $6 \quad \phi_{2,1,4} + \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5}$
- 7 $\phi_{2,1,4} \phi_{2,1,5} + \phi_{3,1,4} \phi_{3,1,5}$
- 8 $\phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} + \phi_{3,1,5}$
- 9 $-\phi_{2,1,3} \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5} + 5\phi_{4,1,5}$

S4.16 difluoromethane

Table S61: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	0.00000000	1.04690947	-0.00000000
2	\mathbf{F}	-2.07913590	-0.44653109	0.00000000
3	\mathbf{F}	2.07913592	-0.44653108	0.00000000
4	Η	-0.00000010	2.18482447	-1.71602833
5	Η	-0.00000010	2.18482447	1.71602833

Table S62: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/ cc-pVTZ	Pure MP2/ cc-pVTZ	CMA-0A MP2/ cc-pVTZ	CMA-2A MP2/ cc-pVTZ	Pure CCSD(T)/ cc-pVDZ	CMA-0A CCSD(T)/ cc-pVDZ	CMA-2A CCSD(T)/ cc-pVDZ
$\omega_1(a_1)$	3075.76	3138.20	3075.74	3075.74	3237.24	3075.69	3075.69
$\omega_2(a_1)$	1556.46	1640.94	1556.44	1556.44	1635.56	1556.53	1556.53
$\omega_3(a_1)$	1141.59	1155.76	1141.60	1141.60	1166.89	1141.65	1141.65
$\omega_4(a_1)$	536.99	551.26	537.12	537.12	554.42	537.04	537.04
$\omega_5(a_2)$	1292.33	1364.16	1292.33	1292.33	1366.10	1292.33	1292.33
$\omega_6(b_1)$	3148.01	3207.64	3148.00	3148.00	3318.85	3147.96	3147.96
$\omega_7(b_1)$	1202.57	1257.62	1202.59	1202.59	1250.29	1202.67	1202.67
$\omega_8(b_2)$	1482.31	1554.38	1482.11	1482.11	1565.56	1482.29	1482.29
$\omega_9(b_1)$	1142.17	1141.27	1142.42	1142.42	1169.57	1142.20	1142.20

Table S63: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2df,p)$	6-31G(2df,p)	$6-31\mathrm{G}(2df,p)$
$\omega_1(a_1)$	3091.25	3075.70	3075.70
$\omega_2(a_1)$	1546.91	1556.46	1556.46
$\omega_3(a_1)$	1141.12	1141.72	1141.72
$\omega_4(a_1)$	534.30	537.02	537.02
$\omega_5(a_2)$	1269.14	1292.33	1292.33
$\omega_6(b_1)$	3160.81	3148.00	3148.00
$\omega_7(b_1)$	1192.41	1202.57	1202.57
$\omega_8(b_2)$	1479.96	1482.30	1482.30
$\omega_9(b_2)$	1134.95	1142.17	1142.17

Table S64: Symmetrized, unnormalized natural internal coordinates for diffuoromethane.

- $1 \quad r_{1,2} + r_{1,3}$
- 2 $r_{1,2} r_{1,3}$
- 3 $r_{1,4} + r_{1,5}$
- $4 r_{1,4} r_{1,5}$
- 5 $4\phi_{2,1,3} \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5}$
- $6 \quad \phi_{2,1,4} + \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5}$
- $7 \quad \phi_{2,1,4} \phi_{2,1,5} + \phi_{3,1,4} \phi_{3,1,5}$
- 8 $\phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} + \phi_{3,1,5}$
- 9 $-\phi_{2,1,3} \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5} + 5\phi_{4,1,5}$

S4.17 formic acid

Table S65: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Η	0.05468955	2.84555164	-0.00000000
2	\mathbf{C}	0.18775950	0.78180753	-0.00000000
3	Ο	2.12426566	-0.40608921	-0.00000000
4	Ο	-2.14789723	-0.23081035	0.00000000
5	Η	-1.91525954	-2.04634183	0.00000000

Table S66: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/	Pure MP2/	CMA-0A MP2/	CMA-2A MP2/	Pure CCSD(T)/	CMA-0A CCSD(T)/	CMA-2A CCSD(T)/
	cc-pv1Z	cc-pv1Z	cc-pv1Z	cc-pv1Z	cc-pvDZ	cc-pvDZ	cc-pvDZ
$\omega_1(a^{'})$	3764.00	3775.33	3764.00	3764.00	3837.11	3763.97	3763.97
$\omega_{2}(a^{'})$	3089.21	3106.69	3089.21	3089.21	3232.78	3089.20	3089.20
$\omega_{3}(a^{'})$	1824.55	1822.20	1824.47	1824.53	1886.00	1824.18	1824.50
$\omega_{4}(a^{'})$	1415.80	1415.99	1415.64	1415.57	1441.54	1415.51	1415.50
$\omega_{5}(a^{'})$	1326.19	1315.23	1326.02	1326.25	1344.92	1326.73	1326.41
$\omega_{6}(a^{'})$	1137.12	1132.56	1137.64	1137.37	1167.34	1137.51	1137.39
$\omega_{7}(a^{'})$	629.41	629.42	629.42	629.42	638.26	629.44	629.44
$\omega_8(a^{''})$	1061.21	1067.48	1061.18	1061.21	1076.40	1061.14	1061.21
$\omega_9(a^{''})$	675.64	684.33	675.68	675.64	698.30	675.74	675.64

Table S67: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_{1}(a^{'})$	3760.05	3763.99	3763.99
$\omega_{2}(a^{'})$	3107.60	3089.18	3089.18
$\omega_{3}(a^{'})$	1831.55	1824.42	1824.49
$\omega_4(a^{'})$	1407.34	1415.88	1415.80
$\omega_{5}(a^{'})$	1318.58	1326.25	1326.25
$\omega_{6}(a^{'})$	1130.52	1137.27	1137.27
$\omega_7(a^{'})$	624.72	629.44	629.44
$\omega_8(a^{''})$	1059.65	1061.20	1061.21
$\omega_9(a^{''})$	688.89	675.64	675.64

Table S68: Symmetrized, unnormalized natural internal coordinates for formic acid.

 $\begin{array}{lll} 1 & r_{2,3} \\ 2 & r_{2,4} \\ 3 & r_{2,1} \\ 4 & r_{4,5} \\ 5 & \phi_{2,4,5} \\ 6 & 2\phi_{3,2,4} - \phi_{3,2,1} - \phi_{4,2,1} \\ 7 & \phi_{3,2,1} - \phi_{4,2,1} \\ 8 & \tau_{1,2,4,5} + \tau_{3,2,4,5} \\ 9 & \gamma_{1,2,3,4} \end{array}$

S4.18 formaldehyde

Table S69: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	0.00000000	0.00000000	1.14423616
2	Η	0.00000000	-1.76987484	2.24620597
3	Η	0.00000000	1.76987484	2.24620597
4	Ο	-0.00000000	0.00000000	-1.14151276

Table S70: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc-pVTZ	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	2929.23	2946.14	2929.22	2929.22	3068.95	2929.20	2929.20
$\omega_2(a_1)$	1780.76	1775.33	1780.75	1780.75	1827.20	1780.74	1780.74
$\omega_3(a_1)$	1543.21	1550.10	1543.24	1543.24	1566.35	1543.28	1543.28
$\omega_4(b_1)$	1192.19	1206.14	1192.19	1192.19	1206.38	1192.19	1192.19
$\omega_5(b_2)$	2995.85	3017.92	2995.85	2995.85	3143.13	2995.85	2995.85
$\omega_6(b_2)$	1274.88	1278.44	1274.88	1274.88	1296.37	1274.88	1274.88

Table S71: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	2949.27	2929.19	2929.19
$\omega_2(a_1)$	1797.21	1780.50	1780.50
$\omega_3(a_1)$	1536.30	1543.59	1543.59
$\omega_4(b_1)$	1208.00	1192.19	1192.19
$\omega_5(b_2)$	3013.06	2995.84	2995.84
$\omega_6(b_2)$	1266.40	1274.89	1274.89

Table S72: Symmetrized, unnormalized natural internal coordinates for formaldehyde.

- 1 $r_{1,2} + r_{1,3}$
- 2 $r_{1,2} r_{1,3}$
- $3 r_{1,4}$
- $4 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 5 $\phi_{2,1,4} \phi_{3,1,4}$
- $6 \gamma_{4,1,2,3}$

S4.19 singlet methylene

Table S73: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	С	0.00000000	-0.00000000	0.19071799
2	Η	0.00000000	-1.62640634	-1.13542319
3	Н	0.00000000	1.62640634	-1.13542319

Table S74: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/	Pure MP2/	CMA-0A MP2/	CMA-2A MP2/	Pure CCSD(T)/	CMA-0A CCSD(T)/	CMA-2A CCSD(T)/
	cc-pv12	cc-pv1Z	cc-pv12	cc-pv12	cc-pvDZ	cc-pvDZ	cc-pvDZ
$\omega_1(a_1)$	2912.05	2939.49	2912.05	2912.05	3057.57	2911.92	2911.92
$\omega_2(a_1)$	1406.59	1421.07	1406.59	1406.59	1427.87	1406.85	1406.85
$\omega_3(b_2)$	2983.12	3014.35	2983.12	2983.12	3144.66	2983.12	2983.12

Table S75: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)	CMA-0A B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)	CMA-2A B3LYP/ 6-31G(2df,p)
$\omega_1(a_1)$	2939.19	2912.05	2912.05
$\omega_2(a_1)$	1428.38	1406.59	1406.59
$\omega_3(b_2)$	3012.46	2983.12	2983.12

Table S76: Symmetrized, unnormalized natural internal coordinates for singlet methylene.

 $\begin{array}{rrr} 1 & r_{1,2}+r_{1,3} \\ 2 & r_{1,2}-r_{1,3} \\ 3 & \phi_{2,1,3} \end{array}$

Table S77: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	2.32154417	-0.00000390	0.00000000
2	Cl	-1.05377924	0.00000143	0.00000000
3	Η	2.97370152	1.94601045	0.00000000
4	Η	2.97370577	-0.97300677	1.68529621
5	Η	2.97370577	-0.97300677	-1.68529621

Table S78: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/ cc-pVTZ	Pure MP2/ cc-pVTZ	CMA-0A MP2/ cc-pVTZ	CMA-2A MP2/ cc-pVTZ	Pure CCSD(T)/ cc-pVDZ	CMA-0A CCSD(T)/ cc-pVDZ	CMA-2A CCSD(T)/ cc-pVDZ
$\omega_1(a_1)$	3078.66	3092.05	3078.66	3078.66	3216.56	3078.65	3078.65
$\omega_2(a_1)$	1385.57	1386.90	1385.57	1385.57	1407.78	1385.57	1385.57
$\omega_3(a_1)$	746.24	755.63	746.25	746.25	756.37	746.29	746.29
$\omega_{4\mathrm{a}}(e)$	3179.27	3202.47	3179.26	3179.26	3336.72	3179.23	3179.23
$\omega_{4\mathrm{b}}(e)$	3179.26	3202.36	3179.26	3179.26	3336.60	3179.23	3179.23
$\omega_{5a}(e)$	1493.13	1498.75	1493.12	1493.12	1505.91	1493.18	1493.18
$\omega_{5\mathrm{b}}(e)$	1493.13	1498.74	1493.12	1493.12	1505.90	1493.18	1493.18
$\omega_{6\mathrm{a}}(e)$	1031.75	1036.55	1031.76	1031.76	1045.57	1031.78	1031.78
$\omega_{6\mathrm{b}}(e)$	1031.74	1036.54	1031.76	1031.76	1045.57	1031.78	1031.78

Table S79: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	6-31G(2df,p)	6-31G(2df,p)	6-31G(2df,p)
$\omega_1(a_1)$	3101.77	3078.65	3078.65
$\omega_2(a_1)$	1386.98	1385.56	1385.56
$\omega_3(a_1)$	743.40	746.33	746.33
$\omega_{4a}(e)$	3202.48	3179.26	3179.26
$\omega_{4\mathrm{b}}(e)$	3202.31	3179.25	3179.25
$\omega_{5a}(e)$	1488.50	1493.11	1493.11
$\omega_{5\mathrm{b}}(e)$	1488.42	1493.11	1493.11
$\omega_{6a}(e)$	1032.51	1031.81	1031.81
$\omega_{6\mathrm{b}}(e)$	1032.48	1031.80	1031.80

Table S80: Symmetrized, unnormalized natural internal coordinates for chloromethane.

- $1 r_{1,2}$
- 2 $r_{1,3} + r_{1,4} + r_{1,5}$
- $3 \quad 2r_{1,3} r_{1,4} r_{1,5}$
- $4 r_{1,4} r_{1,5}$
- 5 $2\phi_{3,1,2} \phi_{4,1,2} \phi_{5,1,2}$
- 6 $\phi_{4,1,2} \phi_{5,1,2}$
- 7 $\phi_{3,1,2} + \phi_{4,1,2} + \phi_{5,1,2} \phi_{3,1,4} \phi_{4,1,5} \phi_{5,1,3}$
- $8 \quad 2\phi_{3,1,4} \phi_{4,1,5} \phi_{5,1,3}$
- 9 $\phi_{4,1,5} \phi_{5,1,3}$

Table S81: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-2.32717838	-0.02121580	0.00000000
2	\mathbf{S}	1.11216012	0.08308952	0.00000000
3	Η	-2.96268843	1.93642244	0.00000000
4	Η	-3.04525758	-0.95063598	1.68762632
5	Η	-3.04525758	-0.95063598	-1.68762632
6	Η	1.48053809	-2.41845552	0.00000000
Table S82: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	CCSD(T)/	MP2/	MP2/	MP2/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVDZ$	cc-pVDZ	cc-pVDZ
$\omega_{1}(a^{'})$	3149.99	3173.76	3149.99	3149.99	3305.38	3149.95	3149.95
$\omega_{2}(a^{'})$	3059.94	3073.17	3059.94	3059.94	3196.60	3059.93	3059.93
$\omega_{3}(a^{'})$	2712.63	2755.14	2712.63	2712.63	2800.49	2712.63	2712.63
$\omega_{4}(a^{'})$	1496.98	1501.04	1496.96	1496.96	1510.51	1496.99	1496.99
$\omega_{5}(a^{'})$	1362.12	1360.13	1362.12	1362.12	1382.53	1362.12	1362.12
$\omega_{6}(a^{'})$	1099.79	1097.61	1099.75	1099.75	1117.42	1099.83	1099.83
$\omega_7(a^{'})$	799.87	804.38	799.83	799.93	810.49	799.93	799.93
$\omega_{8}(a^{'})$	720.90	727.67	721.07	720.95	732.70	721.01	721.01
$\omega_9(a^{''})$	3151.32	3175.11	3151.31	3151.31	3306.92	3151.28	3151.28
$\omega_{10}(a^{''})$	1482.93	1487.09	1482.91	1482.91	1496.52	1482.98	1482.98
$\omega_{11}(a^{''})$	976.26	980.38	976.29	976.29	991.86	976.31	976.31
$\omega_{12}(a^{''})$	237.65	240.26	237.66	237.66	257.94	237.66	237.66

Table S83: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a^{'})$	3170.51	3149.97	3149.97
$\omega_{2}(a^{'})$	3081.64	3059.93	3059.93
$\omega_{3}(a^{'})$	2736.03	2712.62	2712.62
$\omega_{4}(a^{'})$	1494.87	1496.94	1496.94
$\omega_{5}(a^{'})$	1366.09	1362.12	1362.17
$\omega_{6}(a^{'})$	1105.64	1099.86	1099.86
$\omega_7(a^{'})$	805.48	799.90	799.91
$\omega_{8}(a^{'})$	714.49	721.07	720.95
$\omega_9(a^{''})$	3171.98	3151.30	3151.30
$\omega_{10}(a^{''})$	1482.11	1482.91	1482.91
$\omega_{11}(a^{''})$	977.83	976.33	976.33
$\omega_{12}(a^{''})$	239.49	237.67	237.67

Table S84: Symmetrized, unnormalized natural internal coordinates for thiomethanol.

1 $r_{1,2}$ 2 $r_{2,6}$ 3 $r_{1,3} + r_{1,4} + r_{1,5}$ 4 $r_{1,4} - r_{1,5}$ 5 $2r_{1,3} - r_{1,4} - r_{1,5}$ 6 $\phi_{1,2,6}$ $7 \qquad \phi_{3,1,2} + \phi_{4,1,2} + \phi_{5,1,2} - \phi_{4,1,5} - \phi_{3,1,4} - \phi_{3,1,5}$ 8 $2\phi_{3,1,2} - \phi_{4,1,2} - \phi_{5,1,2}$ 9 $\phi_{4,1,2} - \phi_{5,1,2}$ $10 \quad 2\phi_{4,1,5} - \phi_{3,1,4} - \phi_{3,1,5}$ 11 $\phi_{3,1,4} - \phi_{3,1,5}$ 12 $\tau_{3,1,2,6} + \tau_{4,1,2,6} + \tau_{5,1,2,6}$

S4.22 trichloromethane

Table S85: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	0.00000070	0.89489730	0.00000000
2	Η	0.00000088	2.93924961	0.00000000
3	Cl	-3.18361737	-0.13060258	0.00000000
4	Cl	1.59180855	-0.13060186	-2.75709409
5	Cl	1.59180855	-0.13060186	2.75709409

Table S86: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/ cc-pVTZ	Pure MP2/ cc-pVTZ	CMA-0A MP2/ cc-pVTZ	CMA-2A MP2/ cc-pVTZ	Pure CCSD(T)/ cc-pVDZ	CMA-0A CCSD(T)/ cc-pVDZ	CMA-2A CCSD(T)/ cc-pVDZ
$\omega_1(a_1)$	3181.88	3198.61	3181.88	3181.88	3327.89	3181.88	3181.88
$\omega_2(a_1)$	678.57	682.46	678.58	678.58	689.02	678.60	678.60
$\omega_3(a_1)$	368.48	369.43	368.48	368.48	377.26	368.48	368.48
$\omega_{4\mathrm{a}}(e)$	1244.75	1245.10	1244.72	1244.75	1271.34	1244.72	1244.72
$\omega_{4\mathrm{b}}(e)$	1244.75	1245.09	1244.72	1244.75	1271.32	1244.72	1244.72
$\omega_{5\mathrm{a}}(e)$	789.90	789.49	789.94	789.89	807.75	789.94	789.94
$\omega_{5\mathrm{b}}(e)$	789.88	789.47	789.94	789.89	807.73	789.94	789.94
$\omega_{6a}(e)$	261.72	261.91	261.69	261.69	270.52	261.70	261.70
$\omega_{6\mathrm{b}}(e)$	261.66	261.91	261.69	261.69	270.51	261.70	261.70

Table S87: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2df,p)$	$6\text{-}31\mathrm{G}(2df,p)$	$6\text{-}31\mathrm{G}(2df,p)$
$\omega_1(a_1)$	3203.72	3181.88	3181.88
$\omega_2(a_1)$	680.55	678.57	678.57
$\omega_3(a_1)$	370.51	368.49	368.49
$\omega_{4\mathrm{a}}(e)$	1239.37	1244.72	1244.75
$\omega_{4\mathrm{b}}(e)$	1237.99	1244.70	1244.73
$\omega_{5a}(e)$	777.17	789.93	789.88
$\omega_{5\mathrm{b}}(e)$	765.32	789.90	789.87
$\omega_{6a}(e)$	263.11	261.81	261.80
$\omega_{6\mathrm{b}}(e)$	261.74	261.80	261.78

Table S88: Symmetrized, unnormalized natural internal coordinates for trichloromethane.

- $1 r_{1,2}$
- 2 $r_{1,3} + r_{1,4} + r_{1,5}$
- $3 \quad 2r_{1,3} r_{1,4} r_{1,5}$
- $4 r_{1,4} r_{1,5}$
- 5 $2\phi_{3,1,2} \phi_{4,1,2} \phi_{5,1,2}$
- 6 $\phi_{4,1,2} \phi_{5,1,2}$
- 7 $\phi_{3,1,2} + \phi_{4,1,2} + \phi_{5,1,2} \phi_{3,1,4} \phi_{3,1,5} \phi_{4,1,5}$
- $8 \quad -\phi_{3,1,4} \phi_{3,1,5} + 2\phi_{4,1,5}$
- 9 $\phi_{3,1,4} \phi_{3,1,5}$

S4.23 trifluoromethane

Table S89: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	С	0.68502199	-0.00000000	0.00000000
2	Η	2.73949866	-0.00000000	0.00000000
3	F	-0.19266881	1.18093464	-2.04543880
4	\mathbf{F}	-0.19266881	-2.36186929	-0.00000000
5	\mathbf{F}	-0.19266881	1.18093464	2.04543880

Table S90: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/ cc-pVTZ	Pure MP2/ cc-pVTZ	CMA-0A MP2/ cc-pVTZ	CMA-2A MP2/ cc-pVTZ	Pure CCSD(T)/ cc-pVDZ	CMA-0A CCSD(T)/ cc-pVDZ	CMA-2A CCSD(T)/ cc-pVDZ
	· · 1 ·		· · 1 ·				
$\omega_1(a_1)$	3160.87	3181.06	3160.86	3160.86	3298.35	3160.86	3160.86
$\omega_2(a_1)$	1161.90	1164.54	1161.91	1161.91	1173.52	1161.89	1161.89
$\omega_3(a_1)$	710.23	711.57	710.23	710.23	715.61	710.28	710.28
$\omega_{4\mathrm{a}}(e)$	1424.32	1427.23	1424.17	1424.17	1455.48	1423.08	1424.32
$\omega_{4\mathrm{b}}(e)$	1424.32	1427.20	1424.17	1424.17	1455.46	1423.08	1424.32
$\omega_{5a}(e)$	1203.17	1197.13	1203.35	1203.35	1238.14	1204.62	1203.16
$\omega_{5b}(e)$	1203.17	1197.08	1203.35	1203.35	1238.09	1204.62	1203.16
$\omega_{6a}(e)$	514.80	515.48	514.81	514.81	521.10	514.82	514.82
$\omega_{6b}(e)$	514.80	515.46	514.81	514.81	521.08	514.82	514.82

Table S91: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3176.61	3160.83	3160.83
$\omega_2(a_1)$	1162.93	1161.96	1162.00
$\omega_3(a_1)$	705.86	710.30	710.23
$\omega_{4a}(e)$	1410.21	1424.26	1424.26
$\omega_{4\mathrm{b}}(e)$	1408.93	1424.25	1424.25
$\omega_{5a}(e)$	1198.89	1203.23	1203.23
$\omega_{5\mathrm{b}}(e)$	1198.07	1203.22	1203.22
$\omega_{6a}(e)$	509.31	514.84	514.84
$\omega_{6b}(e)$	508.99	514.84	514.84

Table S92: Symmetrized, unnormalized natural internal coordinates for trifluoromethane.

- $1 r_{1,2}$
- 2 $r_{1,3} + r_{1,4} + r_{1,5}$
- $3 \quad 2r_{1,3} r_{1,4} r_{1,5}$
- $4 r_{1,4} r_{1,5}$
- 5 $2\phi_{3,1,2} \phi_{4,1,2} \phi_{5,1,2}$
- 6 $\phi_{4,1,2} \phi_{5,1,2}$
- $7 \quad \phi_{3,1,2} + \phi_{4,1,2} + \phi_{5,1,2} \phi_{3,1,4} \phi_{3,1,5} \phi_{4,1,5}$
- $8 \quad -\phi_{3,1,4} \phi_{3,1,5} + 2\phi_{4,1,5}$
- 9 $\phi_{3,1,4} \phi_{3,1,5}$

Table S93: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	0.34164099	3.25928704	0.00000000
-	õ	0.05047000	0.00000000	0.00000000
2	0	-0.95847922	0.88669596	0.00000000
3	Ν	0.84560637	-1.10908148	0.00000000
4	0	-0.16294508	-3.08906870	0.00000000
5	Η	2.37626442	2.93275940	0.00000000
6	Η	-0.19772995	4.31132740	-1.68539213
7	Η	-0.19772995	4.31132740	1.68539213

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a^{'})$	3138.47	3161.13	3138.46	3138.46	3290.60	3138.43	3138.43
$\omega_{2}(a^{'})$	3048.99	3060.44	3048.99	3048.99	3183.03	3048.98	3048.98
$\omega_{3}(a^{'})$	1710.30	1670.95	1709.54	1709.80	1778.03	1710.10	1710.23
$\omega_{4}(a^{'})$	1518.60	1524.66	1518.59	1518.59	1528.88	1518.59	1518.59
$\omega_{5}(a^{'})$	1462.96	1462.45	1462.90	1462.91	1476.91	1463.00	1463.00
$\omega_{6}(a^{'})$	1209.15	1204.42	1209.10	1209.15	1215.38	1209.19	1209.21
$\omega_{7}(a^{'})$	1086.78	1082.36	1086.81	1086.82	1102.98	1086.81	1086.82
$\omega_{8}(a^{'})$	847.80	827.78	846.95	848.94	864.73	848.14	847.86
$\omega_{9}(a^{'})$	595.03	575.14	598.58	594.91	598.64	595.16	595.10
$\omega_{10}(a^{'})$	380.32	375.76	380.49	380.37	383.73	380.39	380.39
$\omega_{11}(a^{''})$	3137.29	3160.78	3137.28	3137.28	3289.54	3137.25	3137.25
$\omega_{12}(a^{''})$	1494.32	1499.64	1494.32	1494.32	1506.22	1494.34	1494.35
$\omega_{13}(a^{''})$	1176.76	1179.53	1176.78	1176.78	1186.35	1176.81	1176.81
$\omega_{14}(a^{''})$	220.91	229.51	220.87	220.91	223.22	220.85	220.92
$\omega_{15}(a^{''})$	79.92	99.69	80.11	79.94	87.01	80.35	79.94

Table S94: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

Table S95: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a^{'})$	3157.94	3138.46	3138.46
$\omega_{2}(a^{'})$	3070.64	3048.96	3048.96
$\omega_{3}(a^{'})$	1748.62	1710.29	1710.29
$\omega_{4}(a^{'})$	1511.85	1518.57	1518.57
$\omega_{5}(a^{'})$	1454.53	1462.89	1462.91
$\omega_{6}(a^{'})$	1201.26	1209.10	1209.10
$\omega_7(a^{'})$	1069.13	1086.20	1087.00
$\omega_{8}(a^{'})$	847.81	848.81	847.84
$\omega_{9}(a^{'})$	597.91	595.18	595.07
$\omega_{10}(a^{'})$	379.26	380.41	380.38
$\omega_{11}(a^{''})$	3157.31	3137.28	3137.28
$\omega_{12}(a^{''})$	1491.94	1494.22	1494.23
$\omega_{13}(a^{''})$	1166.79	1176.86	1176.88
$\omega_{14}(a^{''})$	230.65	220.46	220.91
$\omega_{15}(a^{''})$	121.24	81.57	79.93

Table S96: Symmetrized, unnormalized natural internal coordinates for methyl nitrite.

1 $r_{1,2}$ 2 $r_{2,3}$ 3 $r_{3,4}$ 4 $r_{1,5} + r_{1,6} + r_{1,7}$ 5 $2r_{1,5} - r_{1,6} - r_{1,7}$ 6 $r_{1,6} - r_{1,7}$ $\overline{7}$ $\phi_{2,3,4}$ 8 $\phi_{1,2,3}$ 9 $\phi_{2,1,5} + \phi_{2,1,6} + \phi_{2,1,7} - \phi_{6,1,7} - \phi_{5,1,7} - \phi_{5,1,6}$ 10 $2\phi_{2,1,5} - \phi_{2,1,6} - \phi_{2,1,7}$ 11 $\phi_{2,1,6} - \phi_{2,1,7}$ $12 \quad 2\phi_{6,1,7} - \phi_{5,1,7} - \phi_{5,1,6}$ 13 $\phi_{5,1,7} - \phi_{5,1,6}$ 14 $\tau_{1,2,3,4}$ 15 $\tau_{3,2,1,5} + \tau_{3,2,1,6} + \tau_{3,2,1,7}$

Table S97: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	2.64676257	-0.00234129	0.00000000
2	Ν	-0.17451343	-0.01675275	0.00000000
3	Ο	-1.22490380	0.00548208	2.06093220
4	Ο	-1.22490380	0.00548208	-2.06093220
5	Η	3.28001151	-0.94121976	1.70856088
6	Η	3.28001151	-0.94121976	-1.70856088
7	Η	3.23040361	1.96907619	0.00000000

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a^{'})$	3186.71	3207.17	3186.69	3186.69	3338.74	3186.62	3186.62
$\omega_{2}(a^{'})$	3088.78	3099.93	3088.81	3088.81	3222.07	3088.83	3088.83
$\omega_{3}(a^{'})$	1487.78	1493.03	1487.76	1487.76	1500.32	1487.74	1487.74
$\omega_{4}(a^{'})$	1425.54	1427.95	1425.42	1425.46	1456.26	1424.60	1424.62
$\omega_{5}(a^{'})$	1409.53	1409.25	1409.61	1409.61	1426.97	1410.48	1410.48
$\omega_{6}(a^{'})$	1142.44	1141.72	1142.51	1142.47	1146.44	1142.49	1142.51
$\omega_7(a^{'})$	935.42	940.68	935.43	935.41	955.35	935.40	935.37
$\omega_{8}(a^{'})$	669.99	674.13	670.01	670.02	683.70	670.13	670.20
$\omega_{9}(a^{'})$	608.72	609.44	608.74	608.73	609.20	608.84	608.73
$\omega_{10}(a^{''})$	3215.03	3235.07	3215.03	3215.03	3367.17	3214.99	3214.99
$\omega_{11}(a^{''})$	1642.57	1787.82	1639.69	1642.61	1704.87	1642.16	1642.57
$\omega_{12}(a^{''})$	1475.65	1482.97	1476.77	1475.52	1487.51	1475.99	1475.71
$\omega_{13}(a^{''})$	1110.73	1117.67	1113.44	1110.84	1121.32	1110.98	1110.77
$\omega_{14}(a^{''})$	476.92	478.52	477.01	476.93	485.32	476.87	476.93
$\omega_{15}(a^{''})$	22.46	25.03	23.17	22.46	-22.67	23.80	22.46

Table S98: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

Table S99: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Duro	CMA 0A	CMA 2A
	Pure	CMA-0A	UMA-ZA
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a^{'})$	3205.45	3186.71	3186.71
$\omega_{2}(a^{'})$	3108.21	3088.74	3088.74
$\omega_{3}(a^{'})$	1479.86	1487.33	1487.33
$\omega_{4}(a^{'})$	1429.47	1425.30	1425.70
$\omega_{5}(a^{'})$	1404.41	1409.44	1409.73
$\omega_{6}(a^{'})$	1138.09	1142.39	1142.39
$\omega_7(a^{'})$	934.31	936.42	935.47
$\omega_{8}(a^{'})$	668.71	670.15	670.01
$\omega_{9}(a^{'})$	613.87	609.26	609.26
$\omega_{10}(a^{''})$	3234.60	3215.03	3215.03
$\omega_{11}(a^{''})$	1647.59	1642.55	1642.57
$\omega_{12}(a^{''})$	1466.37	1475.64	1475.65
$\omega_{13}(a^{''})$	1113.99	1110.74	1110.74
$\omega_{14}(a^{''})$	480.32	476.93	476.93
$\omega_{15}(a^{''})$	-35.41	23.82	22.46

Table S100: Symmetrized, unnormalized natural internal coordinates for nitromethane.

- $1 r_{1,2}$
- 2 $r_{2,3} + r_{2,4}$
- $3 r_{2,3} r_{2,4}$
- $4 \qquad r_{1,5} + r_{1,6} + r_{1,7}$
- $5 \quad -r_{1,5} r_{1,6} + 2r_{1,7}$
- $6 r_{1,5} r_{1,6}$
- $7 \qquad 2\phi_{3,2,4} \phi_{1,2,3} \phi_{1,2,4}$
- 8 $\phi_{1,2,3} \phi_{1,2,4}$
- 9 $\phi_{2,1,7} + \phi_{2,1,5} + \phi_{2,1,6} \phi_{5,1,6} \phi_{5,1,7} \phi_{6,1,7}$
- $10 \quad 2\phi_{2,1,7} \phi_{2,1,5} \phi_{2,1,6}$
- 11 $\phi_{2,1,5} \phi_{2,1,6}$
- $12 \quad 2\phi_{5,1,6} \phi_{5,1,7} \phi_{6,1,7}$
- 13 $\phi_{5,1,7} \phi_{6,1,7}$
- 14 $\tau_{3,2,1,5} + \tau_{3,2,1,6} + \tau_{3,2,1,7} + \tau_{4,2,1,5} + \tau_{4,2,1,6} + \tau_{4,2,1,7}$
- 15 $\gamma_{1,2,3,4}$

Table S101: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	С	-1.40168824	-0.00000000	0.02605239
2	Ν	1.36882488	-0.00000000	-0.14039430
3	Η	2.05503952	1.52392893	0.79571578
4	Η	2.05503953	-1.52392892	0.79571579
5	Η	-2.13608556	1.65964124	-0.95180826
6	Η	-2.13608556	-1.65964127	-0.95180822
7	Η	-2.16717853	0.0000003	1.95267120

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a^{'})$	3498.27	3513.80	3498.26	3498.26	3607.43	3498.19	3498.19
$\omega_{2}(a^{'})$	3079.94	3102.88	3079.58	3079.58	3227.00	3079.49	3079.49
$\omega_{3}(a^{'})$	2996.98	3013.70	2997.35	2997.35	3131.95	2997.37	2997.37
$\omega_{4}(a^{'})$	1667.46	1658.61	1667.45	1667.45	1688.68	1667.39	1667.39
$\omega_{5}(a^{'})$	1508.16	1512.94	1508.13	1508.13	1520.55	1508.07	1508.07
$\omega_{6}(a^{'})$	1458.06	1456.33	1458.08	1458.08	1481.11	1458.27	1458.27
$\omega_7(a^{'})$	1188.02	1185.97	1187.95	1188.04	1200.23	1188.04	1188.11
$\omega_{8}(a^{'})$	1065.57	1066.66	1065.60	1065.60	1089.75	1065.55	1065.53
$\omega_{9}(a^{'})$	878.35	872.18	878.51	878.39	886.06	878.91	878.83
$\omega_{10}(a^{''})$	3579.12	3605.78	3579.12	3579.12	3697.95	3579.12	3579.12
$\omega_{11}(a^{''})$	3115.36	3141.51	3115.36	3115.36	3268.68	3115.33	3115.33
$\omega_{12}(a^{''})$	1527.65	1532.76	1527.65	1527.65	1540.08	1527.69	1527.69
$\omega_{13}(a^{''})$	1359.39	1355.66	1359.40	1359.40	1366.58	1359.29	1359.29
$\omega_{14}(a^{''})$	976.31	977.96	976.32	976.32	984.61	976.50	976.50
$\omega_{15}(a^{''})$	306.35	309.07	306.36	306.35	337.92	306.39	306.38

Table S102: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

Table S103: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2df,p)$	$6\text{-}31\mathrm{G}(2df,p)$
$\omega_1(a^{'})$	3515.53	3498.26	3498.26
$\omega_{2}(a^{'})$	3097.85	3079.76	3079.76
$\omega_{3}(a^{'})$	3012.70	2997.11	2997.11
$\omega_{4}(a^{'})$	1663.51	1667.42	1667.42
$\omega_{5}(a^{'})$	1506.01	1507.95	1507.95
$\omega_{6}(a^{'})$	1462.93	1458.17	1458.17
$\omega_7(a^{'})$	1188.01	1188.05	1188.07
$\omega_{8}(a^{'})$	1059.75	1065.20	1065.72
$\omega_{9}(a^{'})$	873.65	879.28	878.62
$\omega_{10}(a^{''})$	3590.81	3579.12	3579.12
$\omega_{11}(a^{''})$	3134.22	3115.35	3115.35
$\omega_{12}(a^{''})$	1523.99	1527.64	1527.64
$\omega_{13}(a^{''})$	1368.69	1359.40	1359.40
$\omega_{14}(a^{''})$	983.01	976.36	976.36
$\omega_{15}(a^{''})$	308.68	306.56	306.56

Table S104: Symmetrized, unnormalized natural internal coordinates for methylamine.

- $1 r_{1,2}$
- 2 $r_{2,3} + r_{2,4}$
- $3 r_{2,3} r_{2,4}$
- $4 \qquad r_{1,5} + r_{1,6} + r_{1,7}$
- $5 \quad -r_{1,5} r_{1,6} + 2r_{1,7}$
- $6 r_{1,5} r_{1,6}$
- $7 \qquad 2\phi_{3,2,4} \phi_{1,2,3} \phi_{1,2,4}$
- 8 $\phi_{1,2,3} \phi_{1,2,4}$
- 9 $\phi_{2,1,7} + \phi_{2,1,5} + \phi_{2,1,6} \phi_{5,1,6} \phi_{5,1,7} \phi_{6,1,7}$
- $10 \quad 2\phi_{2,1,7} \phi_{2,1,5} \phi_{2,1,6}$
- 11 $\phi_{2,1,5} \phi_{2,1,6}$
- $12 \quad 2\phi_{5,1,6} \phi_{5,1,7} \phi_{6,1,7}$
- 13 $\phi_{5,1,7} \phi_{6,1,7}$
- 14 $\tau_{3,2,1,5} + \tau_{3,2,1,6} + \tau_{3,2,1,7} + \tau_{4,2,1,5} + \tau_{4,2,1,6} + \tau_{4,2,1,7}$
- 15 $\gamma_{1,2,3,4}$

Table S105: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	1.26340450	0.00000000	0.00000000
2	Η	2.33147619	-1.74616425	0.00000000
3	Η	2.33147619	1.74616425	0.00000000
4	\mathbf{C}	-1.26340450	0.00000000	-0.00000000
5	Η	-2.33147619	-1.74616425	-0.00000000
6	Η	-2.33147619	1.74616425	-0.00000000

Table S106: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	CCSD(T)/	CCSD(T)/
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_{ m g})$	3157.09	3173.05	3157.09	3157.09	3302.91	3157.07	3157.07
$\omega_2(a_{\rm g})$	1671.73	1666.28	1671.73	1671.73	1730.97	1670.53	1671.76
$\omega_3(a_{ m g})$	1368.98	1373.21	1368.99	1368.99	1397.13	1370.49	1368.99
$\omega_4(b_{1\mathrm{g}})$	3219.26	3241.74	3219.26	3219.26	3378.07	3219.25	3219.25
$\omega_5(b_{1\mathrm{g}})$	1242.16	1238.75	1242.16	1242.16	1256.86	1242.16	1242.16
$\omega_6(a_{ m u})$	1046.96	1070.99	1046.96	1046.96	1057.24	1046.96	1046.96
$\omega_7(b_{1\mathrm{u}})$	966.67	976.13	966.67	966.67	976.39	966.67	966.67
$\omega_8(b_{1\mathrm{g}})$	941.84	950.10	941.84	941.84	946.31	941.84	941.84
$\omega_9(b_{2\mathrm{u}})$	3246.14	3268.43	3246.13	3246.13	3403.30	3246.13	3246.13
$\omega_{10}(b_{2\mathrm{u}})$	823.04	820.93	823.05	823.05	842.59	823.06	823.06
$\omega_{11}(b_{3\mathrm{g}})$	3139.11	3155.69	3139.11	3139.11	3282.57	3139.11	3139.11
$\omega_{12}(b_{3\mathrm{g}})$	1479.06	1479.21	1479.06	1479.06	1494.46	1479.06	1479.06

Table S107: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_{\rm g})$	3169.38	3157.08	3157.08
$\omega_2(a_{\rm g})$	1668.68	1671.30	1671.76
$\omega_3(a_{ m g})$	1376.90	1369.54	1368.98
$\omega_4(b_{1\mathrm{g}})$	3235.08	3219.25	3219.25
$\omega_5(b_{1\mathrm{g}})$	1241.70	1242.17	1242.17
$\omega_6(a_{\mathrm{u}})$	1063.67	1046.96	1046.96
$\omega_7(b_{1\mathrm{u}})$	985.19	966.67	966.67
$\omega_8(b_{1\mathrm{g}})$	968.89	941.84	941.84
$\omega_9(b_{2\mathrm{u}})$	3263.59	3246.13	3246.13
$\omega_{10}(b_{2u})$	825.77	823.06	823.06
$\omega_{11}(b_{3g})$	3154.08	3139.11	3139.11
$\omega_{12}(b_{3g})$	1470.17	1479.06	1479.06

Table S108: Symmetrized, unnormalized natural internal coordinates for ethylene.

- $1 r_{1,4}$
- $2 \qquad r_{1,2} + r_{1,3} + r_{4,5} + r_{4,6}$
- $3 \qquad r_{1,2} + r_{1,3} r_{4,5} r_{4,6}$
- $4 \qquad r_{1,2} r_{1,3} + r_{4,5} r_{4,6}$
- $5 \qquad r_{1,2} r_{1,3} r_{4,5} + r_{4,6}$
- $6 \qquad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4} + 2\phi_{6,4,5} \phi_{5,4,1} \phi_{6,4,1}$
- $7 \qquad \phi_{2,1,4} \phi_{3,1,4} + \phi_{5,4,1} \phi_{6,4,1}$
- 8 $2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4} 2\phi_{6,4,5} + \phi_{5,4,1} + \phi_{6,4,1}$
- 9 $\phi_{2,1,4} \phi_{3,1,4} \phi_{5,4,1} + \phi_{6,4,1}$
- 10 $\tau_{2,1,4,5} + \tau_{3,1,4,6}$
- 11 $\gamma_{1,4,5,6} + \gamma_{4,1,2,3}$
- 12 $\gamma_{1,4,5,6} \gamma_{4,1,2,3}$

S4.28 tetrafluoroethylene

Table S109: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	С	-0.00000000	1.25411723	-0.00000000
2	\mathbf{F}	-0.00000000	2.61971410	-2.07863349
3	\mathbf{F}	-0.00000000	2.61971408	2.07863350
4	С	0.00000000	-1.25411723	-0.00000000
5	\mathbf{F}	0.00000000	-2.61971410	-2.07863349
6	F	0.00000000	-2.61971408	2.07863350

Table S110: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	CCSD(T)/	CCSD(T)/
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_{ m g})$	1921.15	1919.42	1921.15	1921.15	1984.36	1921.11	1921.13
$\omega_2(a_{\rm g})$	797.32	798.27	797.32	797.32	811.70	797.37	797.32
$\omega_3(a_{ m g})$	401.04	401.71	401.04	401.04	405.23	401.15	401.15
$\omega_4(b_{1\mathrm{g}})$	1385.81	1374.39	1385.81	1385.81	1428.34	1385.81	1385.81
$\omega_5(b_{1\mathrm{g}})$	556.41	557.58	556.41	556.41	561.04	556.42	556.41
$\omega_6(a_{ m u})$	201.37	204.23	201.37	201.37	203.00	201.37	201.37
$\omega_7(b_{1\mathrm{u}})$	418.44	428.50	418.44	418.44	434.47	418.44	418.44
$\omega_8(b_{1\mathrm{g}})$	511.82	540.66	511.82	511.82	530.08	511.82	511.82
$\omega_9(b_{2\mathrm{u}})$	1376.54	1370.04	1376.54	1376.54	1412.56	1376.54	1376.54
$\omega_{10}(b_{2\mathrm{u}})$	210.88	210.73	210.88	210.88	209.16	210.89	210.89
$\omega_{11}(b_{3\mathrm{g}})$	1208.55	1209.08	1208.55	1208.55	1229.18	1208.54	1208.55
$\omega_{12}(b_{3\mathrm{g}})$	559.79	560.96	559.79	559.79	567.54	559.81	559.79

Table S111: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_{\rm g})$	1917.45	1921.15	1921.15
$\omega_2(a_{\rm g})$	804.42	797.32	797.31
$\omega_3(a_{ m g})$	398.54	401.09	401.09
$\omega_4(b_{1\mathrm{g}})$	1361.88	1385.77	1385.81
$\omega_5(b_{1\mathrm{g}})$	550.83	556.51	556.41
$\omega_6(a_{\mathrm{u}})$	198.84	201.37	201.37
$\omega_7(b_{1\mathrm{u}})$	435.47	418.44	418.44
$\omega_8(b_{1\mathrm{g}})$	549.15	511.82	511.82
$\omega_9(b_{2\mathrm{u}})$	1368.62	1376.53	1376.53
$\omega_{10}(b_{2\mathrm{u}})$	204.70	210.92	210.92
$\omega_{11}(b_{3g})$	1212.22	1208.55	1208.55
$\omega_{12}(b_{3\mathrm{g}})$	556.45	559.79	559.79

Table S112: Symmetrized, unnormalized natural internal coordinates for tetrafluoroethylene.

- $1 r_{1,4}$
- $2 \qquad r_{1,2} + r_{1,3} + r_{4,5} + r_{4,6}$
- $3 \qquad r_{1,2} + r_{1,3} r_{4,5} r_{4,6}$
- $4 \qquad r_{1,2} r_{1,3} + r_{4,5} r_{4,6}$
- $5 \qquad r_{1,2} r_{1,3} r_{4,5} + r_{4,6}$
- $6 \qquad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4} + 2\phi_{6,4,5} \phi_{5,4,1} \phi_{6,4,1}$
- $7 \qquad \phi_{2,1,4} \phi_{3,1,4} + \phi_{5,4,1} \phi_{6,4,1}$
- 8 $2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4} 2\phi_{6,4,5} + \phi_{5,4,1} + \phi_{6,4,1}$
- 9 $\phi_{2,1,4} \phi_{3,1,4} \phi_{5,4,1} + \phi_{6,4,1}$
- 10 $\tau_{2,1,4,5} + \tau_{3,1,4,6}$
- 11 $\gamma_{1,4,5,6} + \gamma_{4,1,2,3}$
- $12 \quad \gamma_{1,4,5,6} \gamma_{4,1,2,3}$

S4.29 tetrachloroethylene

Table S113: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	1.27393262	0.00000000	0.00000000
2	Cl	3.00539606	-2.74614238	0.00000000
3	Cl	3.00539606	2.74614238	0.00000000
4	\mathbf{C}	-1.27393262	0.00000000	0.00000000
5	Cl	-3.00539606	-2.74614238	0.00000000
6	Cl	-3.00539606	2.74614238	0.00000000

Table S114: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_{\rm g})$	1614.67	1603.94	1614.67	1614.67	1685.77	1614.67	1614.67
$\omega_2(a_{\rm g})$	452.08	453.45	452.09	452.09	464.25	452.08	452.08
$\omega_3(a_{ m g})$	236.38	235.06	236.38	236.38	245.04	236.39	236.39
$\omega_4(b_{1\mathrm{g}})$	1009.16	996.91	1009.15	1009.16	1043.09	1009.16	1009.16
$\omega_5(b_{1\mathrm{g}})$	348.10	348.41	348.12	348.10	356.04	348.10	348.10
$\omega_6(a_{\mathrm{u}})$	99.15	101.12	99.15	99.15	98.52	99.15	99.15
$\omega_7(b_{1\mathrm{u}})$	288.16	287.43	288.16	288.16	296.42	288.16	288.16
$\omega_8(b_{1\mathrm{g}})$	517.55	517.15	517.55	517.55	518.52	517.55	517.55
$\omega_9(b_{2\mathrm{u}})$	928.96	928.16	928.96	928.96	958.21	928.96	928.96
$\omega_{10}(b_{2\mathrm{u}})$	176.42	173.74	176.42	176.42	184.05	176.42	176.42
$\omega_{11}(b_{3\mathrm{g}})$	785.28	785.62	785.28	785.28	801.60	785.28	785.28
$\omega_{12}(b_{3\mathrm{g}})$	312.17	312.52	312.18	312.17	322.08	312.17	312.17

Table S115: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_{\rm g})$	1612.45	1614.65	1614.65
$\omega_2(a_{\rm g})$	453.76	452.15	452.15
$\omega_3(a_{ m g})$	238.72	236.38	236.38
$\omega_4(b_{1g})$	987.18	1009.09	1009.09
$\omega_5(b_{1g})$	350.25	348.30	348.30
$\omega_6(a_{\mathrm{u}})$	98.53	99.15	99.15
$\omega_7(b_{1\mathrm{u}})$	295.64	288.16	288.16
$\omega_8(b_{1g})$	542.52	517.55	517.55
$\omega_9(b_{2\mathrm{u}})$	909.02	928.96	928.96
$\omega_{10}(b_{2\mathrm{u}})$	178.93	176.43	176.43
$\omega_{11}(b_{3g})$	784.12	785.27	785.27
$\omega_{12}(b_{3\mathrm{g}})$	314.42	312.19	312.19

Table S116: Symmetrized, unnormalized natural internal coordinates for tetrachloroethylene.

- $1 r_{1,4}$
- $2 \qquad r_{1,2} + r_{1,3} + r_{4,5} + r_{4,6}$
- $3 \qquad r_{1,2} + r_{1,3} r_{4,5} r_{4,6}$
- $4 \qquad r_{1,2} r_{1,3} + r_{4,5} r_{4,6}$
- $5 \qquad r_{1,2} r_{1,3} r_{4,5} + r_{4,6}$
- $6 \qquad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4} + 2\phi_{6,4,5} \phi_{5,4,1} \phi_{6,4,1}$
- $7 \qquad \phi_{2,1,4} \phi_{3,1,4} + \phi_{5,4,1} \phi_{6,4,1}$
- 8 $2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4} 2\phi_{6,4,5} + \phi_{5,4,1} + \phi_{6,4,1}$
- 9 $\phi_{2,1,4} \phi_{3,1,4} \phi_{5,4,1} + \phi_{6,4,1}$
- 10 $\tau_{2,1,4,5} + \tau_{3,1,4,6}$
- 11 $\gamma_{1,4,5,6} + \gamma_{4,1,2,3}$
- $12 \quad \gamma_{1,4,5,6} \gamma_{4,1,2,3}$

Table S117: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Х	1.00000000	0.00000000	1.14300021
2	С	-0.00000000	0.00000000	1.14300021
3	Х	-0.00000000	1.00000000	1.14300021
4	Х	1.00000000	0.00000000	-1.14300021
5	\mathbf{C}	-0.00000000	0.00000000	-1.14300021
6	Х	-0.00000000	1.00000000	-1.14300021
7	Η	-0.00000000	0.00000000	3.15309138
8	Η	-0.00000000	-0.00000000	-3.15309138

Table S118: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/ cc-pVTZ	Pure MP2/ cc-pVTZ	CMA-0A MP2/ cc-pVTZ	CMA-2A MP2/ cc-pVTZ	Pure CCSD(T)/ cc-pVDZ	CMA-0A CCSD(T)/ cc-pVDZ	CMA-2A CCSD(T)/ cc-pVDZ
$\omega_1(\sigma_{\rm g}^+)$	3510.94	3522.34	3510.91	3510.91	3655.38	3510.94	3510.94
$\omega_2(\sigma_{\rm g}^+)$	2000.86	1983.61	2000.91	2000.91	2096.53	2000.87	2000.87
$\omega_3(\sigma_{\mathrm{u}}^+)$	3409.95	3424.96	3409.95	3409.95	3558.13	3409.95	3409.95
$\omega_{4\mathrm{a}}(\pi_{\mathrm{u}})$	746.28	752.05	746.28	746.28	760.96	746.28	746.28
$\omega_{4\mathrm{b}}(\pi_{\mathrm{u}})$	746.28	752.11	746.28	746.28	761.00	746.28	746.28
$\omega_{5\mathrm{a}}(\pi_{\mathrm{g}})$	577.56	591.06	577.56	577.56	589.88	577.56	577.56
$\omega_{\rm 5b}(\pi_{\rm g})$	577.56	591.08	577.56	577.56	589.89	577.56	577.56

Table S119: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(\sigma_{\rm g}^+)$	3530.91	3510.93	3510.93
$\omega_2(\sigma_{\rm g}^+)$	2020.94	2000.89	2000.89
$\omega_3(\sigma_{\mathrm{u}}^+)$	3433.71	3409.95	3409.95
$\omega_{4\mathrm{a}}(\pi_{\mathrm{u}})$	781.02	746.28	746.28
$\omega_{4\mathrm{b}}(\pi_{\mathrm{u}})$	781.08	746.28	746.28
$\omega_{5\mathrm{a}}(\pi_{\mathrm{g}})$	561.27	577.56	577.56
$\omega_{\rm 5b}(\pi_{\rm g})$	561.29	577.56	577.56

Table S120: Symmetrized, unnormalized natural internal coordinates for acetylene.

 $\begin{array}{ll} 1 & r_{2,5} \\ 2 & r_{2,7}+r_{5,8} \\ 3 & r_{2,7}-r_{5,8} \\ 4 & \theta_{7,2,5,1}+\theta_{7,2,5,3} \\ 5 & \theta_{7,2,5,1}-\theta_{7,2,5,3} \\ 6 & \theta_{8,5,2,4}+\theta_{8,5,2,6} \\ 7 & \theta_{8,5,2,4}-\theta_{8,5,2,6} \end{array}$

Table S121: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	1.21889603	-0.76024287	-0.00000000
2	Η	0.96585913	-2.82956991	-0.00000000
3	0	3.26409381	0.26574464	-0.00000000
4	С	-1.21889603	0.76024286	0.00000000
5	Η	-0.96585912	2.82956990	0.00000000
6	0	-3.26409381	-0.26574463	0.00000000

Table S122: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/	Pure MP2/	CMA-0A	CMA-2A MP2/	Pure CCSD(T)/	CMA-0A	CMA-2A CCSD(T)/
	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\overline{\omega_1(a_{\mathrm{g}})}$	2987.10	3002.93	2987.09	2987.09	3125.99	2987.09	2987.09
$\omega_2(a_{\rm g})$	1779.77	1763.00	1779.71	1779.77	1833.16	1779.61	1779.61
$\omega_3(a_{ m g})$	1384.84	1387.70	1384.84	1384.83	1405.09	1384.74	1384.74
$\omega_4(a_{\rm g})$	1095.40	1095.62	1095.49	1095.41	1114.23	1095.64	1095.64
$\omega_5(a_{ m g})$	560.06	557.99	560.08	560.07	572.68	560.35	560.35
$\omega_6(b_{ m g})$	1068.80	1079.34	1068.80	1068.80	1084.11	1068.80	1068.80
$\omega_7(a_{ m u})$	823.86	832.67	823.85	823.86	840.46	823.85	823.86
$\omega_8(a_{ m u})$	136.26	135.79	136.32	136.26	151.02	136.32	136.26
$\omega_9(b_{ m u})$	2982.13	2998.22	2982.13	2982.13	3118.06	2982.12	2982.12
$\omega_{10}(b_{ m u})$	1757.89	1750.67	1757.89	1757.89	1807.47	1757.88	1757.88
$\omega_{11}(b_{\mathrm{u}})$	1342.00	1343.96	1342.01	1342.01	1356.82	1342.04	1342.04
$\omega_{12}(b_{\mathrm{u}})$	330.98	329.78	330.98	330.98	331.01	331.00	330.98

Table S123: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_{\rm g})$	3002.37	2987.04	2987.04
$\omega_2(a_{\rm g})$	1785.75	1779.39	1779.76
$\omega_3(a_{ m g})$	1385.83	1384.73	1384.69
$\omega_4(a_{\rm g})$	1076.50	1096.18	1095.75
$\omega_5(a_{\rm g})$	555.99	560.31	560.07
$\omega_6(b_{ m g})$	1087.79	1068.80	1068.80
$\omega_7(a_{ m u})$	827.78	823.81	823.86
$\omega_8(a_{ m u})$	138.09	136.59	136.26
$\omega_9(b_{ m u})$	2997.19	2982.11	2982.11
$\omega_{10}(b_{\mathrm{u}})$	1780.03	1757.87	1757.87
$\omega_{11}(b_{ m u})$	1340.17	1342.07	1342.07
$\omega_{12}(b_{\mathrm{u}})$	330.09	330.98	330.98

Table S124: Symmetrized, unnormalized natural internal coordinates for glyoxal.

- $7 \qquad \phi_{2,1,4} \phi_{2,1,3} \phi_{5,4,1} + \phi_{5,4,6}$
- 8 $-\phi_{2,1,4} \phi_{2,1,3} + 2\phi_{4,1,3} \phi_{5,4,1} \phi_{5,4,6} + 2\phi_{1,4,6}$
- 9 $-\phi_{2,1,4} \phi_{2,1,3} + 2\phi_{4,1,3} + \phi_{5,4,1} + \phi_{5,4,6} 2\phi_{1,4,6}$
- $10 \quad au_{6,4,1,3}$
- 11 $\gamma_{5,4,6,1} + \gamma_{2,1,3,4}$
- $12 \quad \gamma_{5,4,6,1} \gamma_{2,1,3,4}$

Table S125: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-0.00000000	0.00000000	-2.45258708
2	\mathbf{C}	-0.00000000	0.00000000	0.03916157
3	Η	1.77986810	0.00000000	-3.44221703
4	Η	-1.77986810	-0.00000000	-3.44221703
5	0	0.00000000	-0.00000000	2.24442655

Table S126: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/	Pure MP2/	CMA-0A MP2/	CMA-2A MP2/	Pure CCSD(T)/	CMA-0A CCSD(T)/	CMA-2A CCSD(T)/
	cc-pV1Z	cc-pVTZ	cc-pV1Z	cc-pVTZ	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3201.09	3215.62	3201.09	3201.09	3342.90	3201.07	3201.07
$\omega_2(a_1)$	2196.66	2215.50	2196.65	2196.65	2279.64	2196.45	2196.45
$\omega_3(a_1)$	1419.96	1412.28	1419.97	1419.97	1446.54	1418.82	1420.12
$\omega_4(a_1)$	1151.97	1152.32	1151.98	1151.98	1189.88	1153.82	1152.23
$\omega_5(b_1)$	590.76	583.94	584.48	590.76	594.23	590.15	590.76
$\omega_6(b_1)$	514.86	504.86	521.98	514.86	522.51	515.56	514.86
$\omega_7(b_2)$	3305.76	3323.30	3305.76	3305.76	3464.40	3305.74	3305.74
$\omega_8(b_2)$	993.60	986.64	993.51	993.51	1008.27	993.65	993.65
$\omega_9(b_2)$	434.17	432.90	434.38	434.38	443.74	434.20	434.20

Table S127: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3213.56	3201.06	3201.06
$\omega_2(a_1)$	2211.41	2196.57	2196.57
$\omega_3(a_1)$	1403.07	1419.93	1420.05
$\omega_4(a_1)$	1156.46	1152.28	1152.12
$\omega_5(b_1)$	591.58	590.47	590.76
$\omega_6(b_1)$	536.30	515.19	514.86
$\omega_7(b_2)$	3320.40	3305.75	3305.75
$\omega_8(b_2)$	992.25	993.42	993.42
$\omega_9(b_2)$	444.31	434.65	434.65

Table S128: Symmetrized, unnormalized natural internal coordinates for ketene.

 $\begin{array}{ll} 1 & r_{1,2} \\ 2 & r_{2,5} \\ 3 & r_{1,3}+r_{1,4} \\ 4 & r_{1,3}-r_{1,4} \\ 5 & 2\phi_{3,1,4}-\phi_{3,1,2}-\phi_{4,1,2} \\ 6 & \phi_{3,1,2}-\phi_{4,1,2} \\ 7 & \gamma_{2,1,3,4} \\ 8 & \alpha^x_{3,1,2,5}-\alpha^x_{4,1,2,5} \\ 9 & \alpha^y_{3,1,2,5}-\alpha^y_{4,1,2,5} \end{array}$

Table S129: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-0.23062727	0.84927217	0.00000000
2	\mathbf{F}	2.01489057	-0.33348284	-0.00000000
3	Η	-0.03883537	2.88455505	0.00000000
4	\mathbf{C}	-2.40187281	-0.41086779	-0.00000000
5	Η	-2.44489109	-2.45275480	-0.00000000
6	Η	-4.15403542	0.63464361	-0.00000000
Table S130: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/	Pure MP2/	CMA-0A MP2/	CMA-2A MP2/	Pure CCSD(T)/	CMA-0A CCSD(T)/	CMA-2A CCSD(T)/
	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_{1}(a^{'})$	3280.45	3301.10	3280.45	3280.45	3436.28	3280.40	3280.40
$\omega_{2}(a^{'})$	3216.73	3235.18	3216.71	3216.71	3365.94	3216.75	3216.75
$\omega_{3}(a^{'})$	3178.28	3194.10	3178.29	3178.29	3320.33	3178.29	3178.29
$\omega_{4}(a^{'})$	1703.22	1696.19	1703.21	1703.21	1773.90	1702.57	1702.99
$\omega_{5}(a^{'})$	1424.87	1422.88	1424.85	1424.85	1444.35	1424.97	1424.97
$\omega_{6}(a^{'})$	1335.38	1337.10	1335.38	1335.37	1355.00	1335.85	1335.32
$\omega_7(a^{'})$	1186.16	1183.93	1186.17	1186.20	1205.74	1186.31	1186.37
$\omega_{8}(a^{'})$	945.55	942.22	945.59	945.56	964.54	945.73	945.65
$\omega_{9}(a^{'})$	481.38	481.34	481.41	481.38	485.72	481.48	481.48
$\omega_{10}(a^{''})$	956.17	972.47	956.08	956.08	975.60	956.07	956.07
$\omega_{11}(a^{''})$	871.03	870.90	871.08	871.08	876.41	871.04	871.04
$\omega_{12}(a^{''})$	725.01	737.59	725.08	725.07	736.40	725.14	725.14

Table S131: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a^{'})$	3295.43	3280.44	3280.44
$\omega_{2}(a^{'})$	3232.78	3216.65	3216.65
$\omega_{3}(a^{'})$	3190.55	3178.33	3178.33
$\omega_{4}(a^{'})$	1699.95	1702.90	1703.10
$\omega_{5}(a^{'})$	1412.57	1424.92	1424.92
$\omega_{6}(a^{'})$	1335.34	1335.63	1335.37
$\omega_7(a^{'})$	1178.16	1186.20	1186.23
$\omega_{8}(a^{'})$	943.19	945.73	945.70
$\omega_{9}(a^{'})$	479.06	481.47	481.47
$\omega_{10}(a^{''})$	974.58	955.96	955.96
$\omega_{11}(a^{''})$	886.14	871.00	871.00
$\omega_{12}(a^{''})$	732.93	725.32	725.32

Table S132: Symmetrized, unnormalized natural internal coordinates for vinyl fluoride.

- 1 $r_{1,4}$ $\mathbf{2}$ $r_{1,2}$ 3 $r_{1,3}$ 4 $r_{4,5} + r_{4,6}$ 5 $r_{4,5} - r_{4,6}$ 6 $\phi_{2,1,4}$ 7 $\phi_{2,1,3} - \phi_{4,1,3}$ 8 $2\phi_{5,4,6} - \phi_{5,4,1} - \phi_{6,4,1}$ 9 $\phi_{5,4,1} - \phi_{6,4,1}$ 10 $\tau_{6,4,1,2} + \tau_{5,4,1,2}$ $11 \quad \gamma_{1,4,5,6}$
- 12 $\gamma_{3,1,2,4}$

Table S133: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-1.25457203	0.96043344	0.00000000
2	Cl	1.82672009	-0.15681495	0.00000000
3	Η	-1.37832434	2.99846821	0.00000000
4	\mathbf{C}	-3.26305888	-0.55916494	0.00000000
5	Η	-3.07637332	-2.59407651	0.00000000
6	Η	-5.13698193	0.25883536	0.00000000

Table S134: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/	Pure MP2/	CMA-0A MP2/	CMA-2A MP2/	Pure CCSD(T)/	CMA-0A CCSD(T)/	CMA-2A CCSD(T)/
	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_{1}(a^{'})$	3261.58	3282.14	3261.58	3261.58	3416.72	3261.54	3261.54
$\omega_{2}(a^{'})$	3219.69	3237.30	3219.69	3219.69	3369.32	3219.72	3219.72
$\omega_{3}(a^{'})$	3163.14	3178.42	3163.14	3163.14	3305.00	3163.14	3163.14
$\omega_{4}(a^{'})$	1648.92	1641.17	1648.91	1648.91	1716.38	1647.85	1648.82
$\omega_{5}(a^{'})$	1409.03	1408.23	1409.00	1409.00	1430.65	1410.12	1408.98
$\omega_{6}(a^{'})$	1303.91	1303.03	1303.92	1303.92	1324.34	1304.05	1304.05
$\omega_7(a^{'})$	1043.79	1039.71	1043.81	1043.84	1061.50	1043.84	1043.84
$\omega_{8}(a^{'})$	728.91	732.93	728.95	728.91	747.79	728.94	728.94
$\omega_{9}(a^{'})$	393.16	393.28	393.17	393.17	402.36	393.21	393.21
$\omega_{10}(a^{''})$	967.57	982.66	967.47	967.47	979.77	967.56	967.56
$\omega_{11}(a^{''})$	906.85	907.33	906.95	906.95	913.38	906.84	906.85
$\omega_{12}(a^{''})$	624.92	636.66	624.93	624.92	630.19	624.94	624.93

Table S135: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a^{'})$	3279.03	3261.57	3261.57
$\omega_{2}(a^{'})$	3236.46	3219.65	3219.65
$\omega_{3}(a^{'})$	3177.27	3163.16	3163.16
$\omega_{4}(a^{'})$	1645.15	1648.45	1648.69
$\omega_{5}(a^{'})$	1403.09	1408.88	1408.59
$\omega_{6}(a^{'})$	1301.18	1304.62	1304.62
$\omega_7(a^{'})$	1040.95	1043.78	1043.78
$\omega_{8}(a^{'})$	724.68	729.13	729.13
$\omega_{9}(a^{'})$	398.62	393.17	393.17
$\omega_{10}(a^{''})$	977.28	967.53	967.53
$\omega_{11}(a^{''})$	926.18	906.80	906.80
$\omega_{12}(a^{''})$	634.75	625.04	625.04

Table S136: Symmetrized, unnormalized natural internal coordinates for vinyl chloride.

1 $r_{1,4}$ $\mathbf{2}$ $r_{1,2}$ 3 $r_{1,3}$ 4 $r_{4,5} + r_{4,6}$ 5 $r_{4,5} - r_{4,6}$ 6 $\phi_{2,1,4}$ 7 $\phi_{2,1,3} - \phi_{3,1,4}$ 8 $2\phi_{5,4,6} - \phi_{5,4,1} - \phi_{6,4,1}$ 9 $\phi_{5,4,1} - \phi_{6,4,1}$ 10 $\tau_{2,1,4,6} + \tau_{3,1,4,5}$ 11 $\gamma_{1,4,5,6}$

12 $\gamma_{4,1,2,3}$

S113

Table S137: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	2.37756991	2.26850483	-0.00055361
2	\mathbf{C}	1.05905955	-0.24683567	0.00014473
3	Ο	2.00061832	-2.28726397	0.00084009
4	Cl	-2.32530065	0.10341395	-0.00018125
5	Η	4.41124345	1.96733004	-0.00032789
6	Η	1.80005376	3.33615707	-1.66508115
7	Η	1.79983852	3.33719391	1.66323370

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	CCSD(T)/	$\rm CCSD(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a^{'})$	3169.14	3190.54	3169.13	3169.13	3319.54	3169.09	3169.09
$\omega_{2}(a^{'})$	3062.21	3073.65	3062.22	3062.22	3193.58	3062.20	3062.20
$\omega_{3}(a^{'})$	1859.03	1852.22	1859.01	1859.01	1917.69	1858.97	1858.99
$\omega_{4}(a^{'})$	1472.26	1473.34	1472.22	1472.22	1483.82	1472.29	1472.29
$\omega_{5}(a^{'})$	1394.09	1384.82	1394.11	1394.11	1412.92	1393.84	1393.84
$\omega_{6}(a^{'})$	1127.04	1120.31	1127.03	1127.06	1150.19	1126.46	1127.23
$\omega_7(a^{'})$	969.93	965.32	969.97	969.95	997.22	971.16	970.28
$\omega_{8}(a^{'})$	613.58	610.48	613.57	613.54	626.63	613.66	613.59
$\omega_{9}(a^{'})$	448.70	447.58	448.83	448.83	457.00	448.73	448.72
$\omega_{10}(a^{'})$	343.07	343.30	343.09	343.09	351.72	343.11	343.11
$\omega_{11}(a^{''})$	3142.85	3165.11	3142.85	3142.85	3293.35	3142.81	3142.81
$\omega_{12}(a^{''})$	1478.20	1479.93	1478.19	1478.19	1491.48	1478.20	1478.20
$\omega_{13}(a^{''})$	1047.49	1043.66	1047.49	1047.49	1057.82	1047.60	1047.60
$\omega_{14}(a^{''})$	518.05	518.41	518.07	518.07	527.21	518.06	518.06
$\omega_{15}(a^{''})$	143.29	141.37	143.38	143.38	161.90	143.36	143.35

Table S138: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

Table S139: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a^{'})$	3186.50	3169.13	3169.13
$\omega_{2}(a^{'})$	3081.54	3062.17	3062.17
$\omega_{3}(a^{'})$	1872.28	1858.87	1858.93
$\omega_{4}(a^{'})$	1466.62	1472.04	1472.04
$\omega_{5}(a^{'})$	1393.53	1394.13	1394.13
$\omega_{6}(a^{'})$	1123.63	1126.79	1126.79
$\omega_7(a^{'})$	963.13	970.94	970.81
$\omega_{8}(a^{'})$	616.26	613.58	613.58
$\omega_{9}(a^{'})$	448.19	448.74	448.74
$\omega_{10}(a^{'})$	347.29	343.12	343.12
$\omega_{11}(a^{''})$	3158.72	3142.85	3142.85
$\omega_{12}(a^{''})$	1470.88	1478.16	1478.16
$\omega_{13}(a^{''})$	1047.55	1047.51	1047.51
$\omega_{14}(a^{''})$	525.03	518.08	518.08
$\omega_{15}(a^{''})$	138.91	143.50	143.47

Table S140: Symmetrized, unnormalized natural internal coordinates for acetyl chloride.

- $1 r_{1,2}$
- $2 r_{2,3}$
- $3 r_{2,4}$
- $4 \qquad r_{1,5} + r_{1,6} + r_{1,7}$
- 5 $2r_{1,5} r_{1,6} r_{1,7}$
- $6 r_{1,6} r_{1,7}$
- $7 \qquad 2\phi_{3,2,4} \phi_{1,2,3} \phi_{1,2,4}$
- 8 $\phi_{1,2,3} \phi_{1,2,4}$
- 9 $\phi_{2,1,5} + \phi_{2,1,7} + \phi_{2,1,6} \phi_{6,1,7} \phi_{5,1,6} \phi_{5,1,7}$
- $10 \quad 2\phi_{2,1,5} \phi_{2,1,7} \phi_{2,1,6}$
- 11 $\phi_{2,1,7} \phi_{2,1,6}$
- $12 \quad 2\phi_{6,1,7} \phi_{5,1,6} \phi_{5,1,7}$
- 13 $\phi_{5,1,6} \phi_{5,1,7}$
- 14 $\tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,1,2,3} + \tau_{5,1,2,4} + \tau_{6,1,2,4} + \tau_{7,1,2,4}$
- 15 $\gamma_{4,2,3,1}$

Table S141: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	2.76454271	0.01457545	0.00000000
2	С	-0.04920230	-0.29403538	-0.0000002
3	Ο	-1.26541246	-2.18009943	0.00000001
4	\mathbf{F}	-1.19736497	1.99333285	0.00000000
5	Η	3.66400828	-1.82995283	0.00000007
6	Η	3.32965655	1.09054359	-1.66356692
7	Η	3.32965649	1.09054368	1.66356688

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a^{'})$	3183.94	3205.21	3183.91	3183.91	3333.43	3183.85	3183.85
$\omega_{2}(a^{'})$	3067.89	3079.93	3067.91	3067.91	3199.43	3067.91	3067.91
$\omega_{3}(a^{'})$	1905.64	1901.44	1905.63	1905.63	1966.97	1905.52	1905.61
$\omega_{4}(a^{'})$	1478.05	1480.41	1478.01	1478.01	1489.11	1478.11	1478.11
$\omega_{5}(a^{'})$	1409.07	1402.51	1409.08	1409.08	1430.07	1408.21	1408.91
$\omega_{6}(a^{'})$	1229.96	1221.96	1229.93	1229.97	1265.32	1230.37	1229.90
$\omega_7(a^{'})$	1017.14	1013.95	1017.18	1017.15	1032.58	1017.91	1017.43
$\omega_{8}(a^{'})$	854.81	852.70	854.85	854.82	876.23	854.94	854.85
$\omega_{9}(a^{'})$	605.07	605.59	605.08	605.08	613.51	605.24	605.24
$\omega_{10}(a^{'})$	412.95	414.29	412.96	412.96	414.39	412.98	412.98
$\omega_{11}(a^{''})$	3141.37	3163.75	3141.37	3141.37	3291.51	3141.33	3141.33
$\omega_{12}(a^{''})$	1486.58	1489.91	1486.58	1486.58	1497.91	1486.55	1486.55
$\omega_{13}(a^{''})$	1073.07	1071.01	1073.06	1073.06	1082.65	1073.19	1073.20
$\omega_{14}(a^{''})$	572.45	574.75	572.47	572.48	579.82	572.47	572.47
$\omega_{15}(a^{''})$	135.38	132.54	135.45	135.43	143.19	135.46	135.43

Table S142: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

Table S143: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a^{'})$	3201.34	3183.93	3183.93
$\omega_{2}(a^{'})$	3086.58	3067.86	3067.86
$\omega_{3}(a^{'})$	1916.58	1905.45	1905.62
$\omega_{4}(a^{'})$	1473.99	1477.97	1477.97
$\omega_{5}(a^{'})$	1405.92	1408.84	1408.72
$\omega_{6}(a^{'})$	1225.98	1230.21	1230.40
$\omega_7(a^{'})$	1013.61	1017.40	1017.14
$\omega_{8}(a^{'})$	857.45	855.16	855.01
$\omega_{9}(a^{'})$	601.39	605.11	605.11
$\omega_{10}(a^{'})$	409.83	412.99	412.99
$\omega_{11}(a^{''})$	3155.91	3141.37	3141.37
$\omega_{12}(a^{''})$	1480.10	1486.49	1486.50
$\omega_{13}(a^{''})$	1073.13	1073.12	1073.12
$\omega_{14}(a^{''})$	574.15	572.53	572.53
$\omega_{15}(a^{''})$	129.18	135.67	135.57

Table S144: Symmetrized, unnormalized natural internal coordinates for acetyl fluoride.

- $1 r_{1,2}$
- $2 r_{2,3}$
- $3 r_{2,4}$
- $4 \qquad r_{1,5} + r_{1,6} + r_{1,7}$
- 5 $2r_{1,5} r_{1,6} r_{1,7}$
- $6 r_{1,6} r_{1,7}$
- $7 \qquad 2\phi_{3,2,4} \phi_{1,2,3} \phi_{1,2,4}$
- 8 $\phi_{1,2,3} \phi_{1,2,4}$
- 9 $\phi_{2,1,5} + \phi_{2,1,7} + \phi_{2,1,6} \phi_{6,1,7} \phi_{5,1,6} \phi_{5,1,7}$
- $10 \quad 2\phi_{2,1,5} \phi_{2,1,7} \phi_{2,1,6}$
- 11 $\phi_{2,1,7} \phi_{2,1,6}$
- $12 \quad 2\phi_{6,1,7} \phi_{5,1,6} \phi_{5,1,7}$
- 13 $\phi_{5,1,6} \phi_{5,1,7}$
- 14 $\tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,1,2,3} + \tau_{5,1,2,4} + \tau_{6,1,2,4} + \tau_{7,1,2,4}$
- 15 $\gamma_{4,2,3,1}$

Table S145: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-2.75458669	-0.07584462	0.00000006
2	\mathbf{C}	0.07515133	0.19163584	0.00000005
3	Ο	1.24072442	2.15236111	0.00000001
4	Ο	1.22880289	-2.09877025	-0.0000003
5	Η	-3.61644252	1.78677173	0.00000005
6	Η	-3.34756391	-1.13717476	-1.66377116
7	Η	-3.34756393	-1.13717626	1.66377031
8	Η	3.02195767	-1.74165265	-0.00000015

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVDZ$	cc- $pVDZ$	cc- $pVDZ$
$\omega_{1}(a^{'})$	3776.29	3786.74	3776.29	3776.29	3846.91	3776.27	3776.27
$\omega_{2}(a^{'})$	3180.57	3202.28	3180.54	3180.54	3329.67	3180.48	3180.48
$\omega_{3}(a^{'})$	3064.96	3077.09	3064.98	3064.98	3196.34	3064.99	3064.99
$\omega_{4}(a^{'})$	1837.11	1834.76	1837.05	1837.08	1896.78	1836.80	1836.91
$\omega_{5}(a^{'})$	1481.23	1482.91	1481.15	1481.15	1492.14	1481.10	1481.10
$\omega_{6}(a^{'})$	1422.27	1414.33	1422.33	1422.34	1450.47	1421.31	1422.28
$\omega_7(a^{'})$	1355.18	1345.92	1355.10	1355.18	1372.73	1355.81	1355.44
$\omega_{8}(a^{'})$	1220.34	1207.39	1220.48	1220.34	1249.10	1220.82	1220.41
$\omega_{9}(a^{'})$	1005.01	1001.34	1005.10	1005.09	1018.69	1005.70	1005.13
$\omega_{10}(a^{'})$	869.68	868.69	869.70	869.70	893.64	869.92	869.92
$\omega_{11}(a^{'})$	584.13	584.54	584.13	584.13	594.56	584.22	584.22
$\omega_{12}(a^{'})$	418.78	418.93	418.79	418.79	422.28	418.79	418.79
$\omega_{13}(a^{''})$	3137.39	3160.27	3137.39	3137.39	3286.99	3137.36	3137.36
$\omega_{14}(a^{''})$	1487.62	1490.51	1487.61	1487.61	1498.00	1487.62	1487.62
$\omega_{15}(a^{''})$	1071.35	1068.94	1071.36	1071.36	1080.95	1071.45	1071.45
$\omega_{16}(a^{''})$	664.47	669.23	664.36	664.47	679.91	664.35	664.49
$\omega_{17}(a^{''})$	545.73	550.36	545.87	545.73	551.78	545.90	545.73
$\omega_{18}(a^{''})$	78.18	74.64	78.24	78.24	90.34	78.28	78.23

Table S146: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_{1}(a^{'})$	3772.47	3776.28	3776.28
$\omega_{2}(a^{'})$	3198.23	3180.56	3180.56
$\omega_{3}(a^{'})$	3084.23	3064.92	3064.92
$\omega_{4}(a^{'})$	1839.38	1836.95	1837.05
$\omega_{5}(a^{'})$	1476.41	1480.97	1480.97
$\omega_{6}(a^{'})$	1416.17	1421.69	1422.28
$\omega_7(a^{'})$	1353.00	1355.94	1355.18
$\omega_{8}(a^{'})$	1212.72	1220.30	1220.37
$\omega_{9}(a^{'})$	1002.42	1005.35	1005.34
$\omega_{10}(a^{'})$	866.07	870.06	869.95
$\omega_{11}(a^{'})$	581.26	584.15	584.15
$\omega_{12}(a^{'})$	418.92	418.81	418.81
$\omega_{13}(a^{''})$	3152.31	3137.39	3137.39
$\omega_{14}(a^{''})$	1482.19	1487.58	1487.58
$\omega_{15}(a^{''})$	1070.43	1071.40	1071.40
$\omega_{16}(a^{''})$	676.14	664.44	664.48
$\omega_{17}(a^{''})$	547.06	545.77	545.72
$\omega_{18}(a^{''})$	83.46	78.47	78.43

Table S147: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S148: Symmetrized, unnormalized natural internal coordinates for acetic acid.

- 1 $r_{1,2}$ $\mathbf{2}$ $r_{2,3}$ 3 $r_{2,4}$ 4 $r_{4,8}$ 5 $r_{1,5} + r_{1,6} + r_{1,7}$ $6 \qquad 2r_{1,5} - r_{1,6} - r_{1,7}$ 7 $r_{1,6} - r_{1,7}$ 8 $\phi_{1,2,3} - \phi_{3,2,4}$ 9 $-\phi_{1,2,3} - \phi_{3,2,4} + 2\phi_{4,2,1}$ 10 $\phi_{2,4,8}$ 11 $\phi_{5,1,2} + \phi_{6,1,2} + \phi_{7,1,2} - \phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7}$ 12 $2\phi_{5,1,2} - \phi_{6,1,2} - \phi_{7,1,2}$ 13 $\phi_{6,1,2} - \phi_{7,1,2}$
- $14 \quad 2\phi_{6,1,7} \phi_{5,1,6} \phi_{5,1,7}$
- 15 $\phi_{5,1,6} \phi_{5,1,7}$
- 16 $\tau_{1,2,4,8} + \tau_{3,2,4,8}$
- 17 $\tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,1,2,3} + \tau_{5,1,2,4} + \tau_{6,1,2,4} + \tau_{7,1,2,4}$
- $18 \quad \gamma_{3,2,1,4}$

Table S149: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-2.56474627	1.03805801	-0.00000001
2	0	-1.13832898	-1.27719414	0.0000001
3	С	1.37333384	-0.93569129	-0.00000000
4	0	2.44023024	1.07500163	0.00000000
5	Η	-2.12605991	2.14890436	-1.67647724
6	Η	-4.53723889	0.47158333	0.0000002
7	Η	-2.12605989	2.14890440	1.67647720
8	Η	2.31318467	-2.77931310	-0.00000007

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVDZ$	cc- $pVDZ$	cc-pVDZ
$\omega_1(a^{'})$	3176.95	3200.92	3176.94	3176.94	3328.50	3176.89	3176.89
$\omega_{2}(a^{'})$	3078.26	3094.68	3078.25	3078.25	3219.59	3078.26	3078.26
$\omega_{3}(a^{'})$	3063.30	3075.57	3063.32	3063.32	3196.88	3063.31	3063.31
$\omega_{4}(a^{'})$	1799.60	1796.87	1799.54	1799.60	1860.41	1799.34	1799.54
$\omega_{5}(a^{'})$	1509.79	1514.42	1509.73	1509.73	1519.61	1509.46	1509.46
$\omega_{6}(a^{'})$	1472.50	1472.53	1472.54	1472.54	1491.50	1472.85	1472.85
$\omega_7(a^{'})$	1404.55	1405.23	1404.51	1404.44	1427.52	1404.44	1404.44
$\omega_{8}(a^{'})$	1243.84	1244.63	1243.95	1243.95	1268.72	1243.10	1243.98
$\omega_{9}(a^{'})$	1195.91	1192.66	1195.90	1195.89	1210.76	1197.15	1196.01
$\omega_{10}(a^{'})$	957.60	956.35	957.66	957.66	974.07	957.66	957.66
$\omega_{11}(a^{'})$	776.79	775.66	776.84	776.84	787.32	777.03	776.91
$\omega_{12}(a^{'})$	310.98	307.68	311.00	311.00	317.99	311.02	311.02
$\omega_{13}(a^{''})$	3143.88	3167.12	3143.88	3143.88	3294.96	3143.86	3143.86
$\omega_{14}(a^{''})$	1495.32	1501.53	1495.32	1495.32	1507.39	1495.36	1495.36
$\omega_{15}(a^{''})$	1185.12	1186.88	1185.11	1185.11	1196.02	1185.13	1185.13
$\omega_{16}(a^{''})$	1049.47	1051.92	1049.50	1049.50	1061.39	1049.47	1049.47
$\omega_{17}(a^{''})$	339.98	345.54	339.98	339.98	344.65	339.99	339.98
$\omega_{18}(a^{''})$	144.91	146.02	144.93	144.91	156.56	144.98	144.97

Table S150: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_{1}(a^{'})$	3197.71	3176.95	3176.95
$\omega_{2}(a^{'})$	3097.10	3078.13	3078.13
$\omega_{3}(a^{'})$	3086.15	3063.38	3063.38
$\omega_{4}(a^{'})$	1806.09	1799.50	1799.52
$\omega_{5}(a^{'})$	1501.32	1509.60	1509.60
$\omega_{6}(a^{'})$	1471.91	1472.67	1472.67
$\omega_7(a^{'})$	1398.93	1404.61	1404.58
$\omega_{8}(a^{'})$	1231.23	1242.77	1243.86
$\omega_{9}(a^{'})$	1185.72	1196.95	1195.99
$\omega_{10}(a^{'})$	948.56	957.99	957.76
$\omega_{11}(a^{'})$	775.81	776.83	776.83
$\omega_{12}(a^{'})$	314.58	311.04	311.04
$\omega_{13}(a^{''})$	3165.11	3143.88	3143.88
$\omega_{14}(a^{''})$	1490.19	1495.32	1495.32
$\omega_{15}(a^{''})$	1179.88	1185.09	1185.09
$\omega_{16}(a^{''})$	1047.10	1049.48	1049.48
$\omega_{17}(a^{\prime\prime})$	341.67	339.99	339.98
$\omega_{18}(a^{''})$	143.24	145.13	145.09

Table S151: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S152: Symmetrized, unnormalized natural internal coordinates for methyl formate.

1	$r_{1,2}$
2	$r_{2,3}$
3	$r_{3,4}$
4	$r_{3,8}$
5	$r_{1,6} + r_{1,5} + r_{1,7}$
6	$2r_{1,6} - r_{1,5} - r_{1,7}$
7	$r_{1,5} - r_{1,7}$
8	$\phi_{1,2,3}$
9	$2\phi_{2,3,4} - \phi_{4,3,8} - \phi_{2,3,8}$
10	$\phi_{4,3,8} - \phi_{2,3,8}$
11	$\phi_{5,1,7} + \phi_{6,1,5} + \phi_{6,1,7} - \phi_{6,1,2} - \phi_{5,1,2} - \phi_{7,1,2}$
12	$2\phi_{5,1,7} - \phi_{6,1,5} - \phi_{6,1,7}$
13	$\phi_{6,1,5} - \phi_{6,1,7}$
14	$2\phi_{6,1,2} - \phi_{5,1,2} - \phi_{7,1,2}$
15	$\phi_{5,1,2} - \phi_{7,1,2}$
16	$\tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,1,2,3}$
17	$\tau_{1,2,3,4} + \tau_{1,2,3,8}$
18	$\gamma_{8,3,2,4}$

Table S153: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-2.38336780	0.31344831	-0.00000000
2	С	0.23682939	-0.79607621	0.00000000
3	0	2.16461069	0.43923199	-0.00000000
4	Η	0.32309962	-2.88723239	0.00000000
5	Η	-2.29051382	2.36809272	-0.00000000
6	Η	-3.41403157	-0.35261154	1.66196703
7	Η	-3.41403157	-0.35261154	-1.66196703

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\rm CCSD(T)/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$	CCSD(T)/
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a^{'})$	3156.22	3178.16	3156.18	3156.18	3307.38	3156.15	3156.15
$\omega_{2}(a^{'})$	3037.72	3050.22	3037.74	3037.74	3169.36	3037.69	3037.69
$\omega_{3}(a^{'})$	2918.88	2935.71	2918.89	2918.89	3058.61	2918.90	2918.90
$\omega_{4}(a^{'})$	1793.14	1785.54	1793.10	1793.12	1845.78	1793.00	1793.00
$\omega_{5}(a^{'})$	1469.93	1471.25	1469.87	1469.87	1481.19	1469.89	1469.89
$\omega_{6}(a^{'})$	1431.32	1433.08	1431.24	1431.21	1454.51	1431.31	1431.31
$\omega_7(a^{'})$	1383.16	1376.13	1383.33	1383.33	1400.04	1383.06	1383.06
$\omega_{8}(a^{'})$	1134.44	1132.22	1134.47	1134.48	1149.46	1134.39	1134.78
$\omega_{9}(a^{'})$	895.54	892.85	895.58	895.58	921.21	896.33	895.84
$\omega_{10}(a^{'})$	503.56	504.01	503.57	503.56	509.29	503.59	503.57
$\omega_{11}(a^{''})$	3105.97	3130.03	3105.96	3105.96	3254.84	3105.92	3105.92
$\omega_{12}(a^{''})$	1481.19	1483.82	1481.18	1481.18	1493.93	1481.19	1481.19
$\omega_{13}(a^{''})$	1132.41	1134.44	1132.34	1132.34	1143.94	1132.49	1132.49
$\omega_{14}(a^{''})$	777.41	776.76	777.53	777.54	790.18	777.45	777.45
$\omega_{15}(a^{''})$	156.12	156.62	156.22	156.15	168.38	156.20	156.19

Table S154: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

Table S155: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6-31\mathrm{G}(2df,p)$	$6-31\mathrm{G}(2df,p)$	$6-31\mathrm{G}(2df,p)$
$\omega_1(a^{'})$	3174.37	3156.20	3156.20
$\omega_{2}(a^{'})$	3056.92	3037.67	3037.67
$\omega_{3}(a^{'})$	2932.94	2918.85	2918.85
$\omega_{4}(a^{'})$	1803.85	1792.94	1793.07
$\omega_{5}(a^{'})$	1466.35	1469.40	1469.40
$\omega_{6}(a^{'})$	1429.03	1431.47	1431.42
$\omega_7(a^{'})$	1382.20	1383.48	1383.48
$\omega_{8}(a^{'})$	1133.20	1134.53	1134.54
$\omega_9(a^{'})$	890.38	896.24	896.07
$\omega_{10}(a^{'})$	504.87	503.61	503.58
$\omega_{11}(a^{''})$	3120.06	3105.97	3105.97
$\omega_{12}(a^{''})$	1477.29	1481.10	1481.11
$\omega_{13}(a^{''})$	1138.14	1132.23	1132.26
$\omega_{14}(a^{''})$	777.65	777.78	777.78
$\omega_{15}(a^{''})$	163.78	156.45	156.12

Table S156: Symmetrized, unnormalized natural internal coordinates for acetaldehyde.

- $1 r_{1,2}$
- $2 r_{2,3}$
- $3 r_{2,4}$
- $4 \qquad r_{1,5} + r_{1,6} + r_{1,7}$
- 5 $2r_{1,5} r_{1,6} r_{1,7}$
- $6 r_{1,6} r_{1,7}$
- $7 \qquad 2\phi_{3,2,4} \phi_{1,2,3} \phi_{1,2,4}$
- 8 $\phi_{1,2,3} \phi_{1,2,4}$
- 9 $\phi_{2,1,5} + \phi_{2,1,7} + \phi_{2,1,6} \phi_{6,1,7} \phi_{5,1,6} \phi_{5,1,7}$
- $10 \quad 2\phi_{2,1,5} \phi_{2,1,7} \phi_{2,1,6}$
- 11 $\phi_{2,1,7} \phi_{2,1,6}$
- $12 \quad 2\phi_{6,1,7} \phi_{5,1,6} \phi_{5,1,7}$
- 13 $\phi_{5,1,6} \phi_{5,1,7}$
- 14 $\tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,1,2,3} + \tau_{5,1,2,4} + \tau_{6,1,2,4} + \tau_{7,1,2,4}$
- 15 $\gamma_{4,2,3,1}$

Table S157: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	0.71138750	-3.24270819	0.00000000
2	\mathbf{C}	-1.25342727	-1.15447677	0.00000000
3	Η	1.90901920	-3.11721977	1.67181496
4	Η	-0.23045169	-5.08087833	0.00000000
5	Η	1.90901920	-3.11721977	-1.67181496
6	Η	-2.44503705	-1.22529373	1.67390274
7	Η	-2.44503705	-1.22529373	-1.67390274
8	CL	0.22354627	1.90569145	0.00000000

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVDZ$	cc-pVDZ	cc-pVDZ
$\omega_{1}(a^{'})$	3119.73	3143.57	3119.61	3119.61	3270.53	3119.45	3119.45
$\omega_{2}(a^{'})$	3091.33	3107.33	3091.40	3091.40	3232.04	3091.51	3091.51
$\omega_{3}(a^{'})$	3042.96	3055.67	3043.02	3043.02	3177.06	3042.99	3042.99
$\omega_{4}(a^{'})$	1507.53	1510.16	1507.49	1507.49	1520.26	1507.50	1507.50
$\omega_{5}(a^{'})$	1498.23	1499.97	1498.21	1498.21	1514.51	1498.14	1498.14
$\omega_{6}(a^{'})$	1414.26	1406.69	1414.27	1414.27	1434.47	1413.97	1413.97
$\omega_7(a^{'})$	1321.71	1319.41	1321.72	1321.72	1344.67	1321.86	1321.86
$\omega_{8}(a^{'})$	1094.10	1092.85	1094.13	1094.13	1118.18	1093.69	1094.51
$\omega_{9}(a^{'})$	993.24	992.01	993.26	993.28	1017.35	994.34	993.44
$\omega_{10}(a^{'})$	688.50	696.31	688.55	688.52	699.43	688.55	688.54
$\omega_{11}(a^{'})$	331.55	330.59	331.56	331.56	339.66	331.56	331.56
$\omega_{12}(a^{''})$	3154.40	3177.65	3154.40	3154.40	3306.32	3154.38	3154.38
$\omega_{13}(a^{''})$	3127.71	3152.17	3127.71	3127.71	3282.50	3127.69	3127.69
$\omega_{14}(a^{''})$	1492.92	1495.18	1492.91	1492.91	1505.40	1492.95	1492.95
$\omega_{15}(a^{''})$	1280.41	1281.33	1280.35	1280.35	1294.17	1280.41	1280.41
$\omega_{16}(a^{''})$	1080.78	1081.98	1080.87	1080.87	1096.39	1080.81	1080.81
$\omega_{17}(a^{''})$	787.66	788.60	787.67	787.67	800.30	787.70	787.71
$\omega_{18}(a^{''})$	261.83	265.98	261.85	261.84	280.16	261.88	261.85

Table S158: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_{1}(a^{'})$	3136.21	3119.67	3119.67
$\omega_{2}(a^{'})$	3107.47	3091.33	3091.33
$\omega_{3}(a^{'})$	3062.56	3043.00	3043.00
$\omega_{4}(a^{'})$	1507.81	1507.46	1507.46
$\omega_{5}(a^{'})$	1494.60	1498.22	1498.22
$\omega_{6}(a^{'})$	1420.85	1414.04	1414.04
$\omega_7(a^{'})$	1322.18	1321.70	1321.70
$\omega_{8}(a^{'})$	1093.19	1093.73	1093.73
$\omega_{9}(a^{'})$	987.87	994.06	994.06
$\omega_{10}(a^{'})$	685.91	688.71	688.71
$\omega_{11}(a^{'})$	336.58	331.59	331.59
$\omega_{12}(a^{''})$	3172.92	3154.38	3154.38
$\omega_{13}(a^{''})$	3144.87	3127.71	3127.71
$\omega_{14}(a^{''})$	1490.94	1492.91	1492.91
$\omega_{15}(a^{''})$	1279.83	1280.29	1280.29
$\omega_{16}(a^{''})$	1080.31	1080.93	1080.93
$\omega_{17}(a^{\prime\prime})$	793.22	787.74	787.74
$\omega_{18}(a^{''})$	259.16	261.85	261.85

Table S159: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S160: Symmetrized, unnormalized natural internal coordinates for ethyl chloride.

 $r_{1,2}$ $r_{2,8}$ $r_{1,4} + r_{1,3} + r_{1,5}$ $2r_{1,4} - r_{1,3} - r_{1,5}$ $r_{1,3} - r_{1,5}$ $r_{2,6} + r_{2,7}$ $\overline{7}$ $r_{2,6} - r_{2,7}$ $\phi_{1,2,8}$ $\phi_{6,2,1} + \phi_{6,2,8} - \phi_{7,2,1} - \phi_{7,2,8}$ $\phi_{6,2,1} - \phi_{6,2,8} + \phi_{7,2,1} - \phi_{7,2,8}$ $\phi_{6,2,1} - \phi_{6,2,8} - \phi_{7,2,1} + \phi_{7,2,8}$ $-\phi_{6,2,1} - \phi_{6,2,8} - \phi_{7,2,1} - \phi_{7,2,8} + 4\phi_{6,2,7}$ $\phi_{4,1,2} + \phi_{3,1,2} + \phi_{5,1,2} - \phi_{3,1,5} - \phi_{4,1,3} - \phi_{4,1,5}$ $2\phi_{4,1,2} - \phi_{3,1,2} - \phi_{5,1,2}$ $\phi_{3,1,2} - \phi_{5,1,2}$ $2\phi_{3,1,5} - \phi_{4,1,3} - \phi_{4,1,5}$ $\phi_{4,1,3} - \phi_{4,1,5}$ $\tau_{3,1,2,8} + \tau_{4,1,2,8} + \tau_{5,1,2,8}$

Table S161: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	С	-1.44464665	-0.00000002	0.0000001
2	С	1.44464665	0.0000008	-0.0000008
3	Η	-2.19072560	-1.85534039	0.50798051
4	Η	-2.19072568	1.36759417	1.35278165
5	Η	-2.19072574	0.48774615	-1.86076207
6	Η	2.19072576	-0.48774633	1.86076194
7	Η	2.19072558	1.85534053	-0.50798031
8	Η	2.19072568	-1.36759487	-1.35278094

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_{1g})$	3039.53	3051.30	3039.53	3039.53	3177.06	3039.48	3039.48
$\omega_2(a_{1\mathrm{g}})$	1427.46	1421.34	1427.46	1427.46	1452.19	1427.28	1427.28
$\omega_3(a_{1\mathrm{g}})$	1013.93	1015.05	1013.95	1013.95	1045.36	1014.33	1014.33
$\omega_{4\mathrm{a}}(e_{\mathrm{g}})$	3096.88	3123.50	3096.88	3096.88	3252.34	3096.85	3096.85
$\omega_{4\mathrm{b}}(e_{\mathrm{g}})$	3096.88	3123.44	3096.88	3096.88	3252.29	3096.85	3096.85
$\omega_{5\mathrm{a}}(e_{\mathrm{g}})$	1510.83	1515.62	1510.81	1510.81	1522.33	1510.89	1510.89
$\omega_{\rm 5b}(e_{ m g})$	1510.83	1515.61	1510.81	1510.81	1522.32	1510.89	1510.89
$\omega_{6\mathrm{a}}(e_{\mathrm{g}})$	1224.79	1222.45	1224.82	1224.82	1237.99	1224.81	1224.81
$\omega_{6\mathrm{b}}(e_{\mathrm{g}})$	1224.79	1222.45	1224.82	1224.82	1237.99	1224.81	1224.81
$\omega_7(a_{1\mathrm{u}})$	310.01	314.19	310.01	310.01	331.48	310.01	310.01
$\omega_8(a_{2\mathrm{u}})$	3038.00	3052.91	3038.00	3038.00	3171.45	3037.99	3037.99
$\omega_9(a_{2\mathrm{u}})$	1406.53	1402.31	1406.53	1406.53	1421.61	1406.56	1406.56
$\omega_{10a}(e_{\rm u})$	3120.06	3145.60	3120.06	3120.06	3272.82	3120.03	3120.03
$\omega_{10\mathrm{b}}(e_{\mathrm{u}})$	3120.06	3145.54	3120.06	3120.06	3272.76	3120.03	3120.03
$\omega_{11a}(e_{\rm u})$	1512.52	1515.39	1512.52	1512.52	1524.60	1512.57	1512.57
$\omega_{11\mathrm{b}}(e_{\mathrm{u}})$	1512.52	1515.38	1512.52	1512.52	1524.58	1512.57	1512.57
$\omega_{12a}(e_{\rm u})$	820.85	821.77	820.87	820.86	832.79	820.90	820.90
$\omega_{12b}(e_{\rm u})$	820.85	821.75	820.87	820.86	832.77	820.90	820.90

Table S162: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A	
	B3LYP/	B3LYP/	B3LYP/	
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	
$\omega_1(a_{1g})$	3059.32	3039.50	3039.50	
$\omega_2(a_{1g})$	1430.23	1427.34	1427.34	
$\omega_3(a_{1g})$	1008.47	1014.20	1014.20	
$\omega_{4\mathrm{a}}(e_{\mathrm{g}})$	3112.60	3096.88	3096.88	
$\omega_{4\mathrm{b}}(e_{\mathrm{g}})$	3112.52	3096.88	3096.88	
$\omega_{5\mathrm{a}}(e_{\mathrm{g}})$	1508.97	1510.81	1510.81	
$\omega_{\rm 5b}(e_{\rm g})$	1508.84	1510.81	1510.81	
$\omega_{6a}(e_{\rm g})$	1230.68	1224.82	1224.82	
$\omega_{6b}(e_{\rm g})$	1230.64	1224.82	1224.82	
$\omega_7(a_{1\mathrm{u}})$	308.52	310.01	310.01	
$\omega_8(a_{2\mathrm{u}})$	3059.86	3038.00	3038.00	
$\omega_9(a_{2\mathrm{u}})$	1418.10	1406.53	1406.53	
$\omega_{10\mathrm{a}}(e_\mathrm{u})$	3137.77	3120.06	3120.06	
$\omega_{10\mathrm{b}}(e_\mathrm{u})$	3137.68	3120.06	3120.06	
$\omega_{11a}(e_{\rm u})$	1514.69	1512.50	1512.50	
$\omega_{11\mathrm{b}}(e_{\mathrm{u}})$	1514.62	1512.50	1512.50	
$\omega_{12a}(e_{\rm u})$	827.77	820.91	820.91	
$\omega_{12\mathrm{b}}(e_{\mathrm{u}})$	827.73	820.91	820.91	

Table S163: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S164: Symmetrized, unnormalized natural internal coordinates for ethane.

- $1 r_{1,2}$
- $2 \qquad r_{1,3} + r_{1,4} + r_{1,5} + r_{2,7} + r_{2,8} + r_{2,6}$
- $3 \qquad r_{1,3} + r_{1,4} + r_{1,5} r_{2,7} r_{2,8} r_{2,6}$
- $4 \qquad 2r_{1,3} r_{1,4} r_{1,5} + 2r_{2,7} r_{2,8} r_{2,6}$
- $5 \qquad r_{1,4} r_{1,5} + r_{2,8} r_{2,6}$
- $6 \qquad 2r_{1,3} r_{1,4} r_{1,5} 2r_{2,7} + r_{2,8} + r_{2,6}$
- $7 \qquad r_{1,4} r_{1,5} r_{2,8} + r_{2,6}$
- 8 $\phi_{4,1,5} + \phi_{3,1,4} + \phi_{3,1,5} \phi_{3,1,2} \phi_{4,1,2} \phi_{5,1,2} + \phi_{6,2,8} + \phi_{7,2,8} + \phi_{7,2,6} \phi_{7,2,1} \phi_{8,2,1} \phi_{6,2,1}$
- 9 $\phi_{4,1,5} + \phi_{3,1,4} + \phi_{3,1,5} \phi_{3,1,2} \phi_{4,1,2} \phi_{5,1,2} \phi_{6,2,8} \phi_{7,2,8} \phi_{7,2,6} + \phi_{7,2,1} + \phi_{8,2,1} + \phi_{6,2,1}$
- 10 $2\phi_{4,1,5} \phi_{3,1,4} \phi_{3,1,5} + 2\phi_{6,2,8} \phi_{7,2,8} \phi_{7,2,6}$
- 11 $\phi_{3,1,4} \phi_{3,1,5} + \phi_{7,2,8} \phi_{7,2,6}$
- 12 $2\phi_{4,1,5} \phi_{3,1,4} \phi_{3,1,5} 2\phi_{6,2,8} + \phi_{7,2,8} + \phi_{7,2,6}$
- 13 $\phi_{3,1,4} \phi_{3,1,5} \phi_{7,2,8} + \phi_{7,2,6}$
- 14 $2\phi_{3,1,2} \phi_{4,1,2} \phi_{5,1,2} + 2\phi_{7,2,1} \phi_{8,2,1} \phi_{6,2,1}$
- 15 $\phi_{4,1,2} \phi_{5,1,2} + \phi_{8,2,1} \phi_{6,2,1}$
- 16 $2\phi_{3,1,2} \phi_{4,1,2} \phi_{5,1,2} 2\phi_{7,2,1} + \phi_{8,2,1} + \phi_{6,2,1}$
- 17 $\phi_{4,1,2} \phi_{5,1,2} \phi_{8,2,1} + \phi_{6,2,1}$
- 18 $\tau_{3,1,2,7} + \tau_{7,2,1,3} + \tau_{4,1,2,8} + \tau_{8,2,1,4} + \tau_{5,1,2,6} + \tau_{6,2,1,5}$

S4.42 dimethyl ether

Table S165: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-2.19409540	0.47534797	-0.00000000
2	Ο	0.00000000	-1.03943917	0.00000000
3	\mathbf{C}	2.19409540	0.47534797	-0.00000000
4	Η	-3.82041225	-0.78516753	0.00000000
5	Η	-2.27639290	1.68680381	-1.68214609
6	Η	-2.27639290	1.68680381	1.68214609
7	Η	2.27639289	1.68680383	1.68214608
8	Η	2.27639289	1.68680383	-1.68214608
9	Η	3.82041225	-0.78516754	0.00000000

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3130.94	3154.26	3130.85	3130.85	3280.33	3130.83	3130.83
$\omega_2(a_1)$	2987.43	2999.99	2987.53	2987.53	3120.19	2987.46	2987.46
$\omega_3(a_1)$	1526.82	1530.64	1526.66	1526.66	1541.94	1525.21	1525.21
$\omega_4(a_1)$	1494.98	1494.20	1495.11	1495.11	1512.74	1496.67	1496.67
$\omega_5(a_1)$	1277.41	1272.63	1277.38	1277.38	1290.69	1277.43	1277.44
$\omega_6(a_1)$	964.06	961.48	964.15	964.15	981.28	964.20	964.20
$\omega_7(a_1)$	418.84	414.76	418.85	418.85	427.22	418.91	418.88
$\omega_8(a_2)$	3036.25	3062.58	3036.25	3036.25	3182.66	3036.21	3036.21
$\omega_9(a_2)$	1490.45	1495.82	1490.45	1490.45	1502.18	1490.52	1490.52
$\omega_{10}(a_2)$	1169.37	1171.81	1169.38	1169.38	1181.68	1169.40	1169.40
$\omega_{11}(a_2)$	203.09	207.76	203.10	203.09	213.42	203.10	203.10
$\omega_{12}(b_1)$	3030.84	3055.53	3030.84	3030.84	3177.66	3030.81	3030.81
$\omega_{13}(b_1)$	1500.07	1505.72	1500.07	1500.07	1510.53	1500.12	1500.12
$\omega_{14}(b_1)$	1202.41	1202.56	1202.42	1202.42	1216.12	1202.44	1202.44
$\omega_{15}(b_1)$	255.06	258.31	255.06	255.06	265.55	255.06	255.06
$\omega_{16}(b_2)$	3129.14	3153.26	3129.06	3129.06	3278.65	3129.01	3129.01
$\omega_{17}(b_2)$	2978.19	2992.86	2978.28	2978.28	3108.59	2978.26	2978.26
$\omega_{18}(b_2)$	1508.70	1513.11	1508.68	1508.68	1519.95	1508.73	1508.73
$\omega_{19}(b_2)$	1460.11	1459.71	1460.08	1460.08	1481.44	1460.05	1460.05
$\omega_{20}(b_2)$	1212.11	1211.19	1212.15	1212.15	1229.81	1211.99	1212.27
$\omega_{21}(b_2)$	1128.79	1130.95	1128.83	1128.83	1145.47	1129.14	1128.83

Table S166: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2df,p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2df,p)$
$\omega_1(a_1)$	3151.06	3130.93	3130.93
$\omega_2(a_1)$	3009.08	2987.41	2987.41
$\omega_3(a_1)$	1524.24	1526.40	1526.40
$\omega_4(a_1)$	1497.08	1495.38	1495.38
$\omega_5(a_1)$	1274.80	1277.41	1277.41
$\omega_6(a_1)$	955.42	964.16	964.16
$\omega_7(a_1)$	427.26	418.90	418.89
$\omega_8(a_2)$	3051.50	3036.24	3036.24
$\omega_9(a_2)$	1490.47	1490.40	1490.40
$\omega_{10}(a_2)$	1169.58	1169.43	1169.43
$\omega_{11}(a_2)$	216.73	203.32	203.32
$\omega_{12}(b_1)$	3046.86	3030.84	3030.84
$\omega_{13}(b_1)$	1500.41	1500.05	1500.05
$\omega_{14}(b_1)$	1200.87	1202.43	1202.45
$\omega_{15}(b_1)$	257.39	255.15	255.08
$\omega_{16}(b_2)$	3149.23	3129.13	3129.13
$\omega_{17}(b_2)$	2996.13	2978.14	2978.14
$\omega_{18}(b_2)$	1504.83	1508.52	1508.52
$\omega_{19}(b_2)$	1463.53	1460.15	1460.15
$\omega_{20}(b_2)$	1194.51	1211.07	1212.35
$\omega_{21}(b_2)$	1126.39	1130.27	1128.90

Table S167: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S168: Symmetrized, unnormalized natural internal coordinates for dimethyl ether.

- $1 r_{1,2} + r_{2,3}$
- $2 r_{1,2} r_{2,3}$
- $3 \qquad r_{1,4} + r_{1,5} + r_{1,6} + r_{3,9} + r_{3,7} + r_{3,8}$
- $4 \qquad r_{1,4} + r_{1,5} + r_{1,6} r_{3,9} r_{3,7} r_{3,8}$
- 5 $2r_{1,4} r_{1,5} r_{1,6} + 2r_{3,9} r_{3,7} r_{3,8}$
- $6 \qquad 2r_{1,4} r_{1,5} r_{1,6} 2r_{3,9} + r_{3,7} + r_{3,8}$
- $7 \qquad r_{1,5} r_{1,6} + r_{3,7} r_{3,8}$
- $8 \qquad r_{1,5} r_{1,6} r_{3,7} + r_{3,8}$
- 9 $\phi_{1,2,3}$
- $\begin{array}{ll} 10 & \phi_{4,1,2} + \phi_{5,1,2} + \phi_{6,1,2} \phi_{5,1,6} \phi_{4,1,5} \phi_{4,1,6} + \phi_{9,3,2} + \phi_{7,3,2} + \phi_{8,3,2} \phi_{7,3,8} \\ & \phi_{9,3,7} \phi_{9,3,8} \end{array}$
- 11 $\phi_{4,1,2} + \phi_{5,1,2} + \phi_{6,1,2} \phi_{5,1,6} \phi_{4,1,5} \phi_{4,1,6} \phi_{9,3,2} \phi_{7,3,2} \phi_{8,3,2} + \phi_{7,3,8} + \phi_{9,3,7} + \phi_{9,3,8}$
- 12 $2\phi_{4,1,2} \phi_{5,1,2} \phi_{6,1,2} + 2\phi_{9,3,2} \phi_{7,3,2} \phi_{8,3,2}$
- 13 $2\phi_{4,1,2} \phi_{5,1,2} \phi_{6,1,2} 2\phi_{9,3,2} + \phi_{7,3,2} + \phi_{8,3,2}$
- 14 $\phi_{5,1,2} \phi_{6,1,2} + \phi_{7,3,2} \phi_{8,3,2}$
- 15 $\phi_{5,1,2} \phi_{6,1,2} \phi_{7,3,2} + \phi_{8,3,2}$
- $16 \quad 2\phi_{5,1,6} \phi_{4,1,5} \phi_{4,1,6} + 2\phi_{7,3,8} \phi_{9,3,7} \phi_{9,3,8}$
- $17 \quad 2\phi_{5,1,6} \phi_{4,1,5} \phi_{4,1,6} 2\phi_{7,3,8} + \phi_{9,3,7} + \phi_{9,3,8}$
- 18 $\phi_{4,1,5} \phi_{4,1,6} + \phi_{9,3,7} \phi_{9,3,8}$
- 19 $\phi_{4,1,5} \phi_{4,1,6} \phi_{9,3,7} + \phi_{9,3,8}$
- 20 $\tau_{4,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,3,2,1} + \tau_{8,3,2,1} + \tau_{9,3,2,1}$
- 21 $\tau_{4,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,3} \tau_{7,3,2,1} \tau_{8,3,2,1} \tau_{9,3,2,1}$

Table S169: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	С	-2.38160558	0.47396349	0.0000002
2	С	0.01654024	-1.09258611	-0.00000002
3	Η	-2.44560526	1.67800747	1.67220551
4	Η	-2.44560533	1.67800746	-1.67220550
5	Η	-4.04445451	-0.74741713	0.00000006
6	Η	0.06559877	-2.31232195	1.67426817
7	Η	0.06559875	-2.31232193	-1.67426821
8	0	2.10079664	0.61455797	-0.00000002
9	Η	3.62372825	-0.37160124	0.0000035

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a^{'})$	3857.30	3874.39	3857.30	3857.30	3923.64	3857.29	3857.29
$\omega_{2}(a^{'})$	3123.33	3148.58	3123.32	3123.32	3273.46	3123.26	3123.26
$\omega_{3}(a^{'})$	3045.11	3057.80	3045.08	3045.08	3178.80	3045.03	3045.03
$\omega_4(a^{'})$	3000.32	3016.78	3000.36	3000.36	3131.80	3000.39	3000.39
$\omega_{5}(a^{'})$	1538.40	1541.11	1538.39	1538.39	1553.27	1538.27	1538.27
$\omega_{6}(a^{'})$	1508.41	1511.48	1508.33	1508.33	1523.03	1508.08	1508.08
$\omega_7(a^{'})$	1468.04	1460.91	1467.98	1467.98	1495.35	1468.12	1468.12
$\omega_{8}(a^{'})$	1403.22	1397.49	1403.22	1403.22	1419.47	1403.35	1403.35
$\omega_{9}(a^{'})$	1285.13	1276.06	1285.05	1285.16	1301.11	1285.01	1285.16
$\omega_{10}(a^{'})$	1121.48	1120.55	1121.59	1121.48	1139.37	1120.55	1120.42
$\omega_{11}(a^{'})$	1050.78	1047.14	1050.93	1050.95	1073.87	1052.19	1052.34
$\omega_{12}(a^{'})$	909.14	908.42	909.19	909.16	927.06	909.56	909.35
$\omega_{13}(a^{'})$	413.74	412.36	413.75	413.75	415.61	413.78	413.78
$\omega_{14}(a^{''})$	3128.35	3153.31	3128.35	3128.35	3281.05	3128.26	3128.26
$\omega_{15}(a^{''})$	3032.33	3058.83	3032.33	3032.33	3175.97	3032.39	3032.39
$\omega_{16}(a^{''})$	1489.67	1492.61	1489.65	1489.65	1501.15	1489.66	1489.66
$\omega_{17}(a^{''})$	1306.08	1308.61	1306.06	1306.06	1320.51	1306.07	1306.07
$\omega_{18}(a^{''})$	1187.04	1185.89	1187.09	1187.09	1202.02	1187.10	1187.10
$\omega_{19}(a^{''})$	818.70	819.61	818.71	818.71	832.11	818.68	818.69
$\omega_{20}(a^{''})$	280.63	285.48	280.63	280.64	296.69	280.72	280.89
$\omega_{21}(a^{''})$	235.41	239.14	235.45	235.42	255.16	235.70	235.46

Table S170: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.
	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2df,p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_{1}(a^{'})$	3855.85	3857.30	3857.30
$\omega_{2}(a^{'})$	3138.73	3123.32	3123.32
$\omega_{3}(a^{'})$	3065.12	3045.09	3045.09
$\omega_{4}(a^{'})$	3011.85	3000.29	3000.29
$\omega_{5}(a^{'})$	1534.37	1538.09	1538.09
$\omega_{6}(a^{'})$	1508.15	1508.48	1508.48
$\omega_7(a^{'})$	1465.45	1467.95	1467.95
$\omega_{8}(a^{'})$	1411.27	1403.28	1403.28
$\omega_{9}(a^{'})$	1282.14	1285.00	1285.04
$\omega_{10}(a^{'})$	1117.60	1120.50	1120.60
$\omega_{11}(a^{'})$	1039.70	1052.28	1052.29
$\omega_{12}(a^{'})$	907.47	909.44	909.26
$\omega_{13}(a^{'})$	415.02	413.80	413.80
$\omega_{14}(a^{''})$	3144.96	3128.35	3128.35
$\omega_{15}(a^{''})$	3040.95	3032.33	3032.33
$\omega_{16}(a^{''})$	1490.46	1489.66	1489.66
$\omega_{17}(a^{''})$	1302.88	1305.43	1305.43
$\omega_{18}(a^{''})$	1185.30	1187.71	1187.71
$\omega_{19}(a^{''})$	825.02	818.79	818.79
$\omega_{20}(a^{''})$	276.15	280.54	280.64
$\omega_{21}(a^{''})$	242.11	235.60	235.45

Table S171: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S172: Symmetrized, unnormalized natural internal coordinates for ethanol.

1 $r_{1,2}$ 2 $r_{2,8}$ 3 $r_{8,9}$ 4 $r_{1,5} + r_{1,3} + r_{1,4}$ 5 $2r_{1,5} - r_{1,3} - r_{1,4}$ 6 $r_{1,3} - r_{1,4}$ $\overline{7}$ $r_{2,6} + r_{2,7}$ 8 $r_{2,6} - r_{2,7}$ 9 $\phi_{1,2,8}$ $10 \phi_{2,8,9}$ 11 $\phi_{5,1,2} + \phi_{3,1,2} + \phi_{4,1,2} - \phi_{3,1,4} - \phi_{5,1,3} - \phi_{5,1,4}$ 12 $2\phi_{5,1,2} - \phi_{3,1,2} - \phi_{4,1,2}$ 13 $\phi_{3,1,2} - \phi_{4,1,2}$ $14 \quad 2\phi_{3,1,4} - \phi_{5,1,3} - \phi_{5,1,4}$ 15 $\phi_{5,1,3} - \phi_{5,1,4}$ 16 $4\phi_{6,2,7} - \phi_{6,2,1} - \phi_{6,2,8} - \phi_{7,2,1} - \phi_{7,2,8}$ 17 $\phi_{6,2,1} + \phi_{6,2,8} - \phi_{7,2,1} - \phi_{7,2,8}$ 18 $\phi_{6,2,1} - \phi_{6,2,8} + \phi_{7,2,1} - \phi_{7,2,8}$ 19 $\phi_{6,2,1} - \phi_{6,2,8} - \phi_{7,2,1} + \phi_{7,2,8}$ $20 \quad \tau_{5,1,2,8} + \tau_{3,1,2,8} + \tau_{4,1,2,8}$ 21 $\tau_{9,8,2,1}$

Table S173: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Ν	2.51255949	-0.00000000	0.00000000
2	\mathbf{C}	0.31660733	-0.00000000	0.00000000
3	\mathbf{C}	-2.45420572	0.00000000	-0.00000000
4	Η	-3.15278789	0.96811431	-1.67682317
5	Η	-3.15278789	-1.93622862	-0.00000000
6	Η	-3.15278789	0.96811431	1.67682317

Table S174: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	CCSD(T)/
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3066.03	3078.30	3066.02	3066.02	3197.66	3065.99	3065.99
$\omega_2(a_1)$	2298.73	2261.22	2298.70	2298.70	2398.96	2298.75	2298.75
$\omega_3(a_1)$	1414.02	1409.05	1414.03	1414.03	1434.36	1413.83	1413.83
$\omega_4(a_1)$	921.28	919.61	921.35	921.35	960.51	921.63	921.63
$\omega_{5a}(e)$	3149.91	3171.98	3149.91	3149.91	3300.78	3149.87	3149.87
$\omega_{5\mathrm{b}}(e)$	3149.91	3171.86	3149.91	3149.91	3300.66	3149.87	3149.87
$\omega_{6a}(e)$	1487.57	1490.61	1487.56	1487.56	1497.22	1487.60	1487.60
$\omega_{6\mathrm{b}}(e)$	1487.57	1490.60	1487.56	1487.56	1497.21	1487.60	1487.60
$\omega_{7a}(e)$	1062.13	1062.26	1062.14	1062.14	1072.97	1062.21	1062.21
$\omega_{7\mathrm{b}}(e)$	1062.13	1062.25	1062.14	1062.14	1072.96	1062.21	1062.21
$\omega_{8a}(e)$	361.14	362.28	361.14	361.14	369.49	361.14	361.14
$\omega_{8b}(e)$	361.14	362.27	361.14	361.14	369.48	361.14	361.14

Table S175: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3086.02	3065.94	3065.94
$\omega_2(a_1)$	2318.48	2298.57	2298.57
$\omega_3(a_1)$	1409.68	1414.01	1414.01
$\omega_4(a_1)$	909.55	921.96	921.96
$\omega_{5a}(e)$	3165.43	3149.91	3149.91
$\omega_{5\mathrm{b}}(e)$	3165.32	3149.91	3149.91
$\omega_{6a}(e)$	1476.65	1487.52	1487.52
$\omega_{6\mathrm{b}}(e)$	1476.61	1487.52	1487.52
$\omega_{7a}(e)$	1058.48	1062.15	1062.18
$\omega_{7\mathrm{b}}(e)$	1058.47	1062.15	1062.18
$\omega_{8a}(e)$	377.06	361.26	361.16
$\omega_{8b}(e)$	377.05	361.26	361.16

Table S176: Symmetrized, unnormalized natural internal coordinates for acetonitrile.

1 $r_{1,2}$ 2 $r_{2,3}$ 3 $r_{3,4} + r_{3,5} + r_{3,6}$ 4 $2r_{3,4} - r_{3,5} - r_{3,6}$ 5 $r_{3,5} - r_{3,6}$ $6 \qquad \phi_{4,3,2} + \phi_{5,3,2} + \phi_{6,3,2} - \phi_{5,3,6} - \phi_{4,3,5} - \phi_{4,3,6}$ 7 $2\phi_{4,3,2} - \phi_{5,3,2} - \phi_{6,3,2}$ 8 $\phi_{5,3,2} - \phi_{6,3,2}$ 9 $2\phi_{5,3,6} - \phi_{4,3,5} - \phi_{4,3,6}$ 10 $\phi_{4,3,5} - \phi_{4,3,6}$ $11 \quad 2\alpha_{4,3,2,1}^x - \alpha_{5,3,2,1}^x - \alpha_{6,3,2,1}^x$ $12 \quad 2\alpha_{4,3,2,1}^y - \alpha_{5,3,2,1}^y - \alpha_{6,3,2,1}^y$

Table S177: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Η	4.59758364	-0.00000001	0.00000000
2	С	2.58924928	-0.00000000	-0.00000000
3	С	0.30051907	0.0000001	-0.00000000
4	С	-2.47081506	-0.00000000	-0.00000000
5	Η	-3.19532958	1.92992565	0.00000000
6	Η	-3.19532957	-0.96496284	-1.67136465
7	Н	-3.19532957	-0.96496284	1.67136465

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3470.25	3483.45	3470.23	3470.23	3616.64	3470.24	3470.24
$\omega_2(a_1)$	3048.35	3060.93	3048.34	3048.34	3177.87	3048.30	3048.30
$\omega_3(a_1)$	2177.61	2158.84	2177.64	2177.64	2277.60	2177.64	2177.64
$\omega_4(a_1)$	1417.12	1410.48	1417.13	1417.13	1437.88	1417.01	1417.01
$\omega_5(a_1)$	935.50	934.18	935.51	935.51	972.78	935.80	935.80
$\omega_{6a}(e)$	3122.33	3145.99	3122.33	3122.33	3271.47	3122.29	3122.29
$\omega_{6\mathrm{b}}(e)$	3122.33	3145.88	3122.33	3122.33	3271.35	3122.29	3122.29
$\omega_{7a}(e)$	1491.36	1493.73	1491.35	1491.35	1501.21	1491.41	1491.41
$\omega_{7\mathrm{b}}(e)$	1491.36	1493.71	1491.35	1491.35	1501.20	1491.41	1491.41
$\omega_{8a}(e)$	1059.94	1059.07	1059.96	1059.96	1071.71	1059.99	1059.99
$\omega_{8\mathrm{b}}(e)$	1059.94	1059.06	1059.95	1059.96	1071.70	1059.99	1059.99
$\omega_{9\mathrm{a}}(e)$	619.78	627.61	619.76	619.78	635.25	619.77	619.79
$\omega_{9\mathrm{b}}(e)$	619.78	627.58	619.76	619.78	635.24	619.77	619.79
$\omega_{10a}(e)$	322.43	325.91	322.49	322.43	331.70	322.48	322.44
$\omega_{10\mathrm{b}}(e)$	322.43	325.90	322.49	322.43	331.68	322.48	322.44

Table S178: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

Table S179: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Duno	CMA 0A	CMA 9A
	r uie	OMA-0A	OMA-ZA
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2df,p)$	$6\text{-}31\mathrm{G}(2df,p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3492.04	3470.25	3470.25
$\omega_2(a_1)$	3066.06	3048.27	3048.27
$\omega_3(a_1)$	2186.88	2177.48	2177.48
$\omega_4(a_1)$	1413.65	1417.09	1417.09
$\omega_5(a_1)$	919.56	936.12	936.12
$\omega_{6a}(e)$	3135.14	3122.33	3122.33
$\omega_{6\mathrm{b}}(e)$	3135.04	3122.33	3122.33
$\omega_{7a}(e)$	1480.31	1491.29	1491.29
$\omega_{7\mathrm{b}}(e)$	1480.27	1491.29	1491.29
$\omega_{8a}(e)$	1057.64	1060.01	1060.02
$\omega_{8\mathrm{b}}(e)$	1057.62	1060.01	1060.02
$\omega_{9\mathrm{a}}(e)$	630.72	619.79	619.79
$\omega_{9\mathrm{b}}(e)$	630.69	619.79	619.79
$\omega_{10a}(e)$	331.29	322.51	322.48
$\omega_{10\mathrm{b}}(e)$	331.28	322.50	322.48

Table S180: Symmetrized, unnormalized natural internal coordinates for propyne.

1 $r_{1,2}$ 2 $r_{2,3}$ 3 $r_{3,4}$ 4 $r_{4,5} + r_{4,6} + r_{4,7}$ 5 $2r_{4,5} - r_{4,6} - r_{4,7}$ 6 $r_{4,6} - r_{4,7}$ $\overline{7}$ $\phi_{6,4,7} + \phi_{5,4,6} + \phi_{5,4,7} - \phi_{5,4,3} - \phi_{6,4,3} - \phi_{7,4,3}$ 8 $2\phi_{6,4,7} - \phi_{5,4,6} - \phi_{5,4,7}$ 9 $\phi_{5,4,6} - \phi_{5,4,7}$ 10 $2\phi_{5,4,3} - \phi_{6,4,3} - \phi_{7,4,3}$ 11 $\phi_{6,4,3} - \phi_{7,4,3}$ $12 \quad 2\alpha_{5,4,3,2}^x - \alpha_{6,4,3,2}^x - \alpha_{7,4,3,2}^x$ 13 $\alpha_{6,4,3,2}^x - \alpha_{7,4,3,2}^x$ $14 \quad 2\alpha_{5,4,2,1}^x - \alpha_{6,4,2,1}^x - \alpha_{7,4,2,1}^x$ 15 $\alpha_{6,4,2,1}^x - \alpha_{7,4,2,1}^x$

S4.46 trifluoroacetonitrile

Table S181: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Ν	4.43122755	-0.00000000	0.00000000
2	С	2.23806724	-0.00000000	0.00000000
3	\mathbf{C}	-0.57616305	-0.00000000	0.00000000
4	\mathbf{F}	-1.43860612	1.17812158	-2.04056644
5	\mathbf{F}	-1.43860612	-2.35624316	-0.00000000
6	\mathbf{F}	-1.43860612	1.17812158	2.04056644

Table S182: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	CCSD(T)/
	cc-pVTZ	cc-pVTZ	cc- $pVTZ$	cc-pVTZ	cc-pVDZ	cc-pVDZ	cc- $pVDZ$
$\omega_1(a_1)$	2304.40	2254.12	2304.38	2304.39	2400.16	2304.39	2304.39
$\omega_2(a_1)$	1258.85	1254.43	1258.85	1258.85	1289.04	1258.73	1258.76
$\omega_3(a_1)$	821.09	821.56	821.11	821.10	831.38	821.12	821.08
$\omega_4(a_1)$	527.15	526.30	527.20	527.20	535.76	527.43	527.43
$\omega_{5a}(e)$	1258.53	1246.99	1258.53	1258.53	1303.61	1258.52	1258.52
$\omega_{5\mathrm{b}}(e)$	1258.53	1246.94	1258.53	1258.53	1303.56	1258.52	1258.52
$\omega_{6a}(e)$	629.30	631.93	629.30	629.30	634.70	629.28	629.30
$\omega_{6\mathrm{b}}(e)$	629.30	631.92	629.30	629.30	634.70	629.28	629.30
$\omega_{7a}(e)$	469.33	470.42	469.34	469.33	474.17	469.37	469.34
$\omega_{7\mathrm{b}}(e)$	469.33	470.41	469.34	469.33	474.16	469.37	469.34
$\omega_{8a}(e)$	189.86	190.44	189.88	189.87	189.09	189.87	189.86
$\omega_{8b}(e)$	189.86	190.44	189.88	189.87	189.08	189.87	189.86

Table S183: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	2329.48	2304.10	2304.36
$\omega_2(a_1)$	1235.01	1258.97	1258.86
$\omega_3(a_1)$	820.59	821.60	821.16
$\omega_4(a_1)$	519.56	527.38	527.16
$\omega_{5\mathrm{a}}(e)$	1251.58	1258.52	1258.52
$\omega_{5\mathrm{b}}(e)$	1250.94	1258.52	1258.52
$\omega_{6a}(e)$	627.96	629.16	629.23
$\omega_{6b}(e)$	627.84	629.14	629.22
$\omega_{7a}(e)$	466.93	469.33	469.23
$\omega_{7\mathrm{b}}(e)$	466.86	469.32	469.21
$\omega_{8a}(e)$	191.61	190.47	190.47
$\omega_{8b}(e)$	191.32	190.43	190.43

Table S184: Symmetrized, unnormalized natural internal coordinates for trifluoroacetonitrile.

1	$r_{1,2}$
2	$r_{2,3}$
3	$r_{3,4} + r_{3,5} + r_{3,6}$
4	$2r_{3,4} - r_{3,5} - r_{3,6}$
5	$r_{3,5} - r_{3,6}$
6	$\phi_{4,3,2} + \phi_{5,3,2} + \phi_{6,3,2} - \phi_{5,3,6} - \phi_{4,3,5} - \phi_{4,3,6}$
7	$2\phi_{4,3,2} - \phi_{5,3,2} - \phi_{6,3,2}$
8	$\phi_{5,3,2}-\phi_{6,3,2}$
9	$2\phi_{5,3,6} - \phi_{4,3,5} - \phi_{4,3,6}$
10	$\phi_{4,3,5} - \phi_{4,3,6}$
11	$2\alpha_{4,3,2,1}^x - \alpha_{5,3,2,1}^x - \alpha_{6,3,2,1}^x$
12	$2\alpha_{4,3,2,1}^y - \alpha_{5,3,2,1}^y - \alpha_{6,3,2,1}^y$

S4.47 silicon tetrachloride

Table S185: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Si	0.00000000	0.00000000	-0.00000000
2	Cl	0.00000000	-3.13063739	2.21369401
3	Cl	0.00000000	3.13063739	2.21369401
4	Cl	3.13063738	0.00000000	-2.21369401
5	Cl	-3.13063738	0.00000000	-2.21369401

Table S186: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	424.70	429.07	424.70	424.70	430.21	424.70	424.70
$\omega_{2a}(e)$	146.57	146.22	146.57	146.57	149.21	146.57	146.57
$\omega_{2\mathrm{b}}(e)$	146.56	146.22	146.57	146.57	149.21	146.57	146.57
$\omega_{3\mathrm{a}}(t_2)$	627.23	633.58	627.21	627.21	641.76	627.21	627.21
$\omega_{3\mathrm{b}}(t_2)$	627.19	633.54	627.20	627.20	641.72	627.20	627.20
$\omega_{3\mathrm{c}}(t_2)$	627.16	633.54	627.17	627.17	641.72	627.16	627.16
$\omega_{4\mathrm{a}}(t_2)$	221.78	221.01	221.71	221.71	224.57	221.71	221.71
$\omega_{4\mathrm{b}}(t_2)$	221.56	220.99	221.60	221.60	224.55	221.63	221.63
$\omega_{4\mathrm{c}}(t_2)$	221.54	220.99	221.58	221.58	224.55	221.54	221.54

Table S187: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure B3LYP/	CMA-0A B3LYP/	CMA-2A B3LYP/
	$6-31\mathrm{G}(2df,p)$	$6-31\mathrm{G}(2df,p)$	$6-31\mathrm{G}(2df,p)$
$\omega_1(a_1)$	419.86	424.70	424.70
$\omega_{2a}(e)$	146.10	146.57	146.57
$\omega_{2\mathrm{b}}(e)$	145.60	146.56	146.56
$\omega_{3\mathrm{a}}(t_2)$	624.70	627.20	627.20
$\omega_{3\mathrm{b}}(t_2)$	622.53	627.17	627.17
$\omega_{3c}(t_2)$	622.53	627.16	627.16
$\omega_{4\mathrm{a}}(t_2)$	220.71	221.84	221.84
$\omega_{4\mathrm{b}}(t_2)$	220.71	221.63	221.63
$\omega_{4\mathrm{c}}(t_2)$	217.52	221.54	221.54

Table S188: Symmetrized, unnormalized natural internal coordinates for silicon tetrachloride.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4} + r_{1,5}$
- $2 \quad -r_{1,2} r_{1,3} + r_{1,4} + r_{1,5}$
- $3 \quad -r_{1,2} + r_{1,3} r_{1,4} + r_{1,5}$
- $4 \quad r_{1,2} r_{1,3} r_{1,4} + r_{1,5}$
- $5 \quad 2\phi_{2,1,3} + 2\phi_{4,1,5} \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5}$
- $6 \quad \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} + \phi_{3,1,5}$
- 7 $-\phi_{2,1,3} + \phi_{4,1,5}$
- 8 $-\phi_{2,1,4} + \phi_{3,1,5}$
- 9 $\phi_{2,1,5} \phi_{3,1,4}$

S4.48 silicon tetrafluoride

Table S189: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Si	0.00000000	0.00000000	-0.0000003
2	\mathbf{F}	0.00000000	-2.40960515	1.70384729
3	\mathbf{F}	0.00000000	2.40960515	1.70384729
4	\mathbf{F}	2.40960519	0.00000000	-1.70384727
5	\mathbf{F}	-2.40960519	0.00000000	-1.70384727

Table S190: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	798.06	813.90	798.06	798.06	817.53	798.06	798.06
$\omega_{2a}(e)$	263.27	263.80	263.25	263.25	263.91	263.25	263.25
$\omega_{2\mathrm{b}}(e)$	263.22	263.80	263.24	263.24	263.91	263.24	263.24
$\omega_{3\mathrm{a}}(t_2)$	1038.07	1062.82	1038.06	1038.06	1088.54	1038.05	1038.05
$\omega_{3\mathrm{b}}(t_2)$	1038.05	1062.73	1038.05	1038.05	1088.46	1038.05	1038.05
$\omega_{3\mathrm{c}}(t_2)$	1038.05	1062.73	1038.05	1038.05	1088.46	1038.05	1038.05
$\omega_{4\mathrm{a}}(t_2)$	387.78	389.58	387.79	387.79	389.85	387.80	387.80
$\omega_{4\mathrm{b}}(t_2)$	387.76	389.55	387.76	387.76	389.82	387.77	387.77
$\omega_{4\mathrm{c}}(t_2)$	387.72	389.55	387.75	387.75	389.82	387.76	387.76

Table S191: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2df,p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	799.97	798.06	798.06
$\omega_{2a}(e)$	266.79	263.27	263.27
$\omega_{2\mathrm{b}}(e)$	263.83	263.22	263.22
$\omega_{3a}(t_2)$	1055.74	1038.06	1038.06
$\omega_{3\mathrm{b}}(t_2)$	1055.73	1038.05	1038.05
$\omega_{3c}(t_2)$	1054.40	1038.05	1038.05
$\omega_{4\mathrm{a}}(t_2)$	387.53	387.79	387.79
$\omega_{4\mathrm{b}}(t_2)$	387.53	387.77	387.77
$\omega_{4\mathrm{c}}(t_2)$	385.46	387.75	387.75

Table S192: Symmetrized, unnormalized natural internal coordinates for silicon tetrafluoride.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4} + r_{1,5}$
- $2 \quad -r_{1,2} r_{1,3} + r_{1,4} + r_{1,5}$
- $3 \quad -r_{1,2} + r_{1,3} r_{1,4} + r_{1,5}$
- $4 \quad r_{1,2} r_{1,3} r_{1,4} + r_{1,5}$
- $5 \quad 2\phi_{2,1,3} + 2\phi_{4,1,5} \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5}$
- $6 \quad \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} + \phi_{3,1,5}$
- 7 $-\phi_{2,1,3} + \phi_{4,1,5}$
- $\begin{array}{ll} 8 & -\phi_{2,1,4} + \phi_{3,1,5} \\ 9 & \phi_{2,1,5} \phi_{3,1,4} \end{array}$

Table S193: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Si	0.00000209	2.21895084	0.00000000
2	Si	-0.00000209	-2.21895084	0.00000000
3	Η	-1.31404950	3.19278368	-2.27600840
4	Η	-1.31404950	3.19278368	2.27600840
5	Η	2.62810651	3.19279459	0.00000000
6	Η	-2.62810651	-3.19279459	0.00000000
7	Η	1.31404950	-3.19278368	2.27600840
8	Η	1.31404950	-3.19278368	-2.27600840

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc- $pVDZ$	cc-pVDZ
$\omega_1(a_{1g})$	2230.82	2264.41	2230.82	2230.82	2260.63	2230.82	2230.82
$\omega_2(a_{1\mathrm{g}})$	935.18	946.05	935.18	935.18	941.86	935.18	935.18
$\omega_3(a_{1\mathrm{g}})$	437.94	442.97	437.94	437.94	443.16	437.95	437.95
$\omega_{4\mathrm{a}}(e_{\mathrm{g}})$	2238.14	2274.92	2238.14	2238.14	2271.38	2238.14	2238.14
$\omega_{4\mathrm{b}}(e_{\mathrm{u}})$	2238.14	2274.92	2238.14	2238.14	2271.38	2238.14	2238.14
$\omega_{5\mathrm{a}}(e_{\mathrm{g}})$	2229.68	2266.19	2229.68	2229.68	2263.83	2229.68	2229.68
$\omega_{\rm 5b}(e_{ m u})$	2229.68	2266.19	2229.68	2229.68	2263.83	2229.68	2229.68
$\omega_{6\mathrm{a}}(e_{\mathrm{g}})$	966.39	981.33	966.39	966.39	970.53	966.39	966.39
$\omega_{6\mathrm{b}}(e_{\mathrm{u}})$	966.37	981.33	966.37	966.37	970.53	966.37	966.37
$\omega_{7\mathrm{a}}(e_{\mathrm{g}})$	952.28	967.07	952.27	952.27	956.00	952.28	952.28
$\omega_{7\mathrm{b}}(e_{\mathrm{u}})$	952.27	967.07	952.27	952.27	956.00	952.27	952.27
$\omega_{8\mathrm{a}}(e_{\mathrm{g}})$	636.90	643.05	636.91	636.91	641.48	636.91	636.91
$\omega_{8\mathrm{b}}(e_{\mathrm{u}})$	636.90	643.05	636.91	636.91	641.48	636.90	636.90
$\omega_{9\mathrm{a}}(e_\mathrm{g})$	371.94	372.82	371.94	371.94	374.81	371.95	371.94
$\omega_{ m 9b}(e_{ m u})$	371.94	372.83	371.94	371.94	374.81	371.94	371.94
$\omega_{10}(a_{1\mathrm{u}})$	137.39	139.62	137.39	137.39	137.70	137.39	137.39
$\omega_{11}(a_{2u})$	2221.82	2256.35	2221.82	2221.82	2251.82	2221.82	2221.82
$\omega_{12}(a_{2u})$	860.79	869.26	860.79	860.79	869.71	860.79	860.79

Table S194: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_{1g})$	2240.94	2230.82	2230.82
$\omega_2(a_{1g})$	927.59	935.17	935.17
$\omega_3(a_{1g})$	427.61	437.98	437.98
$\omega_{4\mathrm{a}}(e_{\mathrm{g}})$	2253.27	2238.13	2238.13
$\omega_{4\mathrm{b}}(e_{\mathrm{u}})$	2243.60	2229.68	2229.68
$\omega_{5\mathrm{a}}(e_{\mathrm{g}})$	959.00	966.39	966.39
$\omega_{\rm 5b}(e_{ m u})$	945.55	952.25	952.28
$\omega_{6a}(e_{\rm g})$	635.78	636.96	636.91
$\omega_{6\mathrm{b}}(e_{\mathrm{u}})$	375.07	371.97	371.96
$\omega_{7a}(e_{\rm g})$	130.33	137.39	137.39
$\omega_{7\mathrm{b}}(e_{\mathrm{u}})$	2232.94	2221.82	2221.82
$\omega_{8a}(e_{\rm g})$	854.58	860.79	860.79
$\omega_{8\mathrm{b}}(e_{\mathrm{u}})$	2253.22	2238.14	2238.14
$\omega_{9\mathrm{a}}(e_{\mathrm{g}})$	2243.33	2229.68	2229.68
$\omega_{9\mathrm{b}}(e_{\mathrm{u}})$	958.91	966.37	966.37
$\omega_{10}(a_{1\mathrm{u}})$	945.29	952.25	952.27
$\omega_{11}(a_{2u})$	635.80	636.95	636.91
$\omega_{12}(a_{2u})$	375.08	371.96	371.96

Table S195: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S196: Symmetrized, unnormalized natural internal coordinates for disilane.

- $1 r_{1,2}$
- $2 \qquad r_{1,3} + r_{1,4} + r_{1,5} + r_{2,7} + r_{2,6} + r_{2,8}$
- $3 \qquad r_{1,3} + r_{1,4} + r_{1,5} r_{2,7} r_{2,6} r_{2,8}$
- $4 \qquad 2r_{1,3} r_{1,4} r_{1,5} + 2r_{2,7} r_{2,6} r_{2,8}$
- 5 $2r_{1,3} r_{1,4} r_{1,5} 2r_{2,7} + r_{2,6} + r_{2,8}$
- $6 \qquad r_{1,4} r_{1,5} + r_{2,6} r_{2,8}$
- $7 \qquad r_{1,4} r_{1,5} r_{2,6} + r_{2,8}$
- 8 $\phi_{4,1,5} + \phi_{3,1,4} + \phi_{3,1,5} \phi_{3,1,2} \phi_{4,1,2} \phi_{5,1,2} + \phi_{6,2,8} + \phi_{7,2,6} + \phi_{7,2,8} \phi_{7,2,1} \phi_{6,2,1} \phi_{8,2,1}$
- 9 $\phi_{4,1,5} + \phi_{3,1,4} + \phi_{3,1,5} \phi_{3,1,2} \phi_{4,1,2} \phi_{5,1,2} \phi_{6,2,8} \phi_{7,2,6} \phi_{7,2,8} + \phi_{7,2,1} + \phi_{6,2,1} + \phi_{8,2,1}$
- 10 $2\phi_{4,1,5} \phi_{3,1,4} \phi_{3,1,5} + 2\phi_{6,2,8} \phi_{7,2,6} \phi_{7,2,8}$
- 11 $2\phi_{4,1,5} \phi_{3,1,4} \phi_{3,1,5} 2\phi_{6,2,8} + \phi_{7,2,6} + \phi_{7,2,8}$
- 12 $\phi_{3,1,4} \phi_{3,1,5} + \phi_{7,2,6} \phi_{7,2,8}$
- 13 $\phi_{3,1,4} \phi_{3,1,5} \phi_{7,2,6} + \phi_{7,2,8}$
- 14 $2\phi_{3,1,2} \phi_{4,1,2} \phi_{5,1,2} + 2\phi_{7,2,1} \phi_{6,2,1} \phi_{8,2,1}$
- 15 $2\phi_{3,1,2} \phi_{4,1,2} \phi_{5,1,2} 2\phi_{7,2,1} + \phi_{6,2,1} + \phi_{8,2,1}$
- 16 $\phi_{4,1,2} \phi_{5,1,2} + \phi_{6,2,1} \phi_{8,2,1}$
- 17 $\phi_{4,1,2} \phi_{5,1,2} \phi_{6,2,1} + \phi_{8,2,1}$
- 18 $\tau_{3,1,2,7} + \tau_{7,2,1,3} + \tau_{4,1,2,8} + \tau_{8,2,1,4} + \tau_{5,1,2,6} + \tau_{6,2,1,5}$

Table S197: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Si	1.14265735	-0.00000106	0.00000000
2	С	-2.40853504	0.00000395	0.00000000
3	Η	2.12904008	-1.31148904	-2.27156471
4	Η	2.12905165	2.62297024	0.00000000
5	Η	2.12904008	-1.31148904	2.27156471
6	Η	-3.14298917	0.96423858	-1.67011742
7	Η	-3.14298917	0.96423858	1.67011742
8	Η	-3.14297141	-1.92848698	0.00000000

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3038.03	3051.73	3038.02	3038.02	3173.56	3038.02	3038.02
$\omega_2(a_1)$	2235.39	2268.92	2235.39	2235.39	2264.26	2235.38	2235.38
$\omega_3(a_1)$	1294.07	1287.64	1294.06	1294.06	1309.30	1294.06	1294.06
$\omega_4(a_1)$	957.95	968.61	957.94	957.94	965.71	957.95	957.95
$\omega_5(a_1)$	705.49	711.99	705.53	705.53	710.98	705.58	705.58
$\omega_6(a_2)$	204.58	206.67	204.58	204.58	211.55	204.58	204.58
$\omega_{7a}(e)$	3122.34	3147.18	3122.34	3122.34	3274.29	3122.30	3122.30
$\omega_{7\mathrm{b}}(e)$	3122.33	3147.07	3122.34	3122.34	3274.18	3122.30	3122.30
$\omega_{8a}(e)$	2233.66	2269.68	2233.65	2233.65	2267.22	2233.66	2233.66
$\omega_{8\mathrm{b}}(e)$	2233.65	2269.63	2233.65	2233.65	2267.18	2233.66	2233.66
$\omega_{9\mathrm{a}}(e)$	1469.44	1470.86	1469.43	1469.43	1481.15	1469.46	1469.46
$\omega_{ m 9b}(e)$	1469.42	1470.84	1469.41	1469.41	1481.13	1469.44	1469.44
$\omega_{10a}(e)$	973.70	987.95	973.69	973.69	977.06	973.68	973.68
$\omega_{10\mathrm{b}}(e)$	973.68	987.93	973.68	973.68	977.04	973.67	973.67
$\omega_{11a}(e)$	887.60	889.84	887.61	887.61	900.18	887.66	887.66
$\omega_{11\mathrm{b}}(e)$	887.60	889.84	887.61	887.61	900.17	887.66	887.66
$\omega_{12a}(e)$	517.82	520.26	517.85	517.85	520.03	517.93	517.93
$\omega_{12b}(e)$	517.82	520.25	517.84	517.84	520.01	517.92	517.92

Table S198: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2df,p)$
$\omega_1(a_1)$	3058.56	3038.00	3038.00
$\omega_2(a_1)$	2243.71	2235.39	2235.39
$\omega_3(a_1)$	1299.14	1294.01	1294.13
$\omega_4(a_1)$	953.61	957.95	957.95
$\omega_5(a_1)$	698.78	705.73	705.51
$\omega_6(a_2)$	3138.41	3122.32	3122.32
$\omega_{7a}(e)$	199.25	204.58	204.58
$\omega_{7b}(e)$	3138.01	3122.32	3122.32
$\omega_{8a}(e)$	2246.47	2233.66	2233.66
$\omega_{8b}(e)$	2246.07	2233.65	2233.65
$\omega_{9a}(e)$	1471.57	1469.42	1469.42
$\omega_{9\mathrm{b}}(e)$	1471.21	1469.40	1469.40
$\omega_{10a}(e)$	964.66	973.56	973.56
$\omega_{10b}(e)$	964.38	973.55	973.55
$\omega_{11a}(e)$	893.39	887.68	887.78
$\omega_{11\mathrm{b}}(e)$	893.35	887.67	887.78
$\omega_{12a}(e)$	524.28	518.10	517.93
$\omega_{12b}(e)$	524.23	518.10	517.92

Table S199: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S200: Symmetrized, unnormalized natural internal coordinates for methyl silane.

- 1 $r_{1,2}$ $\mathbf{2}$ $r_{1,4} + r_{1,3} + r_{1,5}$ 3 $2r_{1,4} - r_{1,3} - r_{1,5}$ 4 $r_{1,3} - r_{1,5}$ 5 $r_{2,8} + r_{2,6} + r_{2,7}$ 6 $2r_{2,8} - r_{2,6} - r_{2,7}$ $\overline{7}$ $r_{2,6} - r_{2,7}$ 8 $\phi_{4,1,2} + \phi_{3,1,2} + \phi_{5,1,2} - \phi_{3,1,5} - \phi_{4,1,3} - \phi_{4,1,5}$ 9 $2\phi_{4,1,2} - \phi_{3,1,2} - \phi_{5,1,2}$ 10 $\phi_{3,1,2} - \phi_{5,1,2}$ 11 $2\phi_{3,1,5} - \phi_{4,1,3} - \phi_{4,1,5}$ 12 $\phi_{4,1,3} - \phi_{4,1,5}$ 13 $\phi_{8,2,1} + \phi_{6,2,1} + \phi_{7,2,1} - \phi_{6,2,7} - \phi_{8,2,6} - \phi_{8,2,7}$ 14 $2\phi_{8,2,1} - \phi_{6,2,1} - \phi_{7,2,1}$ 15 $\phi_{6,2,1} - \phi_{7,2,1}$ 16 $2\phi_{6,2,7} - \phi_{8,2,6} - \phi_{8,2,7}$
- 17 $\phi_{8,2,6} \phi_{8,2,7}$
- 18 $\tau_{8,2,1,4} + \tau_{6,2,1,5} + \tau_{7,2,1,3}$

S4.51 phosphane

Table S201: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Р	0.12868063	0.0000031	0.00000000
2	Η	-1.31825839	1.12497772	-1.94852696
3	Η	-1.31826007	-2.24996482	0.00000000
4	Η	-1.31825839	1.12497772	1.94852696

Table S202: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc-pVTZ	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc- $pVDZ$
$\omega_1(a_1)$	2415.52	2453.48	2415.52	2415.52	2480.05	2415.51	2415.51
$\omega_2(a_1)$	1021.69	1018.46	1021.69	1021.69	1048.83	1021.70	1021.70
$\omega_{3\mathrm{a}}(e)$	2422.82	2465.50	2422.82	2422.82	2491.33	2422.82	2422.82
$\omega_{3\mathrm{b}}(e)$	2422.82	2465.44	2422.82	2422.82	2491.27	2422.82	2422.82
$\omega_{4a}(e)$	1145.25	1164.78	1145.25	1145.25	1162.13	1145.25	1145.25
$\omega_{4\mathrm{b}}(e)$	1145.25	1163.77	1145.25	1145.25	1161.09	1145.25	1145.25

Table S203: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	2432.09	2415.52	2415.52
$\omega_2(a_1)$	1027.63	1021.69	1021.69
$\omega_{3a}(e)$	2444.02	2422.82	2422.82
$\omega_{3b}(e)$	2443.84	2422.82	2422.82
$\omega_{4a}(e)$	1142.91	1145.25	1145.25
$\omega_{4\mathrm{b}}(e)$	1141.89	1145.25	1145.25

Table S204: Symmetrized, unnormalized natural internal coordinates for phosphane.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4}$
- 2 $2r_{1,2} r_{1,3} r_{1,4}$
- 3 $r_{1,3} r_{1,4}$
- $4 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 5 $\phi_{2,1,4} \phi_{3,1,4}$
- $6 \quad \gamma_{2,1,3,4} + \gamma_{3,1,4,2} + \gamma_{4,1,2,3}$

S4.52 phosphorus trifluoride

Table S205: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Р	-0.0000092	0.94258107	0.00000000
2	\mathbf{F}	-1.28867646	-0.51224165	2.23205457
3	F	-1.28867646	-0.51224165	-2.23205457
4	\mathbf{F}	2.57735441	-0.51223963	0.00000000

Table S206: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc-pVTZ	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	915.76	929.73	915.74	915.74	962.94	915.60	915.60
$\omega_2(a_1)$	501.47	492.25	501.51	501.51	499.37	501.76	501.76
$\omega_{3\mathrm{a}}(e)$	897.81	907.21	897.81	897.81	960.93	897.79	897.79
$\omega_{3\mathrm{b}}(e)$	897.80	907.17	897.80	897.80	960.89	897.77	897.77
$\omega_{4a}(e)$	359.14	348.44	359.13	359.13	352.90	359.20	359.20
$\omega_{4\mathrm{b}}(e)$	359.12	348.30	359.13	359.13	352.77	359.20	359.20

Table S207: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	915.63	915.75	915.75
$\omega_2(a_1)$	485.94	501.49	501.49
$\omega_{3a}(e)$	904.38	897.81	897.81
$\omega_{3b}(e)$	903.97	897.80	897.80
$\omega_{4a}(e)$	346.01	359.13	359.13
$\omega_{4\mathrm{b}}(e)$	345.84	359.13	359.13

Table S208: Symmetrized, unnormalized natural internal coordinates for phosphorus trifluoride.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4}$
- 2 $2r_{1,2} r_{1,3} r_{1,4}$
- 3 $r_{1,3} r_{1,4}$
- $4 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 5 $\phi_{2,1,4} \phi_{3,1,4}$
- $6 \qquad \gamma_{2,1,3,4} + \gamma_{3,1,4,2} + \gamma_{4,1,2,3}$

S4.53 hypochlorous acid

Table S209: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Η	-2.59688895	1.66013000	0.00000000
2	Ο	-2.15400490	-0.10905861	0.00000000
3	Cl	1.06009581	0.00203789	0.00000000

Table S210: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/	Pure MP2/	CMA-0A MP2/	CMA-2A MP2/	Pure CCSD(T)/	CMA-0A CCSD(T)/	CMA-2A CCSD(T)/
	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a^{'})$	3809.62	3822.33	3809.60	3809.60	3880.50	3809.53	3809.53
$\omega_{2}(a^{'})$	1281.33	1274.49	1281.35	1281.35	1274.06	1281.46	1281.46
$\omega_{3}(a^{'})$	732.53	758.45	732.58	732.58	746.45	732.76	732.76

Table S211: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_{1}(a^{'})$	3812.98	3809.59	3809.59
$\omega_{2}(a^{'})$	1287.50	1281.39	1281.39
$\omega_{3}(a^{'})$	749.15	732.54	732.54

Table S212: Symmetrized, unnormalized natural internal coordinates for hypochlorous acid.

- $\begin{array}{ccc}
 1 & r_{1,2} \\
 2 & r_{2,3}
 \end{array}$
- 3 $\phi_{1,2,3}$

Table S213: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Ο	-2.97939346	0.63940304	0.00000000
2	Ν	-1.57525854	-0.99888693	0.00000000
3	Cl	1.99359145	0.10753257	0.00000000

Table S214: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc-pVTZ	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc- $pVDZ$
$\omega_{1}(a^{'})$	1828.88	1828.37	1828.84	1828.88	1914.93	1828.80	1828.88
$\omega_{2}(a^{'})$	609.86	618.02	609.86	609.86	625.61	609.88	609.86
$\omega_{3}(a^{'})$	342.84	350.17	343.05	342.84	353.67	343.25	342.84

Table S215: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

А
/
$^{f,p)}$
8
;
Ł
1.2 12 12 12
Table S216: Symmetrized, unnormalized natural internal coordinates for nitrosyl chloride.

- 3 $\phi_{1,2,3}$

Table S217: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Ο	0.00000000	-2.05457709	0.42011174
2	Ο	0.00000000	0.00000000	-0.84022349
3	Ο	0.00000000	2.05457709	0.42011174

Table S218: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	CCSD(T)/	MP2/	MP2/	MP2/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	1153.11	1150.21	1153.11	1153.11	1137.09	1153.09	1153.09
$\omega_2(a_1)$	715.68	712.93	715.69	715.69	712.60	715.72	715.72
$\omega_2(a_1)$ $\omega_3(b_2)$	1054.32	517.33	1054.32	1054.32	503.40	1054.32	1054.32

Table S219: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	1196.62	1153.06	1153.06
$\omega_2(a_1)$	721.26	715.76	715.76
$\omega_3(b_2)$	1124.68	1054.32	1054.32

Table S220: Symmetrized, unnormalized natural internal coordinates for ozone.

 $\begin{array}{rrr} 1 & r_{1,2}+r_{2,3} \\ 2 & r_{1,2}-r_{2,3} \\ 3 & \phi_{1,2,3} \end{array}$

Table S221: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Ο	0.00000000	0.00000000	1.16502871
2	F	0.00000000	-2.08708826	-0.49042371
3	\mathbf{F}	0.00000000	2.08708826	-0.49042371

Table S222: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/	Pure MP2/	CMA-0A MP2/	CMA-2A MP2/	Pure CCSD(T)/	CMA-0A CCSD(T)/	CMA-2A CCSD(T)/
	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	950.11	959.11	950.08	950.11	932.97	950.10	950.10
$\omega_2(a_1)$	469.29	474.29	469.34	469.29	468.82	469.29	469.29
$\omega_3(b_2)$	867.42	888.05	867.42	867.42	844.25	867.42	867.42

Table S223: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	995.79	950.02	950.11
$\omega_2(a_1)$	473.56	469.46	469.29
$\omega_3(b_2)$	864.01	867.42	867.42

Table S224: Symmetrized, unnormalized natural internal coordinates for oxygen diffuoride.

 $\begin{array}{rrr} 1 & r_{1,2}+r_{1,3} \\ 2 & r_{1,2}-r_{1,3} \\ 3 & \phi_{2,1,3} \end{array}$

S187

Table S225: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Ο	0.00000000	0.00000000	0.12550454
2	Η	0.00000000	-1.42462540	-0.99592409
3	Н	0.00000000	1.42462540	-0.99592409

Table S226: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/	Pure MP2/	CMA-0A MP2/	CMA-2A MP2/	Pure CCSD(T)/	CMA-0A CCSD(T)/	CMA-2A CCSD(T)/
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVDZ$	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3840.92	3850.51	3840.92	3840.92	3907.61	3840.90	3840.90
$\omega_2(a_1)$	1668.87	1650.39	1668.88	1668.88	1684.91	1668.92	1668.92
$\omega_3(b_2)$	3945.53	3971.34	3945.53	3945.53	4027.33	3945.53	3945.53

Table S227: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)	CMA-0A B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)	CMA-2A B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)
$\omega_1(a_1)$	3846.06	3840.92	3840.92
$\omega_2(a_1)$	1662.84	1668.88	1668.88
$\omega_3(b_2)$	3951.91	3945.53	3945.53

Table S228: Symmetrized, unnormalized natural internal coordinates for water.

 $\begin{array}{rrrr}
1 & r_{1,2} + r_{1,3} \\
2 & r_{1,2} - r_{1,3} \\
3 & \phi_{2,1,3}
\end{array}$

S4.58 trifluoroamine

Table S229: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Ν	0.92019321	0.00000000	-0.00000000
2	\mathbf{F}	-0.22608099	1.16249337	-2.01349759
3	F	-0.22608099	-2.32498675	0.00000000
4	\mathbf{F}	-0.22608099	1.16249337	2.01349759

Table S230: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$	$\operatorname{CCSD}(T)/$
	cc-pVTZ	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	1058.35	1059.49	1058.35	1058.35	1053.15	1058.26	1058.26
$\omega_2(a_1)$	659.91	666.00	659.91	659.91	659.84	660.05	660.05
$\omega_{3\mathrm{a}}(e)$	949.20	933.38	949.17	949.19	944.43	949.16	949.16
$\omega_{3\mathrm{b}}(e)$	949.20	933.31	949.17	949.19	944.36	949.16	949.16
$\omega_{4a}(e)$	502.48	503.66	502.53	502.49	504.94	502.54	502.54
$\omega_{4\mathrm{b}}(e)$	502.48	503.58	502.53	502.49	504.86	502.54	502.54

Table S231: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	1068.00	1058.29	1058.29
$\omega_2(a_1)$	659.75	660.00	660.00
$\omega_{3a}(e)$	934.15	949.16	949.19
$\omega_{3\mathrm{b}}(e)$	933.33	949.14	949.19
$\omega_{4a}(e)$	497.64	502.59	502.50
$\omega_{4\mathrm{b}}(e)$	496.57	502.56	502.49

Table S232: Symmetrized, unnormalized natural internal coordinates for trifluoroamine.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4}$
- 2 $2r_{1,2} r_{1,3} r_{1,4}$
- 3 $r_{1,3} r_{1,4}$
- $4 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 5 $\phi_{2,1,4} \phi_{3,1,4}$
- $6 \quad \gamma_{2,1,3,4} + \gamma_{3,1,4,2} + \gamma_{4,1,2,3}$

S4.59 chlorine trifluoride

Table S233: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Cl	0.00000000	0.00000000	0.69252140
2	\mathbf{F}	0.00000000	0.00000000	-2.33980384
3	F	0.00000000	3.20469409	0.53256734
4	F	0.00000000	-3.20469409	0.53256734

Table S234: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	765.58	786.73	765.43	765.46	809.77	765.12	765.12
$\omega_2(a_1)$	543.99	556.90	544.15	544.15	573.59	544.47	544.47
$\omega_3(a_1)$	338.43	336.01	338.51	338.45	346.02	338.69	338.69
$\omega_4(b_1)$	336.96	338.12	336.96	336.96	341.24	336.96	336.96
$\omega_5(b_2)$	735.59	770.63	735.59	735.59	806.50	735.54	735.54
$\omega_6(b_2)$	441.96	444.84	441.96	441.96	444.12	442.05	442.05

Table S235: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	789.56	765.57	765.57
$\omega_2(a_1)$	551.29	543.98	543.99
$\omega_3(a_1)$	330.68	338.46	338.44
$\omega_4(b_1)$	329.76	336.96	336.96
$\omega_5(b_2)$	756.84	735.59	735.59
$\omega_6(b_2)$	437.61	441.96	441.96

Table S236: Symmetrized, unnormalized natural internal coordinates for chlorine trifluoride.

- $\begin{array}{rrr} 1 & r_{1,2} \\ 2 & r_{1,3}+r_{1,4} \\ 3 & r_{1,3}-r_{1,4} \\ 4 & \phi_{3,1,2}+\phi_{4,1,2} \end{array}$
- 5 $\phi_{3,1,2} \phi_{4,1,2}$
- $6 \gamma_{2,1,3,4}$

S4.60 hydrogen peroxide

Table S237: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Η	-1.79701451	1.36358961	0.92174870
2	0	-1.37290862	-0.11245968	-0.05807855
3	Ο	1.37290862	0.11245968	-0.05807855
4	Η	1.79701451	-1.36358961	0.92174870

Table S238: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc- $pVDZ$
$\omega_1(a)$	3809.29	3826.73	3809.25	3809.28	3879.42	3809.27	3809.27
$\omega_2(a)$	1435.98	1426.62	1435.66	1436.00	1447.14	1435.88	1436.02
$\omega_3(a)$	911.79	924.21	912.43	911.79	891.84	911.86	911.80
$\omega_4(a)$	372.17	370.94	372.26	372.18	367.80	372.56	372.17
$\omega_5(b)$	3807.91	3825.46	3807.91	3807.91	3876.94	3807.87	3807.87
$\omega_6(b)$	1323.64	1319.01	1323.64	1323.64	1324.98	1323.74	1323.74

Table S239: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)	CMA-0A B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)	CMA-2A B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)
$\omega_1(a)$	3811.77	3809.26	3809.27
$\omega_2(a)$	1447.63	1435.97	1436.00
$\omega_3(a)$	931.55	911.89	911.85
$\omega_4(a)$	382.09	372.19	372.17
$\omega_5(b)$	3811.23	3807.90	3807.90
$\omega_6(b)$	1333.31	1323.65	1323.65

Table S240: Symmetrized, unnormalized natural internal coordinates for hydrogen peroxide.

- $\begin{array}{rrr} 1 & r_{2,3} \\ 2 & r_{1,2}+r_{3,4} \\ 3 & r_{1,2}-r_{3,4} \\ 4 & \phi_{1,2,3}+\phi_{2,3,4} \end{array}$
- 5 $\phi_{1,2,3} \phi_{2,3,4}$
- 6 $au_{1,2,3,4}$

S4.61 carbonyl fluoride

Table S241: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-0.30295787	-0.00000001	0.00000000
2	\mathbf{F}	1.15873701	-2.00577068	0.00000000
3	F	1.15873683	2.00577078	0.00000000
4	Ο	-2.52535314	-0.00000011	-0.00000000

Table S242: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	1978.03	1979.81	1978.03	1978.03	2043.85	1978.03	1978.03
$\omega_2(a_1)$	983.53	982.88	983.52	983.52	999.40	983.54	983.53
$\omega_3(a_1)$	588.74	590.43	588.74	588.74	594.82	588.74	588.74
$\omega_4(b_1)$	1293.99	1281.37	1293.99	1293.99	1341.32	1293.99	1293.99
$\omega_5(b_1)$	626.11	626.93	626.11	626.11	633.00	626.11	626.11
$\omega_6(b_2)$	786.02	791.18	786.02	786.02	793.61	786.02	786.02

Table S243: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	1992.05	1978.02	1978.02
$\omega_2(a_1)$	992.27	983.54	983.54
$\omega_3(a_1)$	584.92	588.74	588.74
$\omega_4(b_1)$	1290.74	1293.99	1293.99
$\omega_5(b_1)$	620.20	626.11	626.11
$\omega_6(b_2)$	789.97	786.02	786.02

Table S244: Symmetrized, unnormalized natural internal coordinates for carbonyl fluoride.

- $1 \quad r_{1,2} + r_{1,3}$
- 2 $r_{1,2} r_{1,3}$
- $3 r_{1,4}$
- $4 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 5 $\phi_{2,1,4} \phi_{3,1,4}$
- 6 $\gamma_{4,1,2,3}$

Table S245: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Si	0.00000000	0.00000000	0.13352287
2	Η	0.00000000	-2.07118886	-1.85327784
3	Н	0.00000000	2.07118886	-1.85327784

Table S246: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/	Pure MP2/	CMA-0A MP2/	CMA-2A MP2/	Pure CCSD(T)/	CMA-0A CCSD(T)/	CMA-2A CCSD(T)/
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	2063.17	2101.76	2063.17	2063.17	2100.30	2063.17	2063.17
$\omega_2(a_1)$	1025.33	1044.38	1025.33	1025.33	1043.32	1025.33	1025.33
$\omega_3(b_2)$	2060.52	2100.71	2060.52	2060.52	2097.94	2060.52	2060.52

Table S247: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	6-31G(2df,p)	6-31G(2df,p)	6-31G(2df,p)
$\omega_1(a_1)$	2076.64	2063.13	2063.13
$\omega_2(a_1)$	1027.10	1025.39	1025.39
$\omega_3(b_2)$	2083.14	2060.52	2060.52

Table S248: Symmetrized, unnormalized natural internal coordinates for singlet silylene.

 $\begin{array}{rrr} 1 & r_{1,2}+r_{1,3} \\ 2 & r_{1,2}-r_{1,3} \\ 3 & \phi_{2,1,3} \end{array}$

Table S249: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Ν	-0.00000000	-0.00000000	-2.27661556
2	Х	1.00000000	-0.00000000	-0.13588985
3	Ν	-0.00000000	-0.00000000	-0.13588985
4	Х	-0.00000000	1.00000000	-0.13588985
5	Ο	0.00000000	0.00000000	2.11207702

Table S250: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(\sigma^+)$	2282.57	2307.73	2277.23	2282.57	2398.87	2282.51	2282.57
$\omega_{2\mathrm{a}}(\pi)$	601.18	607.31	601.18	601.18	601.03	601.18	601.18
$\omega_{2\mathrm{b}}(\pi)$	601.18	607.30	601.18	601.18	601.02	601.18	601.18
$\omega_3(\sigma^+)$	1297.09	1322.29	1306.43	1297.09	1349.83	1297.19	1297.09

Table S251: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6-31\mathrm{G}(2df,p)$
$\omega_1(\sigma^+)$	2316.98	2282.42	2282.57
$\omega_{2a}(\pi)$	617.71	601.18	601.18
$\omega_{2\mathrm{b}}(\pi)$	617.71	601.18	601.18
$\omega_3(\sigma^+)$	1316.53	1297.36	1297.09

Table S252: Symmetrized, unnormalized natural internal coordinates for nitrous oxide.

- $\begin{array}{ll} 1 & r_{1,3} \\ 2 & r_{3,5} \\ 3 & \theta_{1,3,5,2} \end{array}$
- 4 $\theta_{1,3,5,4}$

Table S253: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Ν	-0.17939083	-1.39259049	0.00000000
2	Ν	0.17939083	1.39259049	0.00000000
3	Η	0.87854704	-1.97545387	-1.49671921
4	Η	0.87854704	-1.97545387	1.49671921
5	Η	-0.87854704	1.97545387	-1.49671921
6	Η	-0.87854704	1.97545387	1.49671921

Table S254: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	CCSD(T)/	MP2/	MP2/	MP2/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pv1Z	cc-pv1Z	cc-pv1Z	cc-pv1Z	cc-pVDZ	cc-pVDZ	cc-pvDZ
$\omega_1(a_{\rm g})$	3437.77	3454.45	3437.77	3437.77	3542.36	3437.64	3437.64
$\omega_2(a_{\rm g})$	1690.46	1684.69	1690.44	1690.44	1714.86	1690.44	1690.44
$\omega_3(a_{ m g})$	1256.79	1243.43	1256.36	1256.80	1275.27	1256.91	1257.04
$\omega_4(a_{ m g})$	943.78	942.12	944.42	943.82	956.33	944.14	943.97
$\omega_5(b_{ m g})$	3512.91	3541.31	3512.91	3512.91	3630.15	3512.91	3512.91
$\omega_6(b_{ m g})$	1487.98	1479.54	1487.98	1487.98	1484.81	1487.98	1487.98
$\omega_7(a_{ m u})$	3533.97	3561.31	3533.97	3533.97	3649.00	3533.96	3533.96
$\omega_8(a_{ m u})$	1108.51	1106.06	1108.50	1108.51	1100.74	1108.53	1108.53
$\omega_9(a_{ m u})$	25.68	37.10	26.29	25.68	159.73	25.92	25.92
$\omega_{10}(b_{ m u})$	3455.35	3472.41	3455.35	3455.35	3556.61	3455.25	3455.25
$\omega_{11}(b_{ m u})$	1638.68	1630.83	1638.66	1638.68	1661.86	1638.74	1638.76
$\omega_{12}(b_{\mathrm{u}})$	1068.37	1059.20	1068.40	1068.37	1086.82	1068.61	1068.58

Table S255: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_{\rm g})$	3455.22	3437.75	3437.75
$\omega_2(a_{\rm g})$	1692.86	1690.41	1690.41
$\omega_3(a_{\rm g})$	1257.61	1256.86	1256.87
$\omega_4(a_{\rm g})$	950.45	943.87	943.86
$\omega_5(b_{ m g})$	3525.66	3512.88	3512.88
$\omega_6(b_{ m g})$	1501.96	1488.03	1488.03
$\omega_7(a_{\rm u})$	3546.71	3533.96	3533.96
$\omega_8(a_{\rm u})$	1126.46	1108.46	1108.53
$\omega_9(a_{ m u})$	95.04	29.03	25.69
$\omega_{10}(b_{ m u})$	3473.45	3455.35	3455.35
$\omega_{11}(b_{\mathrm{u}})$	1635.11	1638.64	1638.68
$\omega_{12}(b_{\mathrm{u}})$	1073.18	1068.44	1068.37

Table S256: Symmetrized, unnormalized natural internal coordinates for hydrazine.

- $\begin{array}{ll} 1 & r_{1,2} \\ 2 & r_{1,3} + r_{1,4} + r_{2,5} + r_{2,6} \end{array}$
- $\begin{array}{rrr} 3 & r_{1,3} + r_{1,4} r_{2,5} r_{2,6} \\ 4 & r_{1,3} r_{1,4} + r_{2,5} r_{2,6} \end{array}$
- $5 \qquad r_{1,3} r_{1,4} r_{2,5} + r_{2,6}$
- $6 \qquad 2\phi_{3,1,4} \phi_{3,1,2} \phi_{4,1,2} + 2\phi_{5,2,6} \phi_{5,2,1} \phi_{6,2,1}$
- 7 $2\phi_{3,1,4} \phi_{3,1,2} \phi_{4,1,2} 2\phi_{5,2,6} + \phi_{5,2,1} + \phi_{6,2,1}$
- 8 $\phi_{3,1,2} \phi_{4,1,2} + \phi_{5,2,1} \phi_{6,2,1}$
- 9 $\phi_{3,1,2} \phi_{4,1,2} \phi_{5,2,1} + \phi_{6,2,1}$
- $10 \quad \tau_{3,1,2,5} + \tau_{3,1,2,6} + \tau_{4,1,2,5} + \tau_{4,1,2,6}$
- $11 \quad \gamma_{1,2,5,6} + \gamma_{2,1,3,4}$
- $12 \quad \gamma_{1,2,5,6} \gamma_{2,1,3,4}$

Table S257: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Х	1.00000000	0.00000000	1.31251829
2	С	-0.00000000	0.00000000	1.31251829
3	Х	-0.00000000	1.00000000	1.31251829
4	Х	1.00000000	0.00000000	-1.31251829
5	\mathbf{C}	0.00000000	0.00000000	-1.31251829
6	Х	0.00000000	1.00000000	-1.31251829
7	Ν	0.00000000	0.00000000	3.51379022
8	Ν	-0.00000000	0.00000000	-3.51379022

Table S258: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/ cc-pVTZ	Pure MP2/ cc-pVTZ	CMA-0A MP2/ cc-pVTZ	CMA-2A MP2/ cc-pVTZ	Pure CCSD(T)/ cc-pVDZ	CMA-0A CCSD(T)/ cc-pVDZ	CMA-2A CCSD(T)/ cc-pVDZ
$\omega_1(\sigma_{\rm g}^+)$	2367.74	2309.29	2367.72	2367.72	2477.71	2367.74	2367.74
$\omega_2(\sigma_{\rm g}^+)$	855.82	848.47	855.89	855.89	897.23	855.83	855.83
$\omega_{3\mathrm{a}}(\pi_{\mathrm{u}})$	236.26	240.70	236.26	236.26	241.41	236.26	236.26
$\omega_{3\mathrm{b}}(\pi_{\mathrm{u}})$	236.26	240.69	236.26	236.26	241.41	236.26	236.26
$\omega_4(\sigma_{ m u}^+)$	2175.85	2131.38	2175.85	2175.85	2269.57	2175.85	2175.85
$\omega_{5\mathrm{a}}(\pi_{\mathrm{g}})$	498.61	510.83	498.61	498.61	518.28	498.61	498.61
$\omega_{\rm 5b}(\pi_{\rm g})$	498.61	510.82	498.61	498.61	518.27	498.61	498.61

Table S259: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(\sigma_{\rm g}^+)$	2375.39	2367.56	2367.74
$\omega_2(\sigma_{\rm g}^+)$	856.77	856.32	855.82
$\omega_{3\mathrm{a}}(\pi_{\mathrm{u}})$	247.05	236.26	236.26
$\omega_{3\mathrm{b}}(\pi_{\mathrm{u}})$	2218.85	2175.85	2175.85
$\omega_4(\sigma_{ m u}^+)$	247.04	236.26	236.26
$\omega_{5\mathrm{a}}(\pi_{\mathrm{g}})$	544.15	498.61	498.61
$\omega_{5\mathrm{b}}(\pi_{\mathrm{g}})$	544.12	498.61	498.61

Table S260: Symmetrized, unnormalized natural internal coordinates for cyanogen.

- $\begin{array}{rrrr} 1 & r_{2,5} \\ 2 & r_{2,7} + r_{5,8} \\ 3 & r_{2,7} r_{5,8} \\ 4 & \theta_{7,2,5,1} + \theta_{8,5,2,4} \\ 5 & \theta_{7,2,5,1} \theta_{8,5,2,4} \\ 6 & \theta_{7,2,5,3} + \theta_{8,5,2,6} \\ 7 & 0 \\ \end{array}$
- 7 $\theta_{7,2,5,3} \theta_{8,5,2,6}$

Table S261: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Ν	1.59582703	0.17617984	0.00000000
2	С	-0.81575373	-0.02639125	1.40146541
3	С	-0.81575373	-0.02639125	-1.40146541
4	Η	-1.14815063	-1.78855443	2.38563323
5	Η	-1.43745953	1.65562797	2.38563323
6	Η	-1.43745953	1.65562797	-2.38563323
7	Η	-1.14815063	-1.78855443	-2.38563323
8	Η	2.42432052	-1.55357917	0.00000000

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a^{'})$	3515.02	3536.09	3515.01	3515.01	3625.84	3514.99	3514.99
$\omega_{2}(a^{'})$	3228.03	3250.96	3227.98	3227.98	3376.83	3227.98	3227.98
$\omega_{3}(a^{'})$	3137.27	3152.69	3137.24	3137.24	3274.70	3137.24	3137.24
$\omega_{4}(a^{'})$	1532.65	1530.55	1532.55	1532.55	1557.18	1531.84	1531.84
$\omega_{5}(a^{'})$	1307.58	1302.11	1306.88	1307.48	1321.75	1307.21	1307.52
$\omega_{6}(a^{'})$	1245.94	1244.31	1246.55	1246.00	1282.83	1246.89	1246.68
$\omega_7(a^{'})$	1120.20	1108.14	1119.96	1120.36	1139.43	1119.38	1119.70
$\omega_{8}(a^{'})$	1022.46	1025.72	1022.57	1022.67	1036.80	1023.01	1022.75
$\omega_{9}(a^{'})$	874.83	876.97	874.09	873.93	905.40	875.94	875.75
$\omega_{10}(a^{'})$	782.13	773.27	783.90	783.24	785.15	782.52	782.39
$\omega_{11}(a^{''})$	3214.74	3238.40	3214.69	3214.69	3363.33	3214.69	3214.69
$\omega_{12}(a^{''})$	3130.26	3146.66	3130.23	3130.23	3266.05	3130.22	3130.22
$\omega_{13}(a^{''})$	1501.76	1503.54	1501.67	1501.67	1515.71	1501.65	1501.65
$\omega_{14}(a^{''})$	1272.26	1260.66	1271.62	1271.82	1282.46	1271.91	1272.01
$\omega_{15}(a^{''})$	1162.60	1164.93	1162.56	1162.84	1178.15	1161.87	1161.87
$\omega_{16}(a^{''})$	1113.59	1101.91	1113.60	1113.60	1120.49	1114.33	1114.33
$\omega_{17}(a^{''})$	923.43	918.64	924.21	924.18	924.13	923.68	923.75
$\omega_{18}(a^{''})$	840.79	842.60	841.47	840.81	871.35	841.59	841.37

Table S262: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.
Pure CMA-0A CMA-2AB3LYP/ B3LYP/ B3LYP/ 6-31G(2df,p)6-31G(2df,p)6-31G(2df,p) $\omega_1(a')$ 3527.86 3515.003515.00 $\omega_2(a')$ 3227.983243.743227.98 $\omega_{3}(a^{'})$ 3149.073137.203137.20 $\omega_4(a')$ 1522.331532.461532.46 $\omega_5(a')$ 1310.141307.261307.44 $\omega_6(a')$ 1246.861246.141246.00 $\omega_7(a')$ 1115.721120.281120.62 $\omega_8(a')$ 1028.851022.801022.66 $\omega_9(a^{\prime})$ 872.94 873.94 873.89 $\omega_{10}(a')$ 770.07783.75783.42 $\omega_{11}(a'')$ 3228.513214.683214.68 $\omega_{12}(a^{''})$ 3143.343130.213130.21 $\omega_{13}(a'')$ 1495.661501.611501.61 $\omega_{14}(a'')$ 1298.461271.021271.02 $\omega_{15}(a^{''})$ 1165.591161.651161.65 $\omega_{16}(a^{''})$ 1110.541114.971114.97 $\omega_{17}(a'')$ 923.59924.91927.85 $\omega_{18}(a^{''})$ 843.99842.67841.22

Table S263: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S264: Symmetrized, unnormalized natural internal coordinates for aziridine.

```
1
        r_{1,8}
\mathbf{2}
        r_{2,3} + r_{1,2} + r_{1,3}
3
        2r_{2,3} - r_{1,2} - r_{1,3}
4
       r_{1,2} - r_{1,3}
5
       r_{2,4} + r_{2,5} + r_{3,6} + r_{3,7}
6
       r_{2,4} + r_{2,5} - r_{3,6} - r_{3,7}
7
        r_{2,4} - r_{2,5} - r_{3,6} + r_{3,7}
8
      r_{2,4} - r_{2,5} + r_{3,6} - r_{3,7}
9
        \phi_{8,1,2} - \phi_{8,1,3}
10 \quad 4\phi_{4,2,5} - \phi_{4,2,1} - \phi_{4,2,3} - \phi_{5,2,1} - \phi_{5,2,3} + 4\phi_{6,3,7} - \phi_{6,3,1} - \phi_{6,3,2} - \phi_{7,3,1} - \phi_{7,3,2}
11 4\phi_{4,2,5} - \phi_{4,2,1} - \phi_{4,2,3} - \phi_{5,2,1} - \phi_{5,2,3} - 4\phi_{6,3,7} + \phi_{6,3,1} + \phi_{6,3,2} + \phi_{7,3,1} + \phi_{7,3,2}
12 \quad \phi_{4,2,1} - \phi_{4,2,3} + \phi_{5,2,1} - \phi_{5,2,3} + \phi_{6,3,1} - \phi_{6,3,2} + \phi_{7,3,1} - \phi_{7,3,2}
13 \phi_{4,2,1} - \phi_{4,2,3} + \phi_{5,2,1} - \phi_{5,2,3} - \phi_{6,3,1} + \phi_{6,3,2} - \phi_{7,3,1} + \phi_{7,3,2}
14 \phi_{4,2,1} + \phi_{4,2,3} - \phi_{5,2,1} - \phi_{5,2,3} + \phi_{6,3,1} + \phi_{6,3,2} - \phi_{7,3,1} - \phi_{7,3,2}
15 \phi_{4,2,1} + \phi_{4,2,3} - \phi_{5,2,1} - \phi_{5,2,3} - \phi_{6,3,1} - \phi_{6,3,2} + \phi_{7,3,1} + \phi_{7,3,2}
16 \phi_{4,2,1} - \phi_{4,2,3} - \phi_{5,2,1} + \phi_{5,2,3} + \phi_{6,3,1} - \phi_{6,3,2} - \phi_{7,3,1} + \phi_{7,3,2}
17 \phi_{4,2,1} - \phi_{4,2,3} - \phi_{5,2,1} + \phi_{5,2,3} - \phi_{6,3,1} + \phi_{6,3,2} + \phi_{7,3,1} - \phi_{7,3,2}
```

18 $\gamma_{8,1,2,3}$

Table S265: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	С	2.71257408	0.46659407	-0.00029896
2	С	-0.08279841	-0.16544287	0.00691252
3	0	-0.87869630	-2.32459739	-0.00775877
4	Ν	-1.66151859	1.89377014	0.05553476
5	Η	3.75222131	-1.12020941	0.78819940
6	Η	3.33318276	0.75461502	-1.94795633
7	Η	3.11796536	2.17773791	1.07525063
8	Η	-0.98387343	3.61876868	-0.34837186
9	Η	-3.50051514	1.56367391	-0.29435040

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a)$	3738.95	3755.73	3738.94	3738.94	3857.47	3738.86	3738.86
$\omega_2(a)$	3604.29	3612.65	3604.30	3604.30	3711.50	3604.37	3604.37
$\omega_3(a)$	3165.52	3187.23	3165.47	3165.47	3314.78	3165.43	3165.43
$\omega_4(a)$	3122.95	3146.22	3122.92	3122.92	3271.78	3122.83	3122.83
$\omega_5(a)$	3050.62	3063.10	3050.69	3050.69	3182.22	3050.75	3050.75
$\omega_6(a)$	1794.31	1797.06	1794.24	1794.30	1855.86	1793.90	1794.12
$\omega_7(a)$	1628.26	1622.06	1628.25	1628.25	1644.42	1627.37	1627.37
$\omega_8(a)$	1495.75	1498.57	1495.74	1495.74	1507.55	1495.53	1495.53
$\omega_9(a)$	1480.84	1482.47	1480.80	1480.80	1493.04	1480.63	1480.64
$\omega_{10}(a)$	1409.87	1401.90	1409.96	1409.92	1439.24	1409.04	1410.51
$\omega_{11}(a)$	1344.17	1338.81	1344.18	1344.18	1368.98	1346.33	1344.85
$\omega_{12}(a)$	1134.12	1130.72	1134.15	1134.12	1148.54	1134.28	1134.24
$\omega_{13}(a)$	1057.36	1053.87	1057.38	1057.38	1065.20	1057.37	1057.37
$\omega_{14}(a)$	981.94	978.59	981.96	981.97	997.79	982.61	982.29
$\omega_{15}(a)$	854.16	852.39	854.18	854.16	881.65	854.48	854.41
$\omega_{16}(a)$	638.47	642.37	638.42	638.48	649.31	638.46	638.52
$\omega_{17}(a)$	553.53	554.20	553.53	553.52	562.91	553.52	553.52
$\omega_{18}(a)$	508.36	510.84	508.41	508.35	513.64	508.46	508.43
$\omega_{19}(a)$	416.23	416.62	416.22	416.22	423.34	416.09	416.10
$\omega_{20}(a)$	300.01	321.99	300.20	300.11	230.71	300.83	300.89
$\omega_{21}(a)$	56.09	57.06	56.31	56.16	61.69	58.20	56.21

Table S266: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a)$	3753.21	3738.93	3738.93
$\omega_2(a)$	3617.22	3604.30	3604.30
$\omega_3(a)$	3182.64	3165.48	3165.48
$\omega_4(a)$	3136.79	3122.94	3122.94
$\omega_5(a)$	3068.92	3050.62	3050.62
$\omega_6(a)$	1798.52	1794.17	1794.22
$\omega_7(a)$	1616.70	1628.24	1628.26
$\omega_8(a)$	1493.63	1495.67	1495.67
$\omega_9(a)$	1477.07	1480.60	1480.60
$\omega_{10}(a)$	1404.68	1408.73	1408.68
$\omega_{11}(a)$	1341.71	1345.68	1345.71
$\omega_{12}(a)$	1135.91	1134.11	1134.10
$\omega_{13}(a)$	1057.65	1057.39	1057.42
$\omega_{14}(a)$	985.46	982.06	982.02
$\omega_{15}(a)$	850.53	854.47	854.46
$\omega_{16}(a)$	647.69	638.08	638.11
$\omega_{17}(a)$	554.11	553.55	553.53
$\omega_{18}(a)$	508.38	508.10	508.39
$\omega_{19}(a)$	422.20	416.05	416.32
$\omega_{20}(a)$	365.62	301.97	300.98
$\omega_{21}(a)$	46.94	56.86	56.20

Table S267: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S268: Symmetrized, unnormalized natural internal coordinates for acetamide.

- 1 $r_{1,2}$ $\mathbf{2}$ $r_{2,3}$ $3 r_{2,4}$ $4 \qquad r_{1,5} + r_{1,6} + r_{1,7}$ $2r_{1,5} - r_{1,6} - r_{1,7}$ 5 $6 r_{1,6} - r_{1,7}$ $r_{4,8} + r_{4,9}$ 7 $8 r_{4,8} - r_{4,9}$ 9 $2\phi_{1,2,4} - \phi_{1,2,3} - \phi_{4,2,3}$ 10 $\phi_{1,2,3} - \phi_{4,2,3}$ 11 $\phi_{5,1,2} + \phi_{6,1,2} + \phi_{7,1,2} - \phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7}$ 12 $2\phi_{5,1,2} - \phi_{6,1,2} - \phi_{7,1,2}$ 13 $\phi_{6,1,2} - \phi_{7,1,2}$ 14 $2\phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7}$ 15 $\phi_{5,1,6} - \phi_{5,1,7}$ 16 $2\phi_{8,4,9} - \phi_{8,4,2} - \phi_{9,4,2}$ 17 $\phi_{8,4,2} - \phi_{9,4,2}$
- 18 $\tau_{5,1,2,3} + \tau_{5,1,2,4} + \tau_{6,1,2,3} + \tau_{6,1,2,4} + \tau_{7,1,2,3} + \tau_{7,1,2,4}$
- $19 \quad \tau_{8,4,2,1} + \tau_{8,4,2,3} + \tau_{9,4,2,1} + \tau_{9,4,2,3}$
- 20 $\gamma_{3,2,1,4}$
- 21 $\gamma_{2,4,8,9}$

Table S269: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Ν	1.05866364	-0.16314434	0.00000000
2	Η	2.32232113	1.27592347	-0.00000000
3	С	-0.48856083	0.03001809	2.27606500
4	С	-0.48856083	0.03001809	-2.27606500
5	Η	0.71957620	0.01962878	3.94620566
6	Η	-1.73337996	-1.61370927	2.38661331
7	Η	-1.68486837	1.73209079	2.33361602
8	Η	0.71957620	0.01962878	-3.94620566
9	Η	-1.73337996	-1.61370927	-2.38661331
10	Η	-1.68486837	1.73209079	-2.33361602

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a^{'})$	3524.72	3545.68	3524.71	3524.71	3634.19	3524.71	3524.71
$\omega_{2}(a^{'})$	3113.81	3138.71	3113.77	3113.77	3263.68	3113.70	3113.70
$\omega_{3}(a^{'})$	3065.27	3085.83	3064.95	3064.95	3209.46	3064.85	3064.85
$\omega_{4}(a^{'})$	2959.91	2975.76	2960.29	2960.29	3095.73	2960.35	2960.35
$\omega_{5}(a^{'})$	1524.85	1528.89	1524.82	1524.82	1537.34	1524.63	1524.63
$\omega_{6}(a^{'})$	1504.35	1507.95	1504.27	1504.27	1517.26	1503.95	1503.95
$\omega_7(a^{'})$	1467.77	1464.14	1467.85	1467.85	1490.30	1468.48	1468.48
$\omega_{8}(a^{'})$	1273.32	1269.73	1273.33	1273.33	1288.79	1273.35	1273.37
$\omega_{9}(a^{'})$	1198.28	1194.60	1198.24	1198.30	1213.83	1198.31	1198.31
$\omega_{10}(a^{'})$	953.41	952.91	953.44	953.43	974.25	953.44	953.42
$\omega_{11}(a^{'})$	812.70	806.34	812.80	812.72	839.15	812.87	812.88
$\omega_{12}(a^{'})$	385.55	382.31	385.57	385.57	394.92	385.61	385.61
$\omega_{13}(a^{'})$	268.98	272.36	269.00	268.98	283.93	269.08	269.03
$\omega_{14}(a^{''})$	3112.90	3138.55	3112.86	3112.86	3262.75	3112.79	3112.79
$\omega_{15}(a^{''})$	3066.32	3088.87	3066.02	3066.02	3210.46	3065.93	3065.93
$\omega_{16}(a^{''})$	2958.30	2976.09	2958.64	2958.64	3091.65	2958.70	2958.70
$\omega_{17}(a^{''})$	1522.52	1523.91	1522.02	1522.02	1538.75	1521.72	1521.72
$\omega_{18}(a^{''})$	1492.67	1495.80	1492.44	1492.44	1505.15	1491.93	1491.93
$\omega_{19}(a^{''})$	1478.41	1470.34	1479.07	1479.07	1496.46	1479.46	1479.46
$\omega_{20}(a^{''})$	1438.95	1435.42	1438.91	1438.91	1460.39	1439.28	1439.28
$\omega_{21}(a^{''})$	1177.66	1175.95	1177.77	1177.77	1207.28	1177.64	1177.93
$\omega_{22}(a^{''})$	1100.92	1102.63	1100.95	1100.95	1115.69	1101.29	1100.99
$\omega_{23}(a^{''})$	1028.85	1029.19	1028.87	1028.87	1043.26	1029.07	1029.07
$\omega_{24}(a^{''})$	223.19	227.54	223.19	223.19	238.22	223.24	223.24

Table S270: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a^{'})$	3534.62	3524.70	3524.70
$\omega_{2}(a^{'})$	3131.28	3113.80	3113.80
$\omega_{3}(a^{'})$	3083.28	3065.14	3065.14
$\omega_{4}(a^{'})$	2975.97	2960.02	2960.02
$\omega_{5}(a^{'})$	1522.17	1524.78	1524.78
$\omega_{6}(a^{'})$	1504.31	1504.34	1504.34
$\omega_7(a^{'})$	1476.12	1467.81	1467.81
$\omega_{8}(a^{'})$	1277.66	1273.32	1273.33
$\omega_{9}(a^{'})$	1197.72	1198.14	1198.30
$\omega_{10}(a^{'})$	952.04	953.43	953.43
$\omega_{11}(a^{'})$	796.69	813.07	812.90
$\omega_{12}(a^{'})$	392.91	385.68	385.61
$\omega_{13}(a^{'})$	271.17	269.15	269.05
$\omega_{14}(a^{''})$	3130.24	3112.89	3112.89
$\omega_{15}(a^{''})$	3083.49	3066.21	3066.21
$\omega_{16}(a^{''})$	2971.19	2958.34	2958.34
$\omega_{17}(a^{\prime\prime})$	1519.52	1522.38	1522.38
$\omega_{18}(a^{''})$	1491.55	1492.61	1492.61
$\omega_{19}(a^{''})$	1479.21	1478.17	1478.17
$\omega_{20}(a^{''})$	1445.67	1439.07	1439.07
$\omega_{21}(a^{''})$	1162.49	1177.59	1177.91
$\omega_{22}(a^{''})$	1103.77	1101.30	1100.96
$\omega_{23}(a^{''})$	1035.34	1029.20	1029.22
$\omega_{24}(a^{''})$	235.02	223.39	223.31

Table S271: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S272: Symmetrized, unnormalized natural internal coordinates for dimethylamine.

```
1
        r_{1,2}
2
        r_{1,3} + r_{1,4}
3
       r_{1,3} - r_{1,4}
4
       r_{3,6} + r_{3,5} + r_{3,7} + r_{4,9} + r_{4,8} + r_{4,10}
5
        r_{3,6} + r_{3,5} + r_{3,7} - r_{4,9} - r_{4,8} - r_{4,10}
6
        2r_{3,6} - r_{3,5} - r_{3,7} + 2r_{4,9} - r_{4,8} - r_{4,10}
\overline{7}
        2r_{3,6} - r_{3,5} - r_{3,7} - 2r_{4,9} + r_{4,8} + r_{4,10}
8
       r_{3,5} - r_{3,7} + r_{4,8} - r_{4,10}
9
        r_{3,5} - r_{3,7} - r_{4,8} + r_{4,10}
10 \phi_{3,1,4}
11 \phi_{2,1,3} + \phi_{2,1,4}
12 \phi_{2,1,3} - \phi_{2,1,4}
13 \quad \phi_{6,3,1} + \phi_{5,3,1} + \phi_{7,3,1} - \phi_{5,3,7} - \phi_{6,3,7} - \phi_{5,3,6} + \phi_{9,4,1} + \phi_{8,4,1} + \phi_{10,4,1} - \phi_{8,4,10}
         -\phi_{9,4,10} - \phi_{8,4,9}
14 \quad \phi_{6,3,1} + \phi_{5,3,1} + \phi_{7,3,1} - \phi_{5,3,7} - \phi_{6,3,7} - \phi_{5,3,6} - \phi_{9,4,1} - \phi_{8,4,1} - \phi_{10,4,1} + \phi_{8,4,10}
        +\phi_{9,4,10}+\phi_{8,4,9}
15 2\phi_{6,3,1} - \phi_{5,3,1} - \phi_{7,3,1} + 2\phi_{9,4,1} - \phi_{8,4,1} - \phi_{10,4,1}
16 2\phi_{6,3,1} - \phi_{5,3,1} - \phi_{7,3,1} - 2\phi_{9,4,1} + \phi_{8,4,1} + \phi_{10,4,1}
17 \phi_{5,3,1} - \phi_{7,3,1} + \phi_{8,4,1} - \phi_{10,4,1}
18 \phi_{5,3,1} - \phi_{7,3,1} - \phi_{8,4,1} + \phi_{10,4,1}
19 \quad 2\phi_{5,3,7} - \phi_{6,3,7} - \phi_{5,3,6} + 2\phi_{8,4,10} - \phi_{9,4,10} - \phi_{8,4,9}
20 \quad 2\phi_{5,3,7} - \phi_{6,3,7} - \phi_{5,3,6} - 2\phi_{8,4,10} + \phi_{9,4,10} + \phi_{8,4,9}
21 \phi_{6,3,7} - \phi_{5,3,6} + \phi_{9,4,10} - \phi_{8,4,9}
22 \phi_{6,3,7} - \phi_{5,3,6} - \phi_{9,4,10} + \phi_{8,4,9}
23 \tau_{5,3,1,4} + \tau_{5,3,1,2} + \tau_{6,3,1,4} + \tau_{6,3,1,2} + \tau_{7,3,1,4} + \tau_{7,3,1,2} + \tau_{8,4,1,3} + \tau_{8,4,1,2} + \tau_{9,4,1,3} + \tau_{9,4,1,2}
        +\tau_{10,4,1,3}+\tau_{10,4,1,2}
```

24 $\tau_{5,3,1,4} + \tau_{5,3,1,2} + \tau_{6,3,1,4} + \tau_{6,3,1,2} + \tau_{7,3,1,4} + \tau_{7,3,1,2} - \tau_{8,4,1,3} - \tau_{8,4,1,2} - \tau_{9,4,1,3} - \tau_{9,4,1,2} - \tau_{10,4,1,3} - \tau_{10,4,1,2}$

Table S273: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-2.41599594	0.50146691	0.00000000
2	С	0.01027304	-1.06763773	-0.00000000
3	Ν	2.36790056	0.39595653	0.00000000
4	Η	-4.09501177	-0.70240098	-0.00000000
5	Η	-2.49875000	1.71532507	-1.67014001
6	Η	-2.49875000	1.71532507	1.67014001
7	Η	0.04170761	-2.30474842	1.65378697
8	Η	0.04170761	-2.30474842	-1.65378697
9	Η	2.37659366	1.56049390	1.52504554
10	Η	2.37659366	1.56049390	-1.52504554

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc- $pVDZ$
$\omega_1(a^{'})$	3477.75	3492.65	3477.74	3477.74	3585.95	3477.65	3477.65
$\omega_{2}(a^{'})$	3100.09	3125.35	3100.05	3100.05	3249.82	3099.96	3099.96
$\omega_{3}(a^{'})$	3043.45	3060.46	3043.41	3043.41	3179.50	3043.38	3043.38
$\omega_{4}(a^{'})$	3022.37	3034.86	3022.44	3022.44	3155.37	3022.49	3022.49
$\omega_{5}(a^{'})$	1663.18	1653.06	1663.16	1663.16	1686.01	1663.13	1663.13
$\omega_{6}(a^{'})$	1511.30	1512.63	1511.25	1511.25	1524.53	1511.22	1511.22
$\omega_7(a^{'})$	1493.31	1495.51	1493.33	1493.33	1506.31	1493.29	1493.29
$\omega_{8}(a^{'})$	1408.58	1400.43	1408.50	1408.50	1432.91	1408.11	1408.11
$\omega_{9}(a^{'})$	1380.25	1373.92	1380.28	1380.29	1399.69	1380.64	1380.64
$\omega_{10}(a^{'})$	1160.25	1157.59	1160.24	1160.27	1177.35	1159.86	1160.36
$\omega_{11}(a^{'})$	1081.55	1079.90	1081.60	1081.61	1111.07	1082.36	1081.98
$\omega_{12}(a^{'})$	914.85	909.22	914.29	914.92	924.06	913.60	915.09
$\omega_{13}(a^{'})$	877.07	871.99	877.81	877.08	899.22	878.99	877.25
$\omega_{14}(a^{'})$	396.61	396.27	396.61	396.61	404.00	396.65	396.65
$\omega_{15}(a^{''})$	3559.16	3585.80	3559.16	3559.16	3676.93	3559.16	3559.16
$\omega_{16}(a^{''})$	3103.24	3128.83	3103.24	3103.24	3253.41	3103.05	3103.05
$\omega_{17}(a^{''})$	3074.11	3100.85	3074.11	3074.11	3225.31	3074.26	3074.26
$\omega_{18}(a^{''})$	1499.43	1502.17	1499.42	1499.42	1511.70	1499.45	1499.45
$\omega_{19}(a^{''})$	1396.10	1394.04	1396.03	1396.03	1407.95	1395.92	1395.92
$\omega_{20}(a^{''})$	1276.10	1273.22	1276.18	1276.18	1287.39	1276.18	1276.18
$\omega_{21}(a^{''})$	1008.36	1007.32	1008.38	1008.38	1017.12	1008.54	1008.54
$\omega_{22}(a^{''})$	777.12	778.19	777.12	777.13	789.30	777.16	777.17
$\omega_{23}(a^{''})$	288.51	290.76	288.45	288.44	325.92	287.72	288.53
$\omega_{24}(a^{''})$	254.09	257.07	254.18	254.18	270.79	255.12	254.14

Table S274: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a^{'})$	3494.25	3477.73	3477.73
$\omega_{2}(a^{'})$	3114.33	3100.07	3100.07
$\omega_{3}(a^{'})$	3058.28	3043.44	3043.44
$\omega_{4}(a^{'})$	3040.82	3022.36	3022.36
$\omega_{5}(a^{'})$	1659.94	1663.11	1663.11
$\omega_{6}(a^{'})$	1512.35	1511.23	1511.23
$\omega_7(a^{'})$	1492.39	1493.31	1493.31
$\omega_{8}(a^{'})$	1413.89	1407.81	1407.81
$\omega_{9}(a^{'})$	1384.48	1380.75	1380.77
$\omega_{10}(a^{'})$	1161.91	1160.03	1160.26
$\omega_{11}(a^{'})$	1067.51	1081.95	1082.03
$\omega_{12}(a^{'})$	921.66	915.25	914.96
$\omega_{13}(a^{'})$	874.99	877.32	877.21
$\omega_{14}(a^{'})$	404.49	396.71	396.71
$\omega_{15}(a^{''})$	3570.08	3559.15	3559.15
$\omega_{16}(a^{''})$	3118.93	3103.23	3103.23
$\omega_{17}(a^{''})$	3087.45	3074.10	3074.10
$\omega_{18}(a^{''})$	1500.67	1499.40	1499.40
$\omega_{19}(a^{''})$	1400.24	1395.88	1395.88
$\omega_{20}(a^{''})$	1283.15	1276.28	1276.28
$\omega_{21}(a^{''})$	1015.95	1008.51	1008.51
$\omega_{22}(a^{''})$	783.12	777.17	777.17
$\omega_{23}(a^{''})$	289.98	288.52	288.52
$\omega_{24}(a^{\prime\prime})$	249.54	254.17	254.17

Table S275: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S276: Symmetrized, unnormalized natural internal coordinates for ethylamine.

1 $r_{1,2}$ 2 $r_{2,3}$ 3 $r_{1,4} + r_{1,5} + r_{1,6}$ $2r_{1,4} - r_{1,5} - r_{1,6}$ 4 5 $r_{1,5} - r_{1,6}$ 6 $r_{2,7} + r_{2,8}$ $\overline{7}$ $r_{2,7} - r_{2,8}$ 8 $r_{3,9} + r_{3,10}$ 9 $r_{3,9} - r_{3,10}$ $10 \quad \phi_{1,2,3}$ 11 $\phi_{4,1,2} + \phi_{5,1,2} + \phi_{6,1,2} - \phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6}$ 12 $2\phi_{4,1,2} - \phi_{5,1,2} - \phi_{6,1,2}$ 13 $\phi_{5,1,2} - \phi_{6,1,2}$ 14 $2\phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6}$ 15 $\phi_{4,1,5} - \phi_{4,1,6}$ 16 $4\phi_{7,2,8} - \phi_{7,2,1} - \phi_{7,2,3} - \phi_{8,2,1} - \phi_{8,2,3}$ 17 $\phi_{7,2,1} + \phi_{7,2,3} - \phi_{8,2,1} - \phi_{8,2,3}$ 18 $\phi_{7,2,1} - \phi_{7,2,3} + \phi_{8,2,1} - \phi_{8,2,3}$ 19 $\phi_{7,2,1} - \phi_{7,2,3} - \phi_{8,2,1} + \phi_{8,2,3}$ $20 \quad 2\phi_{9,3,10} - \phi_{9,3,2} - \phi_{10,3,2}$ $21 \quad \phi_{9,3,2} - \phi_{10,3,2}$ 22 $\tau_{4,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,3}$ 23 $\tau_{9,3,2,1} + \tau_{10,3,2,1}$ 24 $\gamma_{2,3,9,10}$

1	С	-0.00000000	-2.43146449	1.32246298
2	С	-0.00000000	-0.00000000	-0.19161611
3	С	0.00000000	2.43146449	1.32246298
4	Η	-0.00000000	-4.04696082	0.05128367
5	Η	-1.66203278	-2.50063407	2.54685039
6	Η	1.66203278	-2.50063407	2.54685039
7	Η	0.00000000	4.04696082	0.05128367
8	Η	1.66203278	2.50063407	2.54685039
9	Η	-1.66203278	2.50063407	2.54685039
10	0	-0.00000000	0.00000000	-2.48892898

Table S277: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc-pVTZ	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3159.26	3180.74	3159.20	3159.20	3308.05	3159.19	3159.19
$\omega_2(a_1)$	3042.41	3054.46	3042.47	3042.47	3172.76	3042.43	3042.43
$\omega_3(a_1)$	1786.22	1778.64	1786.17	1786.17	1840.41	1786.05	1786.05
$\omega_4(a_1)$	1476.54	1477.39	1476.52	1476.52	1487.37	1476.74	1476.74
$\omega_5(a_1)$	1386.96	1377.91	1387.01	1387.01	1404.26	1386.92	1386.92
$\omega_6(a_1)$	1081.17	1078.20	1081.21	1081.21	1094.08	1081.24	1081.24
$\omega_7(a_1)$	794.73	792.57	794.75	794.75	821.82	794.93	794.93
$\omega_8(a_1)$	371.56	371.71	371.56	371.56	379.62	371.57	371.57
$\omega_9(a_2)$	3104.03	3128.22	3104.02	3104.02	3252.26	3103.98	3103.98
$\omega_{10}(a_2)$	1474.27	1475.61	1474.27	1474.27	1486.86	1474.30	1474.30
$\omega_{11}(a_2)$	887.40	881.97	887.40	887.41	896.04	887.50	887.50
$\omega_{12}(a_2)$	20.78	-10.47	21.34	20.79	58.11	21.01	20.78
$\omega_{13}(b_1)$	3110.28	3134.05	3110.28	3110.28	3257.86	3110.24	3110.24
$\omega_{14}(b_1)$	1495.93	1498.64	1495.92	1495.92	1507.85	1495.92	1495.92
$\omega_{15}(b_1)$	1116.27	1112.83	1116.27	1116.28	1127.17	1116.37	1116.37
$\omega_{16}(b_1)$	480.47	481.32	480.48	480.50	490.57	480.48	480.49
$\omega_{17}(b_1)$	141.09	140.80	141.21	141.09	156.43	141.16	141.12
$\omega_{18}(b_2)$	3157.81	3179.75	3157.76	3157.76	3306.78	3157.73	3157.73
$\omega_{19}(b_2)$	3037.08	3049.81	3037.13	3037.13	3167.90	3037.10	3037.10
$\omega_{20}(b_2)$	1468.80	1469.12	1468.76	1468.76	1478.99	1468.82	1468.82
$\omega_{21}(b_2)$	1395.11	1385.60	1395.14	1395.14	1421.48	1394.02	1394.02
$\omega_{22}(b_2)$	1246.46	1240.19	1246.47	1246.47	1271.50	1247.22	1247.45
$\omega_{23}(b_2)$	894.52	888.87	894.55	894.55	914.67	895.31	894.99
$\omega_{24}(b_2)$	527.58	528.02	527.58	527.58	537.24	527.64	527.63

Table S278: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3176.10	3159.25	3159.25
$\omega_2(a_1)$	3061.60	3042.37	3042.37
$\omega_3(a_1)$	1792.90	1786.07	1786.18
$\omega_4(a_1)$	1472.91	1476.21	1476.21
$\omega_5(a_1)$	1390.39	1387.35	1387.35
$\omega_6(a_1)$	1088.75	1081.21	1081.21
$\omega_7(a_1)$	789.52	795.12	794.88
$\omega_8(a_1)$	377.56	371.61	371.61
$\omega_9(a_2)$	3116.92	3104.02	3104.02
$\omega_{10}(a_2)$	1470.86	1474.22	1474.22
$\omega_{11}(a_2)$	887.00	887.44	887.49
$\omega_{12}(a_2)$	57.17	23.01	20.84
$\omega_{13}(b_1)$	3124.35	3110.27	3110.27
$\omega_{14}(b_1)$	1493.08	1495.89	1495.90
$\omega_{15}(b_1)$	1119.92	1116.28	1116.30
$\omega_{16}(b_1)$	491.62	480.50	480.50
$\omega_{17}(b_1)$	145.64	141.38	141.16
$\omega_{18}(b_2)$	3174.71	3157.79	3157.79
$\omega_{19}(b_2)$	3054.89	3037.05	3037.05
$\omega_{20}(b_2)$	1464.09	1468.43	1468.43
$\omega_{21}(b_2)$	1391.65	1394.45	1394.45
$\omega_{22}(b_2)$	1240.48	1247.15	1247.15
$\omega_{23}(b_2)$	892.94	895.31	895.31
$\omega_{24}(b_2)$	528.97	527.64	527.64

Table S279: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S280: Symmetrized, unnormalized natural internal coordinates for acetone.

1 $r_{2,10}$ $\mathbf{2}$ $r_{1,2} + r_{2,3}$ 3 $r_{1,2} - r_{2,3}$ 4 $r_{1,4} + r_{1,5} + r_{1,6} + r_{3,7} + r_{3,9} + r_{3,8}$ 5 $r_{1,4} + r_{1,5} + r_{1,6} - r_{3,7} - r_{3,9} - r_{3,8}$ 6 $2r_{1,4} - r_{1,5} - r_{1,6} + 2r_{3,7} - r_{3,9} - r_{3,8}$ $\overline{7}$ $2r_{1,4} - r_{1,5} - r_{1,6} - 2r_{3,7} + r_{3,9} + r_{3,8}$ 8 $r_{1,5} - r_{1,6} + r_{3,9} - r_{3,8}$ 9 $r_{1,5} - r_{1,6} - r_{3,9} + r_{3,8}$ $10 \quad 2\phi_{1,2,3} - \phi_{1,2,10} - \phi_{3,2,10}$ 11 $\phi_{1,2,10} - \phi_{3,2,10}$ $12 \quad \phi_{4,1,2} + \phi_{5,1,2} + \phi_{6,1,2} - \phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} + \phi_{7,3,2} + \phi_{9,3,2} + \phi_{8,3,2} - \phi_{8,3,9}$ $-\phi_{7,3,9}-\phi_{7,3,8}$ 13 $\phi_{4,1,2} + \phi_{5,1,2} + \phi_{6,1,2} - \phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} - \phi_{7,3,2} - \phi_{9,3,2} - \phi_{8,3,2} + \phi_{8,3,9}$ $+\phi_{7,3,9}+\phi_{7,3,8}$ 14 $2\phi_{4,1,2} - \phi_{5,1,2} - \phi_{6,1,2} + 2\phi_{7,3,2} - \phi_{9,3,2} - \phi_{8,3,2}$ 15 $2\phi_{4,1,2} - \phi_{5,1,2} - \phi_{6,1,2} - 2\phi_{7,3,2} + \phi_{9,3,2} + \phi_{8,3,2}$ 16 $\phi_{5,1,2} - \phi_{6,1,2} + \phi_{9,3,2} - \phi_{8,3,2}$ 17 $\phi_{5,1,2} - \phi_{6,1,2} - \phi_{9,3,2} + \phi_{8,3,2}$ 18 $2\phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} + 2\phi_{8,3,9} - \phi_{7,3,9} - \phi_{7,3,8}$ 19 $2\phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} - 2\phi_{8,3,9} + \phi_{7,3,9} + \phi_{7,3,8}$ 20 $\phi_{4,1,5} - \phi_{4,1,6} + \phi_{7,3,9} - \phi_{7,3,8}$

- 21 $\phi_{4,1,5} \phi_{4,1,6} \phi_{7,3,9} + \phi_{7,3,8}$
- 22 $\tau_{4,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,3,2,1} + \tau_{8,3,2,1} + \tau_{9,3,2,1}$
- 23 $\tau_{4,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,3} \tau_{7,3,2,1} \tau_{8,3,2,1} \tau_{9,3,2,1}$
- 24 $\gamma_{10,2,1,3}$

S4.71 1-chloropropane

Table S281: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-4.78185816	0.13547591	0.00000000
2	\mathbf{C}	-2.11109876	-0.97139330	0.00000000
3	\mathbf{C}	-0.14244981	1.11919067	0.00000000
4	Cl	3.00981998	-0.14144508	0.00000000
5	Η	-6.19879779	-1.36232962	0.00000000
6	Η	-5.09986073	1.30896986	-1.66945794
7	Η	-5.09986073	1.30896986	1.66945794
8	Η	-1.82642436	-2.16506020	1.66021781
9	Η	-1.82642436	-2.16506020	-1.66021781
10	Η	-0.30600557	2.30469630	1.67497536
11	Η	-0.30600557	2.30469630	-1.67497536

_	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	CCSD(T)/	MP2/	MP2/	MP2/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a^{'})$	3116.65	3141.29	3116.60	3116.60	3265.93	3116.51	3116.51
$\omega_{2}(a^{'})$	3079.76	3095.25	3079.72	3079.72	3217.49	3079.61	3079.61
$\omega_{3}(a^{'})$	3054.12	3069.69	3054.13	3054.13	3191.07	3054.14	3054.14
$\omega_{4}(a^{'})$	3033.76	3046.22	3033.84	3033.84	3167.00	3033.92	3033.92
$\omega_{5}(a^{'})$	1514.46	1515.23	1514.21	1514.21	1526.78	1514.41	1514.41
$\omega_{6}(a^{'})$	1499.57	1500.16	1499.71	1499.71	1513.02	1498.81	1498.81
$\omega_7(a^{'})$	1493.06	1493.03	1493.08	1493.08	1509.84	1493.63	1493.63
$\omega_{8}(a^{'})$	1414.57	1406.75	1414.41	1414.41	1436.22	1413.64	1413.64
$\omega_{9}(a^{'})$	1375.19	1363.98	1375.34	1375.34	1401.77	1375.63	1375.63
$\omega_{10}(a^{'})$	1284.71	1281.69	1284.75	1284.75	1303.28	1284.82	1284.82
$\omega_{11}(a^{'})$	1125.98	1123.94	1126.01	1126.02	1148.02	1125.71	1126.26
$\omega_{12}(a^{'})$	1055.55	1054.32	1055.61	1055.61	1086.89	1056.62	1056.29
$\omega_{13}(a^{'})$	915.17	913.94	915.20	915.20	937.51	915.61	915.32
$\omega_{14}(a^{'})$	757.78	764.72	757.78	757.80	769.96	757.82	757.82
$\omega_{15}(a^{'})$	363.85	363.54	363.88	363.86	372.13	363.89	363.89
$\omega_{16}(a^{'})$	233.16	231.58	233.18	233.18	240.01	233.18	233.18
$\omega_{17}(a^{''})$	3139.46	3162.42	3139.46	3139.46	3288.93	3139.37	3139.37
$\omega_{18}(a^{''})$	3108.28	3133.24	3108.27	3108.27	3258.37	3108.20	3108.20
$\omega_{19}(a^{''})$	3086.79	3112.35	3086.79	3086.79	3237.98	3086.91	3086.91
$\omega_{20}(a^{''})$	1506.44	1509.09	1506.43	1506.43	1517.28	1506.48	1506.48
$\omega_{21}(a^{''})$	1322.93	1322.61	1322.92	1322.92	1336.51	1322.91	1322.91
$\omega_{22}(a^{''})$	1251.33	1249.87	1251.26	1251.26	1266.03	1251.32	1251.32
$\omega_{23}(a^{''})$	1097.32	1098.42	1097.43	1097.43	1112.76	1097.34	1097.34
$\omega_{24}(a^{''})$	870.11	870.42	870.12	870.12	882.45	870.15	870.15
$\omega_{25}(a^{''})$	750.95	752.59	750.96	750.96	766.48	751.00	751.00
$\omega_{26}(a^{''})$	231.61	234.66	231.62	231.62	247.20	231.66	231.65
$\omega_{27}(a^{''})$	117.40	119.40	117.41	117.40	125.55	117.46	117.44

Table S282: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a^{'})$	3132.15	3116.64	3116.64
$\omega_{2}(a^{'})$	3095.17	3079.73	3079.73
$\omega_{3}(a^{'})$	3067.39	3054.04	3054.04
$\omega_{4}(a^{'})$	3053.02	3033.83	3033.83
$\omega_{5}(a^{'})$	1516.76	1514.27	1514.27
$\omega_{6}(a^{'})$	1498.84	1499.64	1499.64
$\omega_7(a^{'})$	1490.71	1493.10	1493.10
$\omega_{8}(a^{'})$	1421.34	1414.01	1414.01
$\omega_{9}(a^{'})$	1378.32	1375.05	1375.05
$\omega_{10}(a^{'})$	1292.20	1284.81	1284.81
$\omega_{11}(a^{'})$	1126.03	1125.78	1125.78
$\omega_{12}(a^{'})$	1045.64	1056.38	1056.38
$\omega_{13}(a^{'})$	914.15	915.42	915.42
$\omega_{14}(a^{'})$	756.07	758.09	758.09
$\omega_{15}(a^{'})$	367.35	363.93	363.93
$\omega_{16}(a^{'})$	239.47	233.23	233.23
$\omega_{17}(a^{''})$	3155.94	3139.44	3139.44
$\omega_{18}(a^{''})$	3123.57	3108.22	3108.22
$\omega_{19}(a^{''})$	3099.53	3086.84	3086.84
$\omega_{20}(a^{''})$	1506.12	1506.43	1506.43
$\omega_{21}(a^{''})$	1325.29	1322.91	1322.91
$\omega_{22}(a^{''})$	1254.51	1251.26	1251.26
$\omega_{23}(a^{''})$	1098.13	1097.39	1097.39
$\omega_{24}(a^{''})$	875.22	870.17	870.17
$\omega_{25}(a^{''})$	757.04	751.00	751.00
$\omega_{26}(a^{''})$	235.16	231.69	231.72
$\omega_{27}(a^{''})$	119.63	117.49	117.44

Table S283: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S284: Symmetrized, unnormalized natural internal coordinates for 1-chloropropane.

1 $r_{1,2}$ 2 $r_{2,3}$ 3 $r_{3,4}$ 4 $r_{1,5} + r_{1,6} + r_{1,7}$ 5 $2r_{1,5} - r_{1,6} - r_{1,7}$ 6 $r_{1,6} - r_{1,7}$ $\overline{7}$ $r_{2,8} + r_{2,9}$ 8 $r_{2,8} - r_{2,9}$ 9 $r_{3,10} + r_{3,11}$ $10 \quad r_{3,10} - r_{3,11}$ 11 $\phi_{1,2,3}$ 12 $\phi_{2,3,4}$ 13 $\phi_{5,1,2} + \phi_{6,1,2} + \phi_{7,1,2} - \phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7}$ 14 $2\phi_{5,1,2} - \phi_{6,1,2} - \phi_{7,1,2}$ 15 $\phi_{6,1,2} - \phi_{7,1,2}$ 16 $2\phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7}$ 17 $\phi_{5,1,6} - \phi_{5,1,7}$ $18 \quad 4\phi_{8,2,9} - \phi_{8,2,1} - \phi_{8,2,3} - \phi_{9,2,1} - \phi_{9,2,3}$ 19 $\phi_{8,2,1} + \phi_{8,2,3} - \phi_{9,2,1} - \phi_{9,2,3}$ $20 \quad \phi_{8,2,1} - \phi_{8,2,3} + \phi_{9,2,1} - \phi_{9,2,3}$ 21 $\phi_{8,2,1} - \phi_{8,2,3} - \phi_{9,2,1} + \phi_{9,2,3}$ 22 $4\phi_{10,3,11} - \phi_{10,3,2} - \phi_{10,3,4} - \phi_{11,3,2} - \phi_{11,3,4}$ 23 $\phi_{10,3,2} + \phi_{10,3,4} - \phi_{11,3,2} - \phi_{11,3,4}$ 24 $\phi_{10,3,2} - \phi_{10,3,4} + \phi_{11,3,2} - \phi_{11,3,4}$ 25 $\phi_{10,3,2} - \phi_{10,3,4} - \phi_{11,3,2} + \phi_{11,3,4}$ 26 $\tau_{1,2,3,4}$ $27 \quad \tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,1,2,3}$

Table S285: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-3.51555612	0.29044205	-0.00000000
2	С	-0.95458299	-0.99195423	-0.00000000
3	0	0.93589970	0.90095503	-0.00000000
4	С	3.37683746	-0.17280447	0.00000000
5	Η	-5.02516284	-1.11599211	-0.00000000
6	Η	-3.71909489	1.47840980	-1.67234300
7	Η	-3.71909489	1.47840980	1.67234300
8	Η	-0.74126596	-2.20420926	1.67415920
9	Η	-0.74126596	-2.20420926	-1.67415920
10	Н	4.73626773	1.37209229	0.00000000
11	Η	3.68698239	-1.34648639	-1.68213636
12	Н	3.68698239	-1.34648639	1.68213636

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a^{'})$	3128.05	3152.28	3127.97	3127.97	3277.30	3127.95	3127.95
$\omega_{2}(a^{'})$	3123.74	3148.85	3123.73	3123.73	3273.34	3123.67	3123.67
$\omega_{3}(a^{'})$	3045.76	3058.25	3045.74	3045.74	3178.71	3045.71	3045.71
$\omega_{4}(a^{'})$	2985.25	2998.08	2985.32	2985.32	3116.78	2985.26	2985.26
$\omega_{5}(a^{'})$	2971.39	2987.06	2971.43	2971.43	3100.89	2971.42	2971.42
$\omega_{6}(a^{'})$	1538.29	1539.62	1538.21	1538.21	1555.26	1537.79	1537.79
$\omega_7(a^{'})$	1515.64	1519.59	1515.63	1515.63	1527.00	1515.31	1515.31
$\omega_{8}(a^{'})$	1506.90	1509.56	1506.84	1506.84	1521.46	1506.62	1506.62
$\omega_{9}(a^{'})$	1480.96	1479.15	1480.99	1480.99	1500.66	1481.76	1481.76
$\omega_{10}(a^{'})$	1431.74	1424.41	1431.71	1431.71	1458.54	1431.67	1431.67
$\omega_{11}(a^{'})$	1396.67	1391.31	1396.71	1396.71	1413.05	1396.75	1396.75
$\omega_{12}(a^{'})$	1244.73	1239.93	1244.68	1244.68	1259.37	1244.72	1244.78
$\omega_{13}(a^{'})$	1174.17	1172.52	1174.22	1174.22	1197.42	1174.32	1174.24
$\omega_{14}(a^{'})$	1119.09	1117.88	1119.15	1119.16	1133.61	1118.94	1119.27
$\omega_{15}(a^{'})$	1048.43	1045.21	1048.53	1048.53	1073.78	1049.22	1048.92
$\omega_{16}(a^{'})$	874.88	872.53	874.93	874.92	892.64	875.12	875.05
$\omega_{17}(a^{'})$	468.22	465.34	468.23	468.22	474.65	468.26	468.26
$\omega_{18}(a^{'})$	288.79	286.76	288.80	288.80	291.86	288.87	288.87
$\omega_{19}(a^{''})$	3128.68	3153.69	3128.67	3128.67	3281.30	3128.61	3128.61
$\omega_{20}(a^{''})$	3034.72	3060.25	3034.69	3034.69	3180.90	3034.68	3034.68
$\omega_{21}(a^{''})$	3002.00	3027.67	3002.02	3002.02	3144.98	3002.03	3002.03
$\omega_{22}(a^{''})$	1495.37	1500.64	1495.36	1495.36	1505.87	1495.40	1495.40
$\omega_{23}(a^{''})$	1490.30	1493.01	1490.29	1490.29	1500.92	1490.33	1490.33
$\omega_{24}(a^{''})$	1301.19	1302.33	1301.19	1301.19	1316.47	1301.17	1301.17
$\omega_{25}(a^{''})$	1204.65	1203.26	1204.60	1204.60	1220.72	1204.55	1204.55
$\omega_{26}(a^{''})$	1171.74	1172.06	1171.84	1171.84	1185.04	1171.93	1171.93
$\omega_{27}(a^{''})$	820.71	821.83	820.73	820.73	834.66	820.74	820.76
$\omega_{28}(a^{''})$	259.12	262.98	259.13	259.13	274.71	259.10	259.16
$\omega_{29}(a^{''})$	209.79	213.19	209.80	209.80	218.56	210.00	209.85
$\omega_{30}(a^{''})$	112.85	115.09	112.87	112.86	112.96	112.92	112.86

Table S286: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a^{'})$	3148.36	3128.04	3128.04
$\omega_{2}(a^{'})$	3139.02	3123.73	3123.73
$\omega_{3}(a^{'})$	3065.48	3045.74	3045.74
$\omega_{4}(a^{'})$	3005.07	2985.20	2985.20
$\omega_{5}(a^{'})$	2983.59	2971.39	2971.39
$\omega_{6}(a^{'})$	1536.74	1538.07	1538.07
$\omega_{7}(a^{'})$	1512.63	1515.28	1515.28
$\omega_{8}(a^{'})$	1504.97	1507.19	1507.19
$\omega_{9}(a^{'})$	1483.87	1481.01	1481.01
$\omega_{10}(a^{'})$	1432.46	1431.45	1431.45
$\omega_{11}(a^{'})$	1405.99	1396.73	1396.73
$\omega_{12}(a^{'})$	1240.24	1244.00	1244.00
$\omega_{13}(a^{'})$	1155.56	1175.24	1175.24
$\omega_{14}(a^{'})$	1121.08	1119.25	1119.29
$\omega_{15}(a^{'})$	1040.63	1048.58	1048.58
$\omega_{16}(a^{'})$	872.96	875.22	875.16
$\omega_{17}(a^{'})$	473.03	468.26	468.26
$\omega_{18}(a^{'})$	292.76	288.89	288.89
$\omega_{19}(a^{''})$	3145.30	3128.67	3128.67
$\omega_{20}(a^{''})$	3049.93	3034.70	3034.70
$\omega_{21}(a^{''})$	3011.83	3002.01	3002.01
$\omega_{22}(a^{''})$	1495.53	1495.32	1495.32
$\omega_{23}(a^{''})$	1489.84	1490.29	1490.29
$\omega_{24}(a^{''})$	1303.48	1301.03	1301.03
$\omega_{25}(a^{''})$	1205.46	1204.64	1204.64
$\omega_{26}(a^{''})$	1172.69	1171.95	1171.96
$\omega_{27}(a^{\prime\prime})$	828.69	820.81	820.81
$\omega_{28}(a^{''})$	261.64	258.89	259.15
$\omega_{29}(a^{''})$	213.04	210.06	209.82
$\omega_{30}(a^{''})$	118.17	113.27	112.91

Table S287: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S288: Symmetrized, unnormalized natural internal coordinates for methoxyethane.

1 $r_{1,2}$ $\mathbf{2}$ $r_{2,3}$ 3 $r_{3,4}$ 4 $r_{1,5} + r_{1,6} + r_{1,7}$ 5 $2r_{1,5} - r_{1,6} - r_{1,7}$ 6 $r_{1,6} - r_{1,7}$ $\overline{7}$ $r_{2,8} + r_{2,9}$ $8 r_{2,8} - r_{2,9}$ 9 $r_{4,10} + r_{4,11} + r_{4,12}$ $10 \quad 2r_{4,10} - r_{4,11} - r_{4,12}$ $11 \quad r_{4,11} - r_{4,12}$ 12 $\phi_{1,2,3}$ 13 $\phi_{2,3,4}$ 14 $\phi_{5,1,2} + \phi_{6,1,2} + \phi_{7,1,2} - \phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7}$ $15 \quad 2\phi_{5,1,2} - \phi_{6,1,2} - \phi_{7,1,2}$ 16 $\phi_{6,1,2} - \phi_{7,1,2}$ 17 $2\phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7}$ 18 $\phi_{5,1,6} - \phi_{5,1,7}$ 19 $4\phi_{8,2,9} - \phi_{8,2,1} - \phi_{8,2,3} - \phi_{9,2,1} - \phi_{9,2,3}$ $20 \quad \phi_{8,2,1} + \phi_{8,2,3} - \phi_{9,2,1} - \phi_{9,2,3}$ $21 \quad \phi_{8,2,1} - \phi_{8,2,3} + \phi_{9,2,1} - \phi_{9,2,3}$ $22 \quad \phi_{8,2,1} - \phi_{8,2,3} - \phi_{9,2,1} + \phi_{9,2,3}$ $23 \quad \phi_{10,4,3} + \phi_{11,4,3} + \phi_{12,4,3} - \phi_{11,4,12} - \phi_{10,4,11} - \phi_{10,4,12}$ 24 $2\phi_{10,4,3} - \phi_{11,4,3} - \phi_{12,4,3}$ 25 $\phi_{11,4,3} - \phi_{12,4,3}$ 26 $2\phi_{11,4,12} - \phi_{10,4,11} - \phi_{10,4,12}$

- $27 \quad \phi_{10,4,11} \phi_{10,4,12}$
- 28 $au_{1,2,3,4}$
- 29 $\tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,1,2,3}$
- $30 \quad \tau_{10,4,3,2} + \tau_{11,4,3,2} + \tau_{12,4,3,2}$

S4.73 isopropyl alcohol

Table S289: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	С	-2.38831701	-1.37281068	0.19751772
2	С	-0.0000002	-0.02316624	-0.68077558
3	С	2.38831634	-1.37281178	0.19751772
4	Η	-4.06437603	-0.36748732	-0.45670502
5	Η	-2.44637430	-1.47961484	2.26098859
6	Η	-2.44637460	-3.30273182	-0.54053624
7	Η	-0.0000003	0.07560930	-2.74320395
8	0	0.0000063	2.56018606	0.10662450
9	Η	0.00000066	2.55954490	1.92575998
10	Η	4.06437582	-0.36748919	-0.45670501
11	Η	2.44637317	-3.30273286	-0.54053635
12	Н	2.44637346	-1.47961611	2.26098862

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	CCSD(T)/	CCSD(T)/
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVDZ$	cc-pVDZ	cc-pVDZ
$\omega_1(a^{'})$	3819.49	3837.20	3819.49	3819.49	3888.71	3819.48	3819.48
$\omega_{2}(a^{'})$	3124.15	3147.94	3124.09	3124.09	3272.90	3124.02	3124.02
$\omega_{3}(a^{'})$	3103.92	3128.00	3103.87	3103.87	3250.64	3103.57	3103.57
$\omega_{4}(a^{'})$	3060.75	3082.51	3060.79	3060.79	3200.47	3060.92	3060.92
$\omega_{5}(a^{'})$	3028.61	3040.23	3028.66	3028.66	3160.47	3028.83	3028.83
$\omega_{6}(a^{'})$	1511.47	1514.78	1511.25	1511.25	1524.58	1510.55	1510.55
$\omega_7(a^{'})$	1503.80	1505.12	1503.90	1503.90	1515.13	1504.45	1504.45
$\omega_{8}(a^{'})$	1427.15	1417.55	1426.83	1426.94	1452.49	1427.09	1427.09
$\omega_{9}(a^{'})$	1410.33	1402.75	1410.32	1410.32	1429.61	1410.32	1410.32
$\omega_{10}(a^{'})$	1315.36	1308.10	1315.51	1315.53	1333.37	1315.50	1315.51
$\omega_{11}(a^{'})$	1196.43	1192.15	1196.56	1196.43	1216.89	1196.32	1196.42
$\omega_{12}(a^{'})$	1092.18	1084.99	1092.36	1092.36	1109.47	1092.37	1092.37
$\omega_{13}(a^{'})$	983.15	981.53	983.24	983.23	1001.22	983.40	983.28
$\omega_{14}(a^{'})$	825.99	824.93	826.02	826.00	847.12	826.33	826.32
$\omega_{15}(a^{'})$	464.61	464.43	464.64	464.64	475.73	464.64	464.64
$\omega_{16}(a^{'})$	357.74	356.46	357.74	357.74	363.72	357.77	357.77
$\omega_{17}(a^{'})$	270.92	274.89	271.02	271.02	286.69	271.17	271.17
$\omega_{18}(a^{''})$	3121.53	3146.06	3121.49	3121.49	3270.38	3121.42	3121.42
$\omega_{19}(a^{''})$	3092.77	3118.42	3092.76	3092.76	3241.58	3092.73	3092.73
$\omega_{20}(a^{''})$	3024.63	3037.59	3024.67	3024.67	3156.40	3024.69	3024.69
$\omega_{21}(a^{''})$	1491.04	1492.12	1489.63	1489.63	1503.31	1489.54	1489.54
$\omega_{22}(a^{\prime\prime})$	1487.92	1490.44	1489.26	1489.26	1500.44	1489.20	1489.20
$\omega_{23}(a^{''})$	1403.42	1393.68	1403.41	1403.41	1429.49	1402.95	1402.95
$\omega_{24}(a^{''})$	1367.15	1362.97	1367.12	1367.12	1381.25	1367.29	1367.29
$\omega_{25}(a^{''})$	1159.76	1160.05	1159.84	1159.84	1185.09	1160.14	1160.38
$\omega_{26}(a^{\prime\prime})$	939.40	936.87	939.44	939.44	957.82	939.41	939.11
$\omega_{27}(a^{''})$	922.41	920.54	922.43	922.46	934.66	923.02	923.07
$\omega_{28}(a^{''})$	425.28	423.88	425.26	425.28	432.39	424.44	425.30
$\omega_{29}(a^{''})$	272.99	272.29	273.01	273.01	314.28	272.61	272.97
$\omega_{30}(a^{''})$	224.49	227.34	224.71	224.58	244.14	226.96	224.70

Table S290: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a^{'})$	3817.47	3819.48	3819.48
$\omega_{2}(a^{'})$	3138.85	3124.13	3124.13
$\omega_{3}(a^{'})$	3118.17	3103.92	3103.92
$\omega_{4}(a^{'})$	3072.74	3060.69	3060.69
$\omega_{5}(a^{'})$	3046.89	3028.64	3028.64
$\omega_{6}(a^{'})$	1512.15	1511.06	1511.06
$\omega_7(a^{'})$	1502.61	1504.05	1504.05
$\omega_{8}(a^{'})$	1424.37	1424.69	1424.80
$\omega_{9}(a^{'})$	1417.68	1412.74	1412.74
$\omega_{10}(a^{'})$	1317.39	1315.30	1315.30
$\omega_{11}(a^{'})$	1196.11	1195.82	1195.82
$\omega_{12}(a^{'})$	1091.05	1092.13	1092.13
$\omega_{13}(a^{'})$	975.75	984.41	984.24
$\omega_{14}(a^{'})$	826.19	826.09	826.09
$\omega_{15}(a^{'})$	473.78	464.70	464.70
$\omega_{16}(a^{'})$	362.49	357.77	357.77
$\omega_{17}(a^{'})$	266.28	271.13	271.13
$\omega_{18}(a^{''})$	3136.11	3121.50	3121.50
$\omega_{19}(a^{''})$	3105.80	3092.77	3092.77
$\omega_{20}(a^{''})$	3041.68	3024.61	3024.61
$\omega_{21}(a^{''})$	1488.93	1489.65	1489.65
$\omega_{22}(a^{''})$	1487.97	1489.14	1489.14
$\omega_{23}(a^{''})$	1405.76	1402.11	1402.11
$\omega_{24}(a^{''})$	1369.78	1368.19	1368.19
$\omega_{25}(a^{''})$	1156.58	1159.90	1159.90
$\omega_{26}(a^{''})$	944.59	938.75	938.75
$\omega_{27}(a^{\prime\prime})$	928.56	923.67	923.69
$\omega_{28}(a^{''})$	424.52	425.22	425.33
$\omega_{29}(a^{''})$	263.64	272.55	273.10
$\omega_{30}(a^{''})$	226.40	225.62	224.66

Table S291: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S292: Symmetrized, unnormalized natural internal coordinates for isopropyl alcohol.

```
1
        r_{2,8}
\mathbf{2}
        r_{2,7}
3
        r_{8,9}
4
       r_{2,1} + r_{2,3}
5
       r_{2,1} - r_{2,3}
6
       r_{1,6} + r_{1,4} + r_{1,5} + r_{3,11} + r_{3,10} + r_{3,12}
7
       r_{1,6} + r_{1,4} + r_{1,5} - r_{3,11} - r_{3,10} - r_{3,12}
8 2r_{1,6} - r_{1,4} - r_{1,5} + 2r_{3,11} - r_{3,10} - r_{3,12}
9
       2r_{1,6} - r_{1,4} - r_{1,5} - 2r_{3,11} + r_{3,10} + r_{3,12}
10 r_{1,4} - r_{1,5} + r_{3,10} - r_{3,12}
11 r_{1,4} - r_{1,5} - r_{3,10} + r_{3,12}
12 \phi_{2,8,9}
13
       \phi_{1,2,3}
14 \phi_{1,2,7} - \phi_{3,2,7}
15 \phi_{1,2,8} - \phi_{3,2,8}
16 \quad \phi_{6,1,2} + \phi_{4,1,2} + \phi_{5,1,2} - \phi_{4,1,5} - \phi_{4,1,6} - \phi_{5,1,6} + \phi_{11,3,2} + \phi_{10,3,2} + \phi_{12,3,2} - \phi_{10,3,12}
         -\phi_{10,3,11} - \phi_{12,3,11}
17 \quad \phi_{6,1,2} + \phi_{4,1,2} + \phi_{5,1,2} - \phi_{4,1,5} - \phi_{4,1,6} - \phi_{5,1,6} - \phi_{11,3,2} - \phi_{10,3,2} - \phi_{12,3,2} + \phi_{10,3,12}
         +\phi_{10,3,11}+\phi_{12,3,11}
18 2\phi_{6,1,2} - \phi_{4,1,2} - \phi_{5,1,2} + 2\phi_{11,3,2} - \phi_{10,3,2} - \phi_{12,3,2}
19 2\phi_{6,1,2} - \phi_{4,1,2} - \phi_{5,1,2} - 2\phi_{11,3,2} + \phi_{10,3,2} + \phi_{12,3,2}
20 \phi_{4,1,2} - \phi_{5,1,2} + \phi_{10,3,2} - \phi_{12,3,2}
21 \phi_{4,1,2} - \phi_{5,1,2} - \phi_{10,3,2} + \phi_{12,3,2}
22 2\phi_{4,1,5} - \phi_{4,1,6} - \phi_{5,1,6} + 2\phi_{10,3,12} - \phi_{10,3,11} - \phi_{12,3,11}
23 2\phi_{4,1,5} - \phi_{4,1,6} - \phi_{5,1,6} - 2\phi_{10,3,12} + \phi_{10,3,11} + \phi_{12,3,11}
24 \phi_{4,1,6} - \phi_{5,1,6} + \phi_{10,3,11} - \phi_{12,3,11}
25 \phi_{4,1,6} - \phi_{5,1,6} - \phi_{10,3,11} + \phi_{12,3,11}
26 \tau_{9,8,2,7}
27 \tau_{4,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{10,3,2,1} + \tau_{11,3,2,1} + \tau_{12,3,2,1}
28
       \tau_{4,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,3} - \tau_{10,3,2,1} - \tau_{11,3,2,1} - \tau_{12,3,2,1}
29
       \gamma_{7,2,1,3}
```

 $30 \quad \gamma_{8,2,1,3}$

Table S293: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-2.39592864	0.51179667	0.00000000
2	\mathbf{C}	0.00000000	-1.10217789	0.00000000
3	\mathbf{C}	2.39592869	0.51179661	0.00000000
4	Η	-4.09939241	-0.65278475	-0.00000000
5	Η	-2.45820670	1.73037440	-1.66734556
6	Η	-2.45820670	1.73037440	1.66734556
7	Η	-0.00000041	-2.34011719	1.65598761
8	Η	-0.00000041	-2.34011719	-1.65598761
9	Η	4.09939243	-0.65278485	0.00000000
10	Η	2.45820678	1.73037434	1.66734556
11	Η	2.45820678	1.73037434	-1.66734556

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	CCSD(T)/	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	CCSD(T)/	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc-pVTZ	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3107.75	3132.57	3107.70	3107.70	3257.73	3107.61	3107.61
$\omega_2(a_1)$	3033.74	3051.22	3033.60	3033.60	3171.94	3033.46	3033.46
$\omega_3(a_1)$	3028.77	3040.48	3028.95	3028.95	3161.66	3029.09	3029.09
$\omega_4(a_1)$	1518.58	1519.97	1518.41	1518.41	1530.60	1518.52	1518.52
$\omega_5(a_1)$	1496.33	1497.26	1496.47	1496.47	1508.94	1496.34	1496.34
$\omega_6(a_1)$	1420.81	1414.04	1420.81	1420.81	1441.24	1420.87	1420.87
$\omega_7(a_1)$	1181.29	1178.69	1181.33	1181.33	1197.09	1181.28	1181.39
$\omega_8(a_1)$	885.78	885.83	885.79	885.79	911.77	886.10	885.96
$\omega_9(a_1)$	362.53	360.93	362.54	362.54	370.89	362.55	362.55
$\omega_{10}(a_2)$	3093.71	3120.11	3093.70	3093.70	3245.64	3093.68	3093.68
$\omega_{11}(a_2)$	1496.59	1499.09	1496.57	1496.57	1508.02	1496.64	1496.64
$\omega_{12}(a_2)$	1319.32	1319.47	1319.33	1319.33	1332.92	1319.31	1319.31
$\omega_{13}(a_2)$	906.61	906.42	906.63	906.63	919.24	906.63	906.63
$\omega_{14}(a_2)$	215.56	219.02	215.56	215.56	232.17	215.60	215.60
$\omega_{15}(b_1)$	3104.68	3129.58	3104.68	3104.68	3254.75	3104.54	3104.54
$\omega_{16}(b_1)$	3061.46	3088.50	3061.46	3061.46	3213.09	3061.57	3061.57
$\omega_{17}(b_1)$	1513.81	1517.04	1513.80	1513.80	1525.34	1513.83	1513.83
$\omega_{18}(b_1)$	1217.54	1213.24	1217.56	1217.56	1231.87	1217.56	1217.56
$\omega_{19}(b_1)$	748.63	749.35	748.63	748.64	763.57	748.67	748.67
$\omega_{20}(b_1)$	273.41	277.18	273.42	273.41	291.22	273.47	273.45
$\omega_{21}(b_2)$	3105.03	3130.85	3105.02	3105.02	3255.30	3104.95	3104.95
$\omega_{22}(b_2)$	3026.70	3040.09	3026.71	3026.71	3160.07	3026.71	3026.71
$\omega_{23}(b_2)$	1503.87	1506.01	1503.86	1503.86	1515.87	1503.75	1503.75
$\omega_{24}(b_2)$	1407.52	1398.58	1407.36	1407.36	1434.35	1406.58	1406.58
$\omega_{25}(b_2)$	1367.14	1359.66	1367.30	1367.30	1385.51	1367.78	1367.78
$\omega_{26}(b_2)$	1074.04	1074.70	1074.07	1074.07	1105.78	1074.72	1074.72
$\omega_{27}(b_2)$	928.98	928.28	929.00	929.00	942.62	929.13	929.13

Table S294: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3122.61	3107.74	3107.74
$\omega_2(a_1)$	3048.81	3033.45	3033.45
$\omega_3(a_1)$	3046.05	3029.03	3029.03
$\omega_4(a_1)$	1520.67	1518.44	1518.44
$\omega_5(a_1)$	1495.76	1496.39	1496.39
$\omega_6(a_1)$	1429.91	1420.81	1420.81
$\omega_7(a_1)$	1186.12	1181.33	1181.33
$\omega_8(a_1)$	883.94	885.94	885.94
$\omega_9(a_1)$	371.25	362.59	362.59
$\omega_{10}(a_2)$	3108.70	3093.70	3093.70
$\omega_{11}(a_2)$	1496.76	1496.57	1496.57
$\omega_{12}(a_2)$	1322.24	1319.31	1319.31
$\omega_{13}(a_2)$	914.42	906.66	906.66
$\omega_{14}(a_2)$	221.96	215.66	215.66
$\omega_{15}(b_1)$	3120.55	3104.65	3104.65
$\omega_{16}(b_1)$	3072.39	3061.48	3061.48
$\omega_{17}(b_1)$	1514.65	1513.80	1513.80
$\omega_{18}(b_1)$	1225.27	1217.55	1217.55
$\omega_{19}(b_1)$	756.23	748.66	748.66
$\omega_{20}(b_1)$	273.92	273.48	273.48
$\omega_{21}(b_2)$	3119.65	3105.03	3105.03
$\omega_{22}(b_2)$	3045.26	3026.67	3026.67
$\omega_{23}(b_2)$	1503.14	1503.85	1503.85
$\omega_{24}(b_2)$	1412.38	1406.66	1406.66
$\omega_{25}(b_2)$	1375.82	1367.65	1367.65
$\omega_{26}(b_2)$	1066.21	1074.39	1074.39
$\omega_{27}(b_2)$	936.20	929.28	929.28

Table S295: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S296: Symmetrized, unnormalized natural internal coordinates for propane.

1

 $r_{1,2} + r_{2,3}$

```
2
       r_{1,2} - r_{2,3}
3
       r_{1,4} + r_{1,5} + r_{1,6} + r_{3,9} + r_{3,11} + r_{3,10}
4
       r_{1,4} + r_{1,5} + r_{1,6} - r_{3,9} - r_{3,11} - r_{3,10}
5
        2r_{1,4} - r_{1,5} - r_{1,6} + 2r_{3,9} - r_{3,11} - r_{3,10}
6
       2r_{1,4} - r_{1,5} - r_{1,6} - 2r_{3,9} + r_{3,11} + r_{3,10}
7
       r_{1,5} - r_{1,6} + r_{3,11} - r_{3,10}
8
       r_{1,5} - r_{1,6} - r_{3,11} + r_{3,10}
9
       r_{2,7} + r_{2,8}
10 \quad r_{2,7} - r_{2,8}
11 \phi_{1,2,3}
12 \quad \phi_{4,1,2} + \phi_{5,1,2} + \phi_{6,1,2} - \phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} + \phi_{9,3,2} + \phi_{11,3,2} + \phi_{10,3,2} - \phi_{10,3,11}
         -\phi_{9,3,11} - \phi_{9,3,10}
13 \quad \phi_{4,1,2} + \phi_{5,1,2} + \phi_{6,1,2} - \phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} - \phi_{9,3,2} - \phi_{11,3,2} - \phi_{10,3,2} + \phi_{10,3,11}
         +\phi_{9,3,11}+\phi_{9,3,10}
14 2\phi_{4,1,2} - \phi_{5,1,2} - \phi_{6,1,2} + 2\phi_{9,3,2} - \phi_{11,3,2} - \phi_{10,3,2}
15 2\phi_{4,1,2} - \phi_{5,1,2} - \phi_{6,1,2} - 2\phi_{9,3,2} + \phi_{11,3,2} + \phi_{10,3,2}
16 \phi_{5,1,2} - \phi_{6,1,2} + \phi_{11,3,2} - \phi_{10,3,2}
17 \phi_{5,1,2} - \phi_{6,1,2} - \phi_{11,3,2} + \phi_{10,3,2}
18 2\phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} + 2\phi_{10,3,11} - \phi_{9,3,11} - \phi_{9,3,10}
19 2\phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} - 2\phi_{10,3,11} + \phi_{9,3,11} + \phi_{9,3,10}
20 \phi_{4,1,5} - \phi_{4,1,6} + \phi_{9,3,11} - \phi_{9,3,10}
21 \quad \phi_{4,1,5} - \phi_{4,1,6} - \phi_{9,3,11} + \phi_{9,3,10}
22 \quad 4\phi_{7,2,8} - \phi_{7,2,1} - \phi_{7,2,3} - \phi_{8,2,1} - \phi_{8,2,3}
23 \phi_{7,2,1} + \phi_{7,2,3} - \phi_{8,2,1} - \phi_{8,2,3}
24 \phi_{7,2,1} - \phi_{7,2,3} + \phi_{8,2,1} - \phi_{8,2,3}
25 \phi_{7,2,1} - \phi_{7,2,3} - \phi_{8,2,1} + \phi_{8,2,3}
26 \tau_{4,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{9,3,2,1} + \tau_{10,3,2,1} + \tau_{11,3,2,1}
27 \tau_{4,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,3} - \tau_{9,3,2,1} - \tau_{10,3,2,1} - \tau_{11,3,2,1}
```

Table S297: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	С	-3.19156925	0.72327464	-0.00000000
2	С	-1.30268767	-0.96690359	-0.00000000
3	С	1.30844710	-0.21134227	-0.00000000
4	Ν	3.42266953	0.40043186	0.00000000
5	Η	-5.13781563	0.09913705	-0.00000000
6	Η	-2.82071717	2.73416350	-0.00000000
7	Η	-1.66434467	-2.97977677	0.00000000

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVDZ$	cc-pVDZ	cc-pVDZ
$\omega_1(a^{'})$	3262.58	3282.29	3262.58	3262.58	3416.48	3262.54	3262.54
$\omega_{2}(a^{'})$	3202.58	3219.72	3202.57	3202.57	3346.66	3202.59	3202.59
$\omega_{3}(a^{'})$	3164.32	3178.91	3164.33	3164.33	3305.45	3164.32	3164.32
$\omega_{4}(a^{'})$	2271.92	2235.15	2271.89	2271.89	2373.23	2271.91	2271.91
$\omega_{5}(a^{'})$	1659.64	1653.42	1659.63	1659.65	1724.80	1658.42	1658.79
$\omega_{6}(a^{'})$	1447.12	1447.66	1447.04	1447.04	1468.19	1447.91	1447.91
$\omega_7(a^{'})$	1314.40	1313.06	1314.51	1314.48	1334.60	1314.80	1314.33
$\omega_{8}(a^{'})$	1104.14	1101.66	1104.17	1104.17	1124.60	1103.99	1104.01
$\omega_{9}(a^{'})$	873.15	871.30	873.21	873.21	906.59	873.79	873.79
$\omega_{10}(a^{'})$	559.50	559.08	559.51	559.52	569.25	559.59	559.54
$\omega_{11}(a^{'})$	227.13	226.77	227.14	227.13	231.47	227.13	227.13
$\omega_{12}(a^{''})$	993.49	1012.85	993.35	993.38	1003.89	993.48	993.48
$\omega_{13}(a^{''})$	969.04	972.04	969.15	969.15	973.70	969.03	969.03
$\omega_{14}(a^{''})$	688.12	700.45	688.14	688.12	694.49	688.12	688.13
$\omega_{15}(a^{''})$	337.74	336.95	337.76	337.74	341.72	337.80	337.76

Table S298: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

Table S299: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a^{'})$	3279.72	3262.57	3262.57
$\omega_{2}(a^{'})$	3213.54	3202.54	3202.54
$\omega_{3}(a^{'})$	3178.33	3164.33	3164.33
$\omega_{4}(a^{'})$	2290.35	2271.42	2271.57
$\omega_{5}(a^{'})$	1653.73	1659.55	1659.84
$\omega_{6}(a^{'})$	1439.27	1447.18	1447.18
$\omega_7(a^{'})$	1314.01	1314.86	1314.49
$\omega_{8}(a^{'})$	1100.55	1104.16	1104.16
$\omega_{9}(a^{'})$	865.49	873.87	873.49
$\omega_{10}(a^{'})$	571.33	559.45	559.53
$\omega_{11}(a^{'})$	233.39	227.41	227.23
$\omega_{12}(a^{''})$	1009.03	992.73	992.75
$\omega_{13}(a^{''})$	988.72	969.56	969.56
$\omega_{14}(a^{''})$	711.82	688.29	688.46
$\omega_{15}(a^{''})$	349.30	338.14	337.73
Table S300: Symmetrized, unnormalized natural internal coordinates for acrylonitrile.

- $1 r_{1,2}$
- $2 r_{2,3}$
- $3 r_{3,4}$
- $4 r_{2,7}$
- 5 $r_{1,5} + r_{1,6}$
- $6 r_{1,5} r_{1,6}$
- 7 $2\phi_{1,2,3} \phi_{1,2,7} \phi_{3,2,7}$
- 8 $\phi_{1,2,7} \phi_{3,2,7}$
- 9 $2\phi_{6,1,5} \phi_{2,1,6} \phi_{2,1,5}$
- 10 $\phi_{2,1,6} \phi_{2,1,5}$
- 11 $\tau_{6,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,7} + \tau_{5,1,2,7}$
- $12 \quad \gamma_{2,1,6,5}$
- 13 $\gamma_{7,2,3,1}$
- 14 $\alpha_{1,2,3,4}^x$
- 15 $\alpha^{y}_{1,2,3,4}$

S4.76 trimethylamine

Table S301: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Х	-2.60567339	0.00000000	0.00000000
2	Ν	-0.71594686	0.00000000	0.00000000
3	С	0.17737959	-1.30146773	-2.25420824
4	\mathbf{C}	0.17737959	2.60293546	0.00000000
5	С	0.17737959	-1.30146773	2.25420824
6	Η	2.26161442	-1.36371156	-2.36201770
7	Η	-0.52888531	-0.34189560	-3.93805529
8	Η	-0.52888531	-3.23950812	-2.26511792
9	Η	2.26161442	2.72742311	0.00000000
10	Η	-0.52888531	3.58140372	1.67293737
11	Η	-0.52888531	3.58140372	-1.67293737
12	Η	2.26161442	-1.36371156	2.36201770
13	Η	-0.52888531	-3.23950812	2.26511792
14	Η	-0.52888531	-0.34189560	3.93805529

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVDZ$	cc- $pVDZ$	cc- $pVDZ$
$\omega_1(a_1)$	3071.93	3089.56	3071.61	3071.61	3211.95	3071.51	3071.51
$\omega_2(a_1)$	2934.80	2949.46	2935.12	2935.12	3070.53	2935.15	2935.15
$\omega_3(a_1)$	1508.19	1511.16	1508.14	1508.14	1520.04	1507.59	1507.59
$\omega_4(a_1)$	1478.58	1472.09	1478.61	1478.61	1500.16	1479.20	1479.20
$\omega_5(a_1)$	1215.49	1209.14	1215.49	1215.50	1230.71	1215.59	1215.59
$\omega_6(a_1)$	847.53	843.27	847.58	847.56	871.22	847.65	847.65
$\omega_7(a_1)$	373.11	367.48	373.12	373.12	382.53	373.17	373.14
$\omega_8(a_2)$	3112.25	3137.91	3112.25	3112.25	3259.78	3112.22	3112.22
$\omega_9(a_2)$	1496.49	1498.35	1496.49	1496.49	1507.63	1496.55	1496.55
$\omega_{10}(a_2)$	1063.58	1062.40	1063.60	1063.60	1074.64	1063.61	1063.61
$\omega_{11}(a_2)$	240.77	247.43	240.78	240.78	247.88	240.80	240.78
$\omega_{12a}(e)$	3116.44	3140.74	3116.43	3116.43	3264.03	3116.40	3116.40
$\omega_{12\mathrm{b}}(e)$	3116.44	3140.69	3116.43	3116.43	3263.96	3116.40	3116.40
$\omega_{13a}(e)$	3068.49	3088.66	3068.19	3068.19	3208.78	3068.07	3068.07
$\omega_{13b}(e)$	3068.49	3088.65	3068.19	3068.19	3208.77	3068.06	3068.06
$\omega_{14a}(e)$	2925.30	2943.19	2925.61	2925.61	3058.65	2925.67	2925.67
$\omega_{14\mathrm{b}}(e)$	2925.30	2943.11	2925.61	2925.61	3058.58	2925.67	2925.67
$\omega_{15a}(e)$	1517.12	1519.91	1517.11	1517.11	1528.31	1517.10	1517.10
$\omega_{15\mathrm{b}}(e)$	1517.12	1519.88	1517.11	1517.11	1528.28	1517.10	1517.10
$\omega_{16a}(e)$	1488.69	1491.20	1488.67	1488.67	1499.47	1488.74	1488.74
$\omega_{16\mathrm{b}}(e)$	1488.68	1491.17	1488.67	1488.67	1499.45	1488.74	1488.74
$\omega_{17a}(e)$	1436.74	1430.50	1436.63	1436.63	1458.82	1436.45	1436.45
$\omega_{17\mathrm{b}}(e)$	1436.74	1430.47	1436.63	1436.63	1458.80	1436.45	1436.45
$\omega_{18a}(e)$	1309.86	1301.46	1309.96	1309.96	1334.89	1309.74	1310.17
$\omega_{18\mathrm{b}}(e)$	1309.86	1301.45	1309.96	1309.96	1334.88	1309.74	1310.17
$\omega_{19a}(e)$	1120.56	1119.47	1120.57	1120.57	1134.44	1120.59	1120.59
$\omega_{19\mathrm{b}}(e)$	1120.56	1119.46	1120.57	1120.57	1134.43	1120.59	1120.59
$\omega_{20a}(e)$	1065.00	1064.38	1065.07	1065.07	1089.04	1065.80	1065.27
$\omega_{20\mathrm{b}}(e)$	1065.00	1064.36	1065.07	1065.07	1089.02	1065.80	1065.27
$\omega_{21a}(e)$	417.26	414.46	417.24	417.27	425.26	417.24	417.28
$\omega_{21\mathrm{b}}(e)$	417.26	414.43	417.23	417.27	425.24	417.24	417.28
$\omega_{22a}(e)$	279.99	283.96	280.06	280.00	289.31	280.07	280.00
$\omega_{22b}(e)$	279.99	283.94	280.06	280.00	289.30	280.07	280.00

Table S302: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	D	CMA 0A	CINEA OA
	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6-31\mathrm{G}(2df,p)$	$6-31\mathrm{G}(2df,p)$	6-31G(2df,p)
$\omega_1(a_1)$	3088.27	3071.83	3071.83
$\omega_2(a_1)$	2951.59	2934.87	2934.87
$\omega_3(a_1)$	1508.70	1508.03	1508.03
$\omega_4(a_1)$	1489.86	1478.74	1478.74
$\omega_5(a_1)$	1220.82	1215.50	1215.50
$\omega_6(a_1)$	845.62	847.58	847.59
$\omega_7(a_1)$	384.44	373.23	373.19
$\omega_8(a_2)$	3127.82	3112.24	3112.24
$\omega_9(a_2)$	1492.46	1496.47	1496.47
$\omega_{10}(a_2)$	1072.35	1063.61	1063.64
$\omega_{11}(a_2)$	254.42	240.96	240.83
$\omega_{12a}(e)$	3135.82	3116.38	3116.38
$\omega_{12b}(e)$	3129.98	3116.30	3116.30
$\omega_{13a}(e)$	3085.10	3068.49	3068.49
$\omega_{13b}(e)$	3083.82	3068.44	3068.44
$\omega_{14a}(e)$	2942.85	2925.35	2925.35
$\omega_{14\mathrm{b}}(e)$	2932.73	2925.27	2925.27
$\omega_{15a}(e)$	1519.47	1516.64	1516.64
$\omega_{15b}(e)$	1510.60	1516.28	1516.28
$\omega_{16a}(e)$	1491.96	1489.20	1489.20
$\omega_{16b}(e)$	1483.10	1488.61	1488.61
$\omega_{17a}(e)$	1448.64	1437.37	1437.37
$\omega_{17b}(e)$	1442.35	1436.68	1436.68
$\omega_{18a}(e)$	1306.24	1309.44	1309.44
$\omega_{18b}(e)$	1304.72	1309.31	1309.31
$\omega_{19a}(e)$	1128.38	1120.37	1120.38
$\omega_{19b}(e)$	1125.51	1120.08	1120.08
$\omega_{20a}(e)$	1061.71	1066.47	1066.47
$\omega_{20\mathrm{b}}(e)$	1060.97	1066.46	1066.46
$\omega_{21a}(e)$	429.55	417.32	417.32
$\omega_{21\mathrm{b}}(e)$	426.69	417.20	417.32
$\omega_{22a}(e)$	293.03	280.26	280.10
$\omega_{22b}(e)$	267.14	280.11	280.04

Table S303: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S304: Symmetrized, unnormalized natural internal coordinates for trimethylamine.

```
1 \qquad r_{2,3} + r_{2,4} + r_{2,5}
```

```
2 2r_{2,3} - r_{2,4} - r_{2,5}
```

- $3 r_{2,4} r_{2,5}$
- $4 \qquad r_{3,6} + r_{3,7} + r_{3,8} + r_{4,9} + r_{4,10} + r_{4,11} + r_{5,12} + r_{5,13} + r_{5,14}$
- 5 $2r_{3,6} + 2r_{3,7} + 2r_{3,8} r_{4,9} r_{4,10} r_{4,11} r_{5,12} r_{5,13} r_{5,14}$
- $6 \qquad r_{4,9} + r_{4,10} + r_{4,11} r_{5,12} r_{5,13} r_{5,14}$
- $7 \qquad 2r_{3,6} r_{3,7} r_{3,8} + 2r_{4,9} r_{4,10} r_{4,11} + 2r_{5,12} r_{5,13} r_{5,14}$
- 8 $4r_{3,6} 2r_{3,7} 2r_{3,8} 2r_{4,9} + r_{4,10} + r_{4,11} 2r_{5,12} + r_{5,13} + r_{5,14}$
- 9 $2r_{4,9} r_{4,10} r_{4,11} 2r_{5,12} + r_{5,13} + r_{5,14}$
- $10 \quad r_{3,7} r_{3,8} + r_{4,10} r_{4,11} + r_{5,13} r_{5,14}$
- 11 $2r_{3,7} 2r_{3,8} r_{4,10} + r_{4,11} r_{5,13} + r_{5,14}$
- $12 \quad r_{4,10} r_{4,11} r_{5,13} + r_{5,14}$
- 13 $2\phi_{4,2,5} \phi_{3,2,4} \phi_{3,2,5}$
- 14 $\phi_{3,2,4} \phi_{3,2,5}$
- 15 $\phi_{4,2,5} + \phi_{3,2,4} + \phi_{3,2,5} \gamma_{3,2,4,5} \gamma_{4,2,5,3} \gamma_{5,2,3,4}$
- 16 $\phi_{6,3,2} + \phi_{7,3,2} + \phi_{8,3,2} \phi_{7,3,8} \phi_{6,3,8} \phi_{6,3,7} + \phi_{9,4,2} + \phi_{10,4,2} + \phi_{11,4,2} \phi_{10,4,11} \phi_{9,4,11} \phi_{9,4,10} + \phi_{12,5,2} + \phi_{13,5,2} + \phi_{14,5,2} \phi_{13,5,14} \phi_{12,5,14} \phi_{12,5,13}$
- $\begin{array}{rrrr} 17 & 2\phi_{6,3,2}+2\phi_{7,3,2}+2\phi_{8,3,2}-2\phi_{7,3,8}-2\phi_{6,3,8}-2\phi_{6,3,7}-\phi_{9,4,2}-\phi_{10,4,2}-\phi_{11,4,2}+\phi_{10,4,11}\\ & +\phi_{9,4,11}+\phi_{9,4,10}-\phi_{12,5,2}-\phi_{13,5,2}-\phi_{14,5,2}+\phi_{13,5,14}+\phi_{12,5,14}+\phi_{12,5,13} \end{array}$
- 18 $\phi_{9,4,2} + \phi_{10,4,2} + \phi_{11,4,2} \phi_{10,4,11} \phi_{9,4,11} \phi_{9,4,10} \phi_{12,5,2} \phi_{13,5,2} \phi_{14,5,2} + \phi_{13,5,14} + \phi_{12,5,14} + \phi_{12,5,13}$
- 19 $2\phi_{6,3,2} \phi_{7,3,2} \phi_{8,3,2} + 2\phi_{9,4,2} \phi_{10,4,2} \phi_{11,4,2} + 2\phi_{12,5,2} \phi_{13,5,2} \phi_{14,5,2}$
- 20 $4\phi_{6,3,2} 2\phi_{7,3,2} 2\phi_{8,3,2} 2\phi_{9,4,2} + \phi_{10,4,2} + \phi_{11,4,2} 2\phi_{12,5,2} + \phi_{13,5,2} + \phi_{14,5,2}$
- 21 $2\phi_{9,4,2} \phi_{10,4,2} \phi_{11,4,2} 2\phi_{12,5,2} + \phi_{13,5,2} + \phi_{14,5,2}$
- 22 $\phi_{7,3,2} \phi_{8,3,2} + \phi_{10,4,2} \phi_{11,4,2} + \phi_{13,5,2} \phi_{14,5,2}$
- 23 $2\phi_{7,3,2} 2\phi_{8,3,2} \phi_{10,4,2} + \phi_{11,4,2} \phi_{13,5,2} + \phi_{14,5,2}$
- 24 $\phi_{10,4,2} \phi_{11,4,2} \phi_{13,5,2} + \phi_{14,5,2}$
- $25 \quad 2\phi_{7,3,8} \phi_{6,3,8} \phi_{6,3,7} + 2\phi_{10,4,11} \phi_{9,4,11} \phi_{9,4,10} + 2\phi_{13,5,14} \phi_{12,5,14} \phi_{12,5,13}$
- $26 \quad 4\phi_{7,3,8} 2\phi_{6,3,8} 2\phi_{6,3,7} 2\phi_{10,4,11} + \phi_{9,4,11} + \phi_{9,4,10} 2\phi_{13,5,14} + \phi_{12,5,14} + \phi_{12,5,13} + \phi_{12,5,14} + \phi_{12,5,14}$
- 27 $2\phi_{10,4,11} \phi_{9,4,11} \phi_{9,4,10} 2\phi_{13,5,14} + \phi_{12,5,14} + \phi_{12,5,13}$
- 28 $\phi_{6,3,8} \phi_{6,3,7} + \phi_{9,4,11} \phi_{9,4,10} + \phi_{12,5,14} \phi_{12,5,13}$
- 29 $2\phi_{6,3,8} 2\phi_{6,3,7} \phi_{9,4,11} + \phi_{9,4,10} \phi_{12,5,14} + \phi_{12,5,13}$
- $30 \quad \phi_{9,4,11} \phi_{9,4,10} \phi_{12,5,14} + \phi_{12,5,13}$
- 31 $\tau_{6,3,2,4} + \tau_{6,3,2,5} + \tau_{7,3,2,4} + \tau_{7,3,2,5} + \tau_{8,3,2,4} + \tau_{8,3,2,5} + \tau_{9,4,2,5} + \tau_{9,4,2,3} + \tau_{10,4,2,5} + \tau_{10,4,2,3} + \tau_{11,4,2,5} + \tau_{11,4,2,3} + \tau_{12,5,2,3} + \tau_{12,5,2,4} + \tau_{13,5,2,3} + \tau_{13,5,2,4} + \tau_{14,5,2,3} + \tau_{14,5,2,4}$
- $\begin{array}{l} 32 \quad 2\tau_{6,3,2,4} + 2\tau_{6,3,2,5} + 2\tau_{7,3,2,4} + 2\tau_{7,3,2,5} + 2\tau_{8,3,2,4} + 2\tau_{8,3,2,5} \tau_{9,4,2,5} \tau_{9,4,2,3} \tau_{10,4,2,5} \tau_{10,4,2,5} \\ -\tau_{11,4,2,5} \tau_{11,4,2,3} \tau_{12,5,2,3} \tau_{12,5,2,4} \tau_{13,5,2,3} \tau_{13,5,2,4} \tau_{14,5,2,3} \tau_{14,5,2,4} \end{array}$
- $33 \quad \tau_{9,4,2,5} + \tau_{9,4,2,3} + \tau_{10,4,2,5} + \tau_{10,4,2,3} + \tau_{11,4,2,5} + \tau_{11,4,2,3} \tau_{12,5,2,3} \tau_{12,5,2,4} \tau_{13,5,2,3} \tau_{13,5,2,4} \\ \tau_{14,5,2,3} \tau_{14,5,2,4}$

S4.77 isobutane

Table S305: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Η	0.00000456	-2.77586961	0.00000000
2	С	0.00000456	-0.70455970	0.00000000
3	С	-1.37291926	0.20069470	-2.37795577
4	С	-1.37291926	0.20069470	2.37795577
5	С	2.74583331	0.20069470	0.00000000
6	Η	-1.40906973	2.26831964	-2.44058129
7	Η	-3.32653703	-0.46815497	-2.41690302
8	Η	-0.42983254	-0.46815497	-4.08931064
9	Η	-1.40906973	2.26831964	2.44058129
10	Η	-0.42983254	-0.46815497	4.08931064
11	Η	-3.32653703	-0.46815497	2.41690302
12	Η	2.81815313	2.26831964	0.00000000
13	Η	3.75636436	-0.46815497	-1.67240762
14	Н	3.75636436	-0.46815497	1.67240762

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVDZ$	cc- $pVDZ$	cc-pVDZ
$\omega_1(a_1)$	3097.55	3121.02	3097.48	3097.48	3245.40	3097.31	3097.31
$\omega_2(a_1)$	3024.21	3043.14	3022.65	3022.65	3160.83	3024.19	3024.19
$\omega_3(a_1)$	3019.64	3033.52	3021.26	3021.26	3155.38	3019.85	3019.85
$\omega_4(a_1)$	1518.97	1521.58	1518.96	1518.96	1530.25	1518.99	1518.99
$\omega_5(a_1)$	1425.66	1417.32	1425.66	1425.66	1446.50	1425.64	1425.64
$\omega_6(a_1)$	1214.05	1208.18	1214.06	1214.06	1229.12	1214.09	1214.09
$\omega_7(a_1)$	809.17	808.00	809.19	809.19	833.56	809.30	809.30
$\omega_8(a_1)$	424.86	422.51	424.87	424.87	436.38	424.90	424.90
$\omega_9(a_2)$	3098.77	3124.78	3098.76	3098.76	3246.96	3098.73	3098.73
$\omega_{10}(a_2)$	1488.02	1488.90	1488.01	1488.01	1498.60	1488.08	1488.08
$\omega_{11}(a_2)$	952.43	950.74	952.45	952.45	965.08	952.46	952.46
$\omega_{12}(a_2)$	200.88	205.14	200.88	200.88	220.09	200.90	200.90
$\omega_{13a}(e)$	3102.64	3127.37	3102.63	3102.63	3251.05	3102.60	3102.60
$\omega_{13\mathrm{b}}(e)$	3102.63	3127.30	3102.63	3102.63	3250.97	3102.60	3102.60
$\omega_{14a}(e)$	3088.15	3113.83	3088.11	3088.11	3237.33	3088.03	3088.03
$\omega_{14\mathrm{b}}(e)$	3088.14	3113.77	3088.11	3088.11	3237.28	3088.03	3088.03
$\omega_{15a}(e)$	3018.86	3031.65	3018.89	3018.89	3150.70	3018.91	3018.91
$\omega_{15\mathrm{b}}(e)$	3018.85	3031.61	3018.89	3018.89	3150.65	3018.91	3018.91
$\omega_{16a}(e)$	1512.26	1513.98	1512.23	1512.23	1524.04	1512.11	1512.11
$\omega_{16b}(e)$	1512.26	1513.98	1512.22	1512.22	1524.03	1512.10	1512.10
$\omega_{17a}(e)$	1493.69	1495.18	1493.68	1493.68	1504.83	1493.73	1493.73
$\omega_{17\mathrm{b}}(e)$	1493.68	1495.16	1493.67	1493.67	1504.81	1493.73	1493.73
$\omega_{18a}(e)$	1401.61	1391.22	1401.46	1401.46	1426.86	1400.62	1400.62
$\omega_{18b}(e)$	1401.61	1391.20	1401.46	1401.46	1426.84	1400.62	1400.62
$\omega_{19\mathrm{a}}(e)$	1361.44	1353.29	1361.57	1361.57	1382.69	1362.08	1362.08
$\omega_{19\mathrm{b}}(e)$	1361.44	1353.29	1361.57	1361.57	1382.66	1362.08	1362.08
$\omega_{20a}(e)$	1199.55	1196.84	1199.61	1199.62	1220.68	1199.63	1199.96
$\omega_{20\mathrm{b}}(e)$	1199.55	1196.83	1199.61	1199.62	1220.67	1199.63	1199.96
$\omega_{21a}(e)$	984.50	983.83	984.53	984.52	1009.08	985.14	984.74
$\omega_{21\mathrm{b}}(e)$	984.50	983.81	984.53	984.52	1009.07	985.13	984.73
$\omega_{22a}(e)$	921.91	920.33	921.93	921.93	937.06	922.18	922.18
$\omega_{22\mathrm{b}}(e)$	921.90	920.33	921.92	921.92	937.06	922.18	922.18
$\omega_{23a}(e)$	357.91	356.10	357.90	357.90	368.03	357.83	357.83
$\omega_{23\mathrm{b}}(e)$	357.90	356.09	357.90	357.90	368.00	357.83	357.83
$\omega_{24a}(e)$	259.53	263.45	259.56	259.56	276.17	259.70	259.70
$\omega_{24\mathrm{b}}(e)$	259.52	263.45	259.55	259.55	276.16	259.70	259.70

Table S306: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

Table S307: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2df,p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3112.38	3097.52	3097.52
$\omega_2(a_1)$	3043.43	3023.98	3023.98
$\omega_3(a_1)$	3026.58	3019.87	3019.87
$\omega_4(a_1)$	1519.61	1518.97	1518.97
$\omega_5(a_1)$	1436.77	1425.64	1425.64
$\omega_6(a_1)$	1221.91	1214.05	1214.05
$\omega_7(a_1)$	809.21	809.26	809.26
$\omega_8(a_1)$	435.98	424.94	424.94
$\omega_9(a_2)$	3112.12	3098.76	3098.76
$\omega_{10}(a_2)$	1485.70	1487.99	1487.99
$\omega_{11}(a_2)$	962.00	952.48	952.48
$\omega_{12}(a_2)$	212.59	201.01	201.01
$\omega_{13a}(e)$	3118.03	3102.59	3102.59
$\omega_{13b}(e)$	3114.14	3102.54	3102.54
$\omega_{14a}(e)$	3100.41	3088.22	3088.22
$\omega_{14\mathrm{b}}(e)$	3099.38	3088.12	3088.12
$\omega_{15a}(e)$	3036.35	3018.85	3018.85
$\omega_{15b}(e)$	3034.55	3018.83	3018.83
$\omega_{16a}(e)$	1512.95	1512.22	1512.22
$\omega_{16b}(e)$	1509.22	1512.10	1512.10
$\omega_{17a}(e)$	1495.26	1493.75	1493.75
$\omega_{17b}(e)$	1491.73	1493.60	1493.62
$\omega_{18a}(e)$	1410.99	1401.06	1401.06
$\omega_{18b}(e)$	1405.57	1400.69	1400.70
$\omega_{19a}(e)$	1369.59	1362.05	1362.05
$\omega_{19b}(e)$	1366.88	1361.82	1361.82
$\omega_{20a}(e)$	1201.48	1199.45	1199.45
$\omega_{20\mathrm{b}}(e)$	1200.19	1199.35	1199.35
$\omega_{21a}(e)$	982.40	984.77	984.77
$\omega_{21\mathrm{b}}(e)$	982.00	984.74	984.74
$\omega_{22a}(e)$	932.51	922.55	922.56
$\omega_{22b}(e)$	929.36	922.41	922.41
$\omega_{23a}(e)$	366.54	357.88	358.11
$\omega_{23b}(e)$	364.90	357.82	357.90
$\omega_{24a}(e)$	259.22	260.04	259.82
$\omega_{24b}(e)$	228.24	259.96	259.56

Table S308: Symmetrized, unnormalized natural internal coordinates for isobutane.

```
1
             r_{1,2}
2
             r_{2,3} + r_{2,4} + r_{2,5}
3
             2r_{2,3} - r_{2,4} - r_{2,5}
4
            r_{2,4} - r_{2,5}
5
             r_{3,6} + r_{3,7} + r_{3,8} + r_{4,9} + r_{4,10} + r_{4,11} + r_{5,12} + r_{5,13} + r_{5,14}
6
             2r_{3,6} + 2r_{3,7} + 2r_{3,8} - r_{4,9} - r_{4,10} - r_{4,11} - r_{5,12} - r_{5,13} - r_{5,14}
7
             r_{4,9} + r_{4,10} + r_{4,11} - r_{5,12} - r_{5,13} - r_{5,14}
8
             2r_{3,6} - r_{3,7} - r_{3,8} + 2r_{4,9} - r_{4,10} - r_{4,11} + 2r_{5,12} - r_{5,13} - r_{5,14}
9
             4r_{3,6} - 2r_{3,7} - 2r_{3,8} - 2r_{4,9} + r_{4,10} + r_{4,11} - 2r_{5,12} + r_{5,13} + r_{5,14}
10 2r_{4,9} - r_{4,10} - r_{4,11} - 2r_{5,12} + r_{5,13} + r_{5,14}
11 r_{3,7} - r_{3,8} + r_{4,10} - r_{4,11} + r_{5,13} - r_{5,14}
12 2r_{3,7} - 2r_{3,8} - r_{4,10} + r_{4,11} - r_{5,13} + r_{5,14}
13 r_{4,10} - r_{4,11} - r_{5,13} + r_{5,14}
14 \phi_{4,2,5} + \phi_{3,2,4} + \phi_{3,2,5} - \phi_{1,2,3} - \phi_{1,2,4} - \phi_{1,2,5}
15 2\phi_{4,2,5} - \phi_{3,2,4} - \phi_{3,2,5}
16 \phi_{3,2,4} - \phi_{3,2,5}
17 2\phi_{1,2,3} - \phi_{1,2,4} - \phi_{1,2,5}
18 \phi_{1,2,4} - \phi_{1,2,5}
19 \quad \phi_{7,3,8} + \phi_{6,3,7} + \phi_{6,3,8} - \phi_{6,3,2} - \phi_{7,3,2} - \phi_{8,3,2} + \phi_{10,4,11} + \phi_{9,4,10} + \phi_{9,4,11} - \phi_{9,4,22}
              -\phi_{10,4,2} - \phi_{11,4,2} + \phi_{13,5,14} + \phi_{12,5,13} + \phi_{12,5,14} - \phi_{12,5,2} - \phi_{13,5,2} - \phi_{14,5,2}
20 \quad 2\phi_{7,3,8} + 2\phi_{6,3,7} + 2\phi_{6,3,8} - 2\phi_{6,3,2} - 2\phi_{7,3,2} - 2\phi_{8,3,2} - \phi_{10,4,11} - \phi_{9,4,10} - \phi_{9,4,11} + \phi_{9,4,22} - \phi_{10,4,11} - \phi_{1
              +\phi_{10,4,2}+\phi_{11,4,2}-\phi_{13,5,14}-\phi_{12,5,13}-\phi_{12,5,14}+\phi_{12,5,2}+\phi_{13,5,2}+\phi_{14,5,2}
21 \phi_{10,4,11} + \phi_{9,4,10} + \phi_{9,4,11} - \phi_{9,4,2} - \phi_{10,4,2} - \phi_{11,4,2} - \phi_{13,5,14} - \phi_{12,5,13} - \phi_{12,5,14} + \phi_{12,5,2}
             +\phi_{13,5,2}+\phi_{14,5,2}
22 2\phi_{7,3,8} - \phi_{6,3,7} - \phi_{6,3,8} + 2\phi_{10,4,11} - \phi_{9,4,10} - \phi_{9,4,11} + 2\phi_{13,5,14} - \phi_{12,5,13} - \phi_{12,5,14}
23 4\phi_{7,3,8} - 2\phi_{6,3,7} - 2\phi_{6,3,8} - 2\phi_{10,4,11} + \phi_{9,4,10} + \phi_{9,4,11} - 2\phi_{13,5,14} + \phi_{12,5,13} + \phi_{12,5,14}
24 2\phi_{10,4,11} - \phi_{9,4,10} - \phi_{9,4,11} - 2\phi_{13,5,14} + \phi_{12,5,13} + \phi_{12,5,14}
25 \phi_{6,3,7} - \phi_{6,3,8} + \phi_{9,4,10} - \phi_{9,4,11} + \phi_{12,5,13} - \phi_{12,5,14}
26 2\phi_{6,3,7} - 2\phi_{6,3,8} - \phi_{9,4,10} + \phi_{9,4,11} - \phi_{12,5,13} + \phi_{12,5,14}
27 \phi_{9,4,10} - \phi_{9,4,11} - \phi_{12,5,13} + \phi_{12,5,14}
28 \quad 2\phi_{6,3,2} - \phi_{7,3,2} - \phi_{8,3,2} + 2\phi_{9,4,2} - \phi_{10,4,2} - \phi_{11,4,2} + 2\phi_{12,5,2} - \phi_{13,5,2} - \phi_{14,5,2}
29 4\phi_{6,3,2} - 2\phi_{7,3,2} - 2\phi_{8,3,2} - 2\phi_{9,4,2} + \phi_{10,4,2} + \phi_{11,4,2} - 2\phi_{12,5,2} + \phi_{13,5,2} + \phi_{14,5,2}
30 \quad 2\phi_{9,4,2} - \phi_{10,4,2} - \phi_{11,4,2} - 2\phi_{12,5,2} + \phi_{13,5,2} + \phi_{14,5,2}
31 \phi_{7,3,2} - \phi_{8,3,2} + \phi_{10,4,2} - \phi_{11,4,2} + \phi_{13,5,2} - \phi_{14,5,2}
32 2\phi_{7,3,2} - 2\phi_{8,3,2} - \phi_{10,4,2} + \phi_{11,4,2} - \phi_{13,5,2} + \phi_{14,5,2}
33 \phi_{10,4,2} - \phi_{11,4,2} - \phi_{13,5,2} + \phi_{14,5,2}
34 \quad \tau_{6,3,2,4} + \tau_{6,3,2,5} + \tau_{7,3,2,4} + \tau_{7,3,2,5} + \tau_{8,3,2,4} + \tau_{8,3,2,5} + \tau_{9,4,2,5} + \tau_{9,4,2,3} + \tau_{10,4,2,5} + \tau_{10,4,2,3}
              +\tau_{11,4,2,5}+\tau_{11,4,2,3}+\tau_{12,5,2,3}+\tau_{13,5,2,3}+\tau_{14,5,2,3}+\tau_{12,5,2,4}+\tau_{13,5,2,4}+\tau_{14,5,2,4}
35 \quad 2\tau_{6,3,2,4} + 2\tau_{6,3,2,5} + 2\tau_{7,3,2,4} + 2\tau_{7,3,2,5} + 2\tau_{8,3,2,4} + 2\tau_{8,3,2,5} - \tau_{9,4,2,5} - \tau_{9,4,2,3} - \tau_{10,4,2,5} - \tau_{10,4,2,3}
              -\tau_{11,4,2,5} - \tau_{11,4,2,3} - \tau_{12,5,2,3} - \tau_{13,5,2,3} - \tau_{14,5,2,3} - \tau_{12,5,2,4} - \tau_{13,5,2,4} - \tau_{14,5,2,4}
36 \quad \tau_{9,4,2,5} + \tau_{9,4,2,3} + \tau_{10,4,2,5} + \tau_{10,4,2,3} + \tau_{11,4,2,5} + \tau_{11,4,2,3} - \tau_{12,5,2,3} - \tau_{13,5,2,3} - \tau_{14,5,2,3} - \tau_{12,5,2,4}
```

 $-\tau_{13,5,2,4} - \tau_{14,5,2,4}$

Table S309: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-368470476	0.24810108	_0_0000000
T	U	-5.00475470	0.24019100	-0.00000000
2	\mathbf{C}	-1.06753027	-0.97316796	-0.00000000
3	\mathbf{C}	1.06753027	0.97316796	-0.00000000
4	С	3.68479476	-0.24819108	0.00000000
5	Η	-5.18541024	-1.16829556	-0.00000000
6	Η	-3.93796232	1.44128610	-1.66759012
7	Η	-3.93796232	1.44128610	1.66759012
8	Η	-0.86739103	-2.19780833	1.65727692
9	Η	-0.86739103	-2.19780833	-1.65727692
10	Η	0.86739103	2.19780833	1.65727692
11	Η	0.86739103	2.19780833	-1.65727692
12	Η	5.18541024	1.16829556	0.00000000
13	Η	3.93796232	-1.44128610	-1.66759012
14	Н	3.93796232	-1.44128610	1.66759012

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVDZ$	cc- $pVDZ$	cc- $pVDZ$
$\omega_1(a_{\rm g})$	3105.51	3130.85	3105.48	3105.48	3254.39	3105.40	3105.40
$\omega_2(a_{ m g})$	3028.91	3041.16	3028.78	3028.78	3162.80	3028.14	3028.14
$\omega_3(a_{ m g})$	3016.77	3032.41	3016.93	3016.93	3152.35	3017.53	3017.53
$\omega_4(a_{ m g})$	1511.27	1513.15	1511.14	1511.14	1523.44	1511.04	1511.04
$\omega_5(a_{ m g})$	1490.65	1489.39	1490.72	1490.72	1504.85	1490.62	1490.62
$\omega_6(a_{ m g})$	1412.55	1403.95	1411.89	1411.89	1441.47	1409.68	1410.20
$\omega_7(a_{ m g})$	1398.23	1385.10	1398.90	1398.90	1421.98	1400.78	1400.78
$\omega_8(a_{ m g})$	1175.12	1172.34	1175.16	1175.16	1192.43	1175.09	1175.18
$\omega_9(a_{ m g})$	1082.98	1082.83	1083.02	1083.02	1114.33	1083.91	1083.23
$\omega_{10}(a_{ m g})$	848.71	848.58	848.73	848.73	871.43	848.97	848.85
$\omega_{11}(a_{ m g})$	422.71	421.23	422.72	422.72	431.98	422.78	422.77
$\omega_{12}(b_{ m g})$	3097.42	3123.34	3097.42	3097.42	3247.91	3097.34	3097.34
$\omega_{13}(b_{ m g})$	3042.42	3069.35	3042.42	3042.42	3191.81	3042.47	3042.47
$\omega_{14}(b_{ m g})$	1505.13	1507.68	1505.12	1505.12	1516.25	1505.17	1505.17
$\omega_{15}(b_{ m g})$	1332.59	1332.31	1332.59	1332.59	1347.18	1332.58	1332.58
$\omega_{16}(b_{ m g})$	1213.01	1207.91	1213.03	1213.03	1227.19	1213.02	1213.02
$\omega_{17}(b_{ m g})$	807.44	807.23	807.46	807.46	821.57	807.48	807.48
$\omega_{18}(b_{ m g})$	257.32	261.41	257.33	257.32	274.55	257.37	257.37
$\omega_{19}(a_{\mathrm{u}})$	3101.23	3126.12	3101.21	3101.21	3250.80	3101.01	3101.01
$\omega_{20}(a_{\mathrm{u}})$	3064.03	3090.75	3064.05	3064.05	3211.56	3064.21	3064.21
$\omega_{21}(a_{\mathrm{u}})$	1506.70	1509.55	1506.69	1506.69	1517.71	1506.74	1506.74
$\omega_{22}(a_{\mathrm{u}})$	1290.42	1288.70	1290.43	1290.43	1305.47	1290.43	1290.43
$\omega_{23}(a_{\mathrm{u}})$	957.85	957.29	957.87	957.87	970.81	957.87	957.87
$\omega_{24}(a_{\mathrm{u}})$	733.72	734.90	733.73	733.73	750.06	733.76	733.77
$\omega_{25}(a_{\mathrm{u}})$	221.77	224.72	221.78	221.77	236.43	221.80	221.78
$\omega_{26}(a_{\mathrm{u}})$	115.69	117.41	115.69	115.69	124.02	115.76	115.74
$\omega_{27}(b_{\mathrm{u}})$	3106.19	3131.39	3106.16	3106.16	3255.01	3106.07	3106.07
$\omega_{28}(b_{ m u})$	3028.05	3042.96	3026.26	3026.26	3160.36	3027.03	3027.03
$\omega_{29}(b_{ m u})$	3023.91	3039.18	3025.73	3025.73	3157.46	3024.96	3024.96
$\omega_{30}(b_{ m u})$	1515.99	1516.15	1515.76	1515.76	1527.68	1515.99	1515.99
$\omega_{31}(b_{ m u})$	1496.91	1497.32	1497.13	1497.13	1508.92	1496.89	1496.89
$\omega_{32}(b_{ m u})$	1414.03	1406.14	1413.99	1413.99	1436.14	1413.88	1413.88
$\omega_{33}(b_{\mathrm{u}})$	1318.77	1311.28	1318.79	1318.79	1335.23	1318.82	1318.82
$\omega_{34}(b_{\mathrm{u}})$	1032.28	1031.42	1032.31	1032.31	1063.50	1032.28	1032.69
$\omega_{35}(b_{\mathrm{u}})$	977.87	976.61	977.89	977.88	992.01	978.33	977.90
$\omega_{36}(b_{ m u})$	253.43	251.97	253.43	253.43	260.21	253.44	253.44

Table S310: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

Table S311: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2df,p)$	$6\text{-}31\mathrm{G}(2df,p)$
$\omega_1(a_{\rm g})$	3119.95	3105.50	3105.50
$\omega_2(a_{ m g})$	3047.82	3028.84	3028.84
$\omega_3(a_{ m g})$	3027.92	3016.80	3016.80
$\omega_4(a_{\rm g})$	1511.01	1511.19	1511.19
$\omega_5(a_{ m g})$	1491.13	1490.70	1490.70
$\omega_6(a_{\rm g})$	1419.59	1410.75	1410.75
$\omega_7(a_{ m g})$	1404.25	1399.41	1399.41
$\omega_8(a_{\rm g})$	1178.22	1175.15	1175.15
$\omega_9(a_{ m g})$	1074.20	1083.75	1083.75
$\omega_{10}(a_{\rm g})$	849.70	848.90	848.90
$\omega_{11}(a_{\rm g})$	429.24	422.83	422.83
$\omega_{12}(b_{\rm g})$	3112.66	3097.41	3097.41
$\omega_{13}(b_{\rm g})$	3051.73	3042.42	3042.42
$\omega_{14}(b_{ m g})$	1505.39	1505.11	1505.11
$\omega_{15}(b_{ m g})$	1338.03	1332.62	1332.62
$\omega_{16}(b_{\rm g})$	1220.81	1213.03	1213.03
$\omega_{17}(b_{\rm g})$	815.49	807.47	807.48
$\omega_{18}(b_{ m g})$	261.19	257.38	257.35
$\omega_{19}(a_{\mathrm{u}})$	3116.68	3101.21	3101.21
$\omega_{20}(a_{\mathrm{u}})$	3074.58	3064.04	3064.04
$\omega_{21}(a_{\mathrm{u}})$	1506.81	1506.70	1506.70
$\omega_{22}(a_{\mathrm{u}})$	1296.36	1290.43	1290.43
$\omega_{23}(a_{\mathrm{u}})$	966.76	957.85	957.85
$\omega_{24}(a_{\mathrm{u}})$	740.61	733.75	733.75
$\omega_{25}(a_{\rm u})$	223.81	221.83	221.86
$\omega_{26}(a_{\rm u})$	122.05	115.86	115.81
$\omega_{27}(b_{\mathrm{u}})$	3120.84	3106.18	3106.18
$\omega_{28}(b_{\mathrm{u}})$	3047.18	3028.03	3028.03
$\omega_{29}(b_{\mathrm{u}})$	3035.70	3023.91	3023.91
$\omega_{30}(b_{\mathrm{u}})$	1519.46	1515.82	1515.82
$\omega_{31}(b_{\mathrm{u}})$	1496.02	1497.02	1497.02
$\omega_{32}(b_{\mathrm{u}})$	1421.08	1413.92	1413.92
$\omega_{33}(b_{\mathrm{u}})$	1332.82	1318.76	1318.76
$\omega_{34}(b_{\mathrm{u}})$	1027.25	1031.94	1032.51
$\omega_{35}(b_{\mathrm{u}})$	986.10	978.59	978.00
$\omega_{36}(b_{\mathrm{u}})$	261.68	253.49	253.49

Table S312: Symmetrized, unnormalized natural internal coordinates for *n*-butane.

```
1
              r_{1,2} + r_{3,4}
              r_{1,2} - r_{3,4}
2
3
            r_{2,3}
4
           r_{2,8} + r_{2,9} + r_{3,10} + r_{3,11}
5
            r_{2,8} + r_{2,9} - r_{3,10} - r_{3,11}
6
           r_{2,8} - r_{2,9} + r_{3,10} - r_{3,11}
7
           r_{2,8} - r_{2,9} - r_{3,10} + r_{3,11}
8
          r_{1,5} + r_{1,6} + r_{1,7} + r_{4,12} + r_{4,13} + r_{4,14}
9
            r_{1,5} + r_{1,6} + r_{1,7} - r_{4,12} - r_{4,13} - r_{4,14}
10 \quad 2r_{1,5} - r_{1,6} - r_{1,7} + 2r_{4,12} - r_{4,13} - r_{4,14}
11 2r_{1,5} - r_{1,6} - r_{1,7} - 2r_{4,12} + r_{4,13} + r_{4,14}
12 r_{1,6} - r_{1,7} + r_{4,13} - r_{4,14}
13 r_{1,6} - r_{1,7} - r_{4,13} + r_{4,14}
14 \quad \phi_{1,2,3} + \phi_{2,3,4}
15 \phi_{1,2,3} - \phi_{2,3,4}
16 \quad 4\phi_{8,2,9} - \phi_{8,2,1} - \phi_{8,2,3} - \phi_{9,2,1} - \phi_{9,2,3} + 4\phi_{10,3,11} - \phi_{10,3,4} - \phi_{10,3,2} - \phi_{11,3,4} - \phi_{11,3,2} - \phi_{11,3,4} - 
17 \quad 4\phi_{8,2,9} - \phi_{8,2,1} - \phi_{8,2,3} - \phi_{9,2,1} - \phi_{9,2,3} - 4\phi_{10,3,11} + \phi_{10,3,4} + \phi_{10,3,2} + \phi_{11,3,4} + \phi_{11,3,2}
18 \phi_{8,2,1} + \phi_{8,2,3} - \phi_{9,2,1} - \phi_{9,2,3} + \phi_{10,3,4} + \phi_{10,3,2} - \phi_{11,3,4} - \phi_{11,3,2}
19
            \phi_{8,2,1} + \phi_{8,2,3} - \phi_{9,2,1} - \phi_{9,2,3} - \phi_{10,3,4} - \phi_{10,3,2} + \phi_{11,3,4} + \phi_{11,3,2}
20 \phi_{8,2,1} - \phi_{8,2,3} + \phi_{9,2,1} - \phi_{9,2,3} + \phi_{10,3,4} - \phi_{10,3,2} + \phi_{11,3,4} - \phi_{11,3,2}
21
               \phi_{8,2,1} - \phi_{8,2,3} + \phi_{9,2,1} - \phi_{9,2,3} - \phi_{10,3,4} + \phi_{10,3,2} - \phi_{11,3,4} + \phi_{11,3,2}
22
            \phi_{8,2,1} - \phi_{8,2,3} - \phi_{9,2,1} + \phi_{9,2,3} + \phi_{10,3,4} - \phi_{10,3,2} - \phi_{11,3,4} + \phi_{11,3,2}
23
              \phi_{8,2,1} - \phi_{8,2,3} - \phi_{9,2,1} + \phi_{9,2,3} - \phi_{10,3,4} + \phi_{10,3,2} + \phi_{11,3,4} - \phi_{11,3,2}
24 \quad \phi_{5,1,2} + \phi_{6,1,2} + \phi_{7,1,2} - \phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7} + \phi_{12,4,3} + \phi_{13,4,3} + \phi_{14,4,3} - \phi_{13,4,14}
                -\phi_{12,4,13} - \phi_{12,4,14}
25
            \phi_{5,1,2} + \phi_{6,1,2} + \phi_{7,1,2} - \phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7} - \phi_{12,4,3} - \phi_{13,4,3} - \phi_{14,4,3} + \phi_{13,4,14}
                +\phi_{12,4,13} + \phi_{12,4,14}
26 2\phi_{5,1,2} - \phi_{6,1,2} - \phi_{7,1,2} + 2\phi_{12,4,3} - \phi_{13,4,3} - \phi_{14,4,3}
27 \quad 2\phi_{5,1,2} - \phi_{6,1,2} - \phi_{7,1,2} - 2\phi_{12,4,3} + \phi_{13,4,3} + \phi_{14,4,3}
28 \quad \phi_{6,1,2} - \phi_{7,1,2} + \phi_{13,4,3} - \phi_{14,4,3}
29 \phi_{6,1,2} - \phi_{7,1,2} - \phi_{13,4,3} + \phi_{14,4,3}
30 2\phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7} + 2\phi_{13,4,14} - \phi_{12,4,13} - \phi_{12,4,14}
31 2\phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7} - 2\phi_{13,4,14} + \phi_{12,4,13} + \phi_{12,4,14}
32 \phi_{5,1,6} - \phi_{5,1,7} + \phi_{12,4,13} - \phi_{12,4,14}
33 \phi_{5,1,6} - \phi_{5,1,7} - \phi_{12,4,13} + \phi_{12,4,14}
34 \quad \tau_{1,2,3,4}
35 \quad \tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,1,2,3} + \tau_{12,4,3,2} + \tau_{13,4,3,2} + \tau_{14,4,3,2}
36 \quad \tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,1,2,3} - \tau_{12,4,3,2} - \tau_{13,4,3,2} - \tau_{14,4,3,2}
```

Table S313: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Х	0.00000000	0.00000000	-0.25784671
2	0	0.00000000	0.00000000	-2.14757323
3	С	-0.00000000	2.06569237	-0.60265967
4	С	-0.00000000	-2.06569237	-0.60265967
5	С	-0.00000000	-1.36012563	1.87072136
6	С	0.00000000	1.36012563	1.87072136
7	Η	0.00000000	3.87067042	-1.53834798
8	Η	-0.00000000	-3.87067042	-1.53834798
9	Η	0.00000000	-2.60420194	3.48152751
10	Η	0.00000000	2.60420194	3.48152751

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3295.05	3310.29	3295.04	3295.04	3436.78	3295.04	3295.04
$\omega_2(a_1)$	3268.39	3284.34	3268.39	3268.39	3408.99	3268.39	3268.39
$\omega_3(a_1)$	1524.35	1512.97	1524.25	1524.34	1584.70	1521.43	1524.33
$\omega_4(a_1)$	1416.47	1398.89	1416.52	1416.46	1460.40	1418.00	1416.07
$\omega_5(a_1)$	1160.71	1156.62	1160.70	1160.69	1184.72	1160.28	1160.68
$\omega_6(a_1)$	1090.49	1093.31	1090.46	1090.49	1115.85	1092.32	1090.83
$\omega_7(a_1)$	1012.31	1009.76	1012.43	1012.35	1029.31	1012.90	1012.37
$\omega_8(a_1)$	877.52	872.04	877.55	877.55	888.51	877.76	877.76
$\omega_9(a_2)$	860.43	860.49	860.16	860.43	861.40	860.14	860.43
$\omega_{10}(a_2)$	731.42	727.34	731.57	731.33	744.94	731.39	731.39
$\omega_{11}(a_2)$	603.17	607.85	603.36	603.27	602.42	603.61	603.21
$\omega_{12}(b_1)$	844.41	838.39	844.34	844.41	852.79	844.39	844.41
$\omega_{13}(b_1)$	759.65	759.45	759.66	759.65	768.37	759.63	759.63
$\omega_{14}(b_1)$	612.43	624.20	612.52	612.43	619.31	612.49	612.46
$\omega_{15}(b_2)$	3287.59	3303.23	3287.57	3287.57	3429.25	3287.59	3287.59
$\omega_{16}(b_2)$	3257.60	3274.66	3257.62	3257.62	3397.51	3257.60	3257.60
$\omega_{17}(b_2)$	1591.82	1583.30	1591.71	1591.80	1654.25	1591.27	1591.63
$\omega_{18}(b_2)$	1289.60	1285.69	1289.59	1289.61	1303.68	1288.81	1289.60
$\omega_{19}(b_2)$	1217.77	1226.87	1217.73	1217.77	1242.49	1218.84	1217.80
$\omega_{20}(b_2)$	1061.14	1060.69	1061.35	1061.14	1080.63	1061.68	1061.38
$\omega_{21}(b_2)$	882.50	876.44	882.52	882.52	890.67	882.56	882.56

Table S314: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3307.63	3294.74	3294.74
$\omega_2(a_1)$	3276.88	3268.68	3268.68
$\omega_3(a_1)$	1508.42	1523.75	1523.99
$\omega_4(a_1)$	1405.22	1416.69	1416.69
$\omega_5(a_1)$	1162.48	1160.86	1160.69
$\omega_6(a_1)$	1086.88	1090.69	1090.63
$\omega_7(a_1)$	1014.30	1012.45	1012.34
$\omega_8(a_1)$	880.50	877.67	877.67
$\omega_9(a_2)$	879.09	860.30	860.43
$\omega_{10}(a_2)$	740.22	731.39	731.36
$\omega_{11}(a_2)$	613.69	603.38	603.25
$\omega_{12}(b_1)$	847.30	844.19	844.41
$\omega_{13}(b_1)$	767.24	759.84	759.59
$\omega_{14}(b_1)$	622.50	612.51	612.51
$\omega_{15}(b_2)$	3300.94	3287.37	3287.37
$\omega_{16}(b_2)$	3266.59	3257.80	3257.80
$\omega_{17}(b_2)$	1589.28	1591.58	1591.65
$\omega_{18}(b_2)$	1283.72	1289.55	1289.55
$\omega_{19}(b_2)$	1204.02	1216.95	1217.94
$\omega_{20}(b_2)$	1060.81	1062.59	1061.35
$\omega_{21}(b_2)$	886.69	882.51	882.51

Table S315: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S316: Symmetrized, unnormalized natural internal coordinates for furan.

- $1 \qquad r_{5,6} + r_{3,6} + r_{4,5} + r_{2,3} + r_{2,4}$
- $2 \qquad 3r_{5,6} + r_{3,6} + r_{4,5} 3r_{2,3} 3r_{2,4}$
- $3 \qquad 2r_{3,6} 2r_{4,5} + r_{2,3} r_{2,4}$
- $4 \qquad 3r_{5,6} 3r_{3,6} 3r_{4,5} + r_{2,3} + r_{2,4}$
- $5 \qquad r_{3,6} r_{4,5} 2r_{2,3} + 2r_{2,4}$
- $6 r_{3,7} + r_{4,8}$
- $7 r_{3,7} r_{4,8}$
- 8 $r_{6,10} + r_{5,9}$
- 9 $r_{6,10} r_{5,9}$
- $10 \quad 3\phi_{3,2,4} 3\phi_{2,4,5} + \phi_{4,5,6} + \phi_{5,6,3} 3\phi_{6,3,2}$
- $11 \quad -\phi_{2,4,5} + 2\phi_{4,5,6} 2\phi_{5,6,3} + \phi_{6,3,2}$
- 12 $\phi_{7,3,2} \phi_{7,3,6} + \phi_{8,4,2} \phi_{8,4,5}$
- 13 $\phi_{7,3,2} \phi_{7,3,6} \phi_{8,4,2} + \phi_{8,4,5}$
- 14 $\phi_{10,6,3} \phi_{10,6,5} + \phi_{9,5,4} \phi_{9,5,6}$
- 15 $\phi_{10,6,3} \phi_{10,6,5} \phi_{9,5,4} + \phi_{9,5,6}$
- 16 $\tau_{3,2,4,5} 3\tau_{2,4,5,6} + 3\tau_{4,5,6,3} 3\tau_{5,6,3,2} + \tau_{6,3,2,4}$
- $17 \quad -2\tau_{3,2,4,5} + \tau_{2,4,5,6} \tau_{5,6,3,2} + 2\tau_{6,3,2,4}$
- 18 $\tau_{7,3,2,4} + \tau_{8,4,2,3}$
- 19 $au_{10,6,5,9}$
- 20 $\gamma_{7,3,2,6} + \gamma_{8,4,5,2}$
- 21 $\gamma_{10,6,3,5} + \gamma_{9,5,6,4}$

Table S317: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	0.14744698	-2.89273316	0.96440626
2	С	-0.23148527	-1.37327643	-1.03135868
3	\mathbf{C}	0.23148527	1.37327643	-1.03135868
4	С	-0.14744698	2.89273316	0.96440626
5	Η	0.89800063	-2.16342975	2.72536418
6	Η	-0.26186351	-4.89440210	0.86513287
7	Η	-0.89144700	-2.19256181	-2.79330602
8	Η	0.89144700	2.19256181	-2.79330602
9	Η	-0.89800063	2.16342975	2.72536418
10	Η	0.26186351	4.89440210	0.86513287

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	CCSD(T)/	MP2/	MP2/	MP2/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a)$	3238.88	3260.07	3238.87	3238.87	3392.25	3238.83	3238.83
$\omega_2(a)$	3164.73	3181.75	3164.69	3164.69	3307.36	3164.76	3164.76
$\omega_3(a)$	3145.60	3161.34	3145.63	3145.63	3286.20	3145.59	3145.59
$\omega_4(a)$	1666.75	1656.10	1666.68	1666.73	1738.58	1665.85	1666.19
$\omega_5(a)$	1468.45	1465.89	1468.37	1468.37	1492.91	1468.95	1468.95
$\omega_6(a)$	1333.34	1330.94	1333.51	1333.43	1355.94	1333.66	1333.24
$\omega_7(a)$	1058.55	1056.31	1058.29	1058.29	1081.76	1058.38	1058.59
$\omega_8(a)$	998.56	1010.88	998.70	998.82	1010.54	998.63	998.63
$\omega_9(a)$	927.69	933.10	927.67	927.67	935.55	927.60	927.71
$\omega_{10}(a)$	886.41	884.96	886.50	886.49	914.83	886.95	886.65
$\omega_{11}(a)$	742.41	753.07	742.58	742.43	747.07	742.55	742.50
$\omega_{12}(a)$	271.87	267.75	271.84	271.88	279.55	271.80	271.93
$\omega_{13}(a)$	164.78	173.69	164.89	164.82	162.65	165.02	164.80
$\omega_{14}(b)$	3237.22	3258.54	3237.21	3237.21	3390.52	3237.18	3237.18
$\omega_{15}(b)$	3152.06	3169.92	3151.78	3151.78	3294.37	3152.08	3152.08
$\omega_{16}(b)$	3143.07	3159.12	3143.34	3143.34	3283.28	3143.07	3143.07
$\omega_{17}(b)$	1674.83	1666.91	1674.81	1674.83	1734.81	1674.04	1674.55
$\omega_{18}(b)$	1437.31	1435.30	1437.28	1437.28	1456.07	1437.42	1437.42
$\omega_{19}(b)$	1301.44	1299.57	1301.44	1301.42	1323.21	1302.17	1301.52
$\omega_{20}(b)$	1098.92	1095.22	1098.97	1098.97	1117.05	1099.10	1099.10
$\omega_{21}(b)$	1017.20	1032.35	1017.18	1017.21	1028.67	1017.19	1017.19
$\omega_{22}(b)$	929.55	934.49	929.55	929.55	937.35	929.53	929.53
$\omega_{23}(b)$	610.05	611.18	609.97	609.94	619.02	610.07	610.16
$\omega_{24}(b)$	466.84	468.31	467.02	467.01	471.86	467.00	466.88

Table S318: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a)$	3253.35	3238.87	3238.87
$\omega_2(a)$	3175.72	3164.72	3164.72
$\omega_3(a)$	3157.69	3145.58	3145.58
$\omega_4(a)$	1650.47	1666.26	1666.69
$\omega_5(a)$	1459.96	1468.32	1468.32
$\omega_6(a)$	1335.64	1333.74	1333.43
$\omega_7(a)$	1061.63	1057.50	1057.50
$\omega_8(a)$	1014.80	999.42	999.42
$\omega_9(a)$	943.49	927.68	927.68
$\omega_{10}(a)$	880.14	887.22	886.89
$\omega_{11}(a)$	754.52	742.55	742.55
$\omega_{12}(a)$	277.07	271.67	271.93
$\omega_{13}(a)$	175.19	165.30	164.87
$\omega_{14}(b)$	3251.65	3237.21	3237.21
$\omega_{15}(b)$	3161.68	3152.03	3152.03
$\omega_{16}(b)$	3155.55	3143.08	3143.08
$\omega_{17}(b)$	1675.84	1674.57	1674.68
$\omega_{18}(b)$	1432.18	1437.41	1437.41
$\omega_{19}(b)$	1304.78	1301.58	1301.43
$\omega_{20}(b)$	1101.24	1098.97	1098.97
$\omega_{21}(b)$	1031.13	1017.08	1017.08
$\omega_{22}(b)$	944.70	929.70	929.70
$\omega_{23}(b)$	618.71	610.10	610.10
$\omega_{24}(b)$	470.79	466.98	466.98

Table S319: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

_

Table S320: Symmetrized, unnormalized natural internal coordinates for 1,3-butadiene.

1 $r_{1,2} + r_{3,4}$ 2 $r_{1,2} - r_{3,4}$ 3 $r_{2,3}$ 4 $r_{1,5} + r_{1,6} + r_{4,9} + r_{4,10}$ 5 $r_{1,5} + r_{1,6} - r_{4,9} - r_{4,10}$ 6 $r_{1,5} - r_{1,6} + r_{4,9} - r_{4,10}$ $\overline{7}$ $r_{1,5} - r_{1,6} - r_{4,9} + r_{4,10}$ 8 $r_{2,7} + r_{3,8}$ 9 $r_{2,7} - r_{3,8}$ 10 $\phi_{1,2,3} + \phi_{2,3,4}$ 11 $\phi_{1,2,3} - \phi_{2,3,4}$ 12 $2\phi_{5,1,6} - \phi_{5,1,2} - \phi_{6,1,2} + 2\phi_{9,4,10} - \phi_{9,4,3} - \phi_{10,4,3}$ 13 $2\phi_{5,1,6} - \phi_{5,1,2} - \phi_{6,1,2} - 2\phi_{9,4,10} + \phi_{9,4,3} + \phi_{10,4,3}$ 14 $\phi_{5,1,2} - \phi_{6,1,2} + \phi_{9,4,3} - \phi_{10,4,3}$ 15 $\phi_{5,1,2} - \phi_{6,1,2} - \phi_{9,4,3} + \phi_{10,4,3}$ 16 $\phi_{7,2,1} - \phi_{7,2,3} + \phi_{8,3,4} - \phi_{8,3,2}$ 17 $\phi_{7,2,1} - \phi_{7,2,3} - \phi_{8,3,4} + \phi_{8,3,2}$ 18 $\tau_{1,2,3,4}$ 19 $\tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{9,4,3,2} + \tau_{10,4,3,2}$ $20 \quad \tau_{5,1,2,3} + \tau_{6,1,2,3} - \tau_{9,4,3,2} - \tau_{10,4,3,2}$ 21 $\gamma_{2,1,5,6} + \gamma_{3,4,9,10}$ 22 $\gamma_{2,1,5,6} - \gamma_{3,4,9,10}$ 23 $\gamma_{7,2,1,3} + \gamma_{8,3,2,4}$

 $24 \quad \gamma_{7,2,1,3} - \gamma_{8,3,2,4}$

Table S321: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	С	-0.00000000	1.14516104	-0.0000003
2	С	0.00000000	-1.14516104	-0.0000003
3	С	-0.00000000	3.91831350	-0.0000003
4	С	0.00000000	-3.91831350	-0.0000003
5	Η	1.67000200	4.64975861	-0.96417610
6	Η	-1.67000200	4.64975861	-0.96417610
7	Η	-0.00000000	4.64975861	1.92835298
8	Η	0.00000000	-4.64975861	1.92835298
9	Η	1.67000200	-4.64975861	-0.96417610
10	Η	-1.67000200	-4.64975861	-0.96417610

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc-pVTZ	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1^{'})$	3042.19	3054.20	3042.17	3042.17	3171.56	3042.11	3042.11
$\omega_{2}(a_{1}^{'})$	2324.07	2302.31	2324.08	2324.08	2424.81	2324.11	2324.11
$\omega_{3}(a_{1}^{'})$	1420.58	1413.47	1420.60	1420.60	1441.38	1420.60	1420.60
$\omega_4(a_1^{'})$	716.44	714.98	716.45	716.45	746.51	716.60	716.60
$\omega_{5\mathrm{a}}(e^{'})$	3113.29	3136.96	3113.29	3113.29	3261.92	3113.25	3113.25
$\omega_{\rm 5b}(e^{'})$	3113.29	3136.91	3113.29	3113.29	3261.86	3113.25	3113.25
$\omega_{6\mathrm{a}}(e^{'})$	1493.16	1495.35	1493.15	1493.15	1502.46	1493.21	1493.21
$\omega_{6\mathrm{b}}(e^{'})$	1493.15	1495.33	1493.14	1493.14	1502.44	1493.20	1493.20
$\omega_{7\mathrm{a}}(e^{'})$	1067.93	1065.65	1067.95	1067.95	1081.94	1067.97	1067.97
$\omega_{7\mathrm{b}}(e^{'})$	1067.93	1065.64	1067.95	1067.95	1081.93	1067.96	1067.96
$\omega_{8\mathrm{a}}(e^{'})$	197.35	197.41	197.35	197.35	199.15	197.35	197.35
$\omega_{8\mathrm{b}}(e^{'})$	197.34	197.41	197.35	197.35	199.15	197.35	197.35
$\omega_9(a_1^{\prime\prime})$	18.84	19.93	18.84	18.84	19.61	18.84	18.84
$\omega_{10}(a_2^{\prime\prime})$	3042.56	3055.26	3042.56	3042.56	3171.62	3042.51	3042.51
$\omega_{11}(a_2^{\prime\prime})$	1415.88	1408.81	1415.87	1415.87	1439.87	1415.12	1415.12
$\omega_{12}(a_2^{\prime\prime})$	1167.27	1165.94	1167.28	1167.28	1211.81	1168.31	1168.31
$\omega_{13\mathrm{a}}(e^{''})$	3113.85	3137.67	3113.84	3113.84	3262.35	3113.81	3113.81
$\omega_{13\mathrm{b}}(e^{''})$	3113.84	3137.61	3113.84	3113.84	3262.30	3113.81	3113.81
$\omega_{14\mathrm{a}}(e^{''})$	1492.12	1494.22	1492.11	1492.11	1502.12	1492.16	1492.16
$\omega_{14\mathrm{b}}(e^{''})$	1492.11	1494.21	1492.10	1492.10	1502.11	1492.16	1492.16
$\omega_{15\mathrm{a}}(e^{''})$	1046.04	1046.55	1046.05	1046.06	1059.64	1046.08	1046.08
$\omega_{15\mathrm{b}}(e^{''})$	1046.03	1046.54	1046.05	1046.05	1059.63	1046.08	1046.08
$\omega_{16\mathrm{a}}(e^{''})$	348.82	354.29	348.82	348.81	352.81	348.84	348.83
$\omega_{16\mathrm{b}}(e^{''})$	348.80	354.25	348.82	348.81	352.78	348.84	348.83

Table S322: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1^{'})$	3059.53	3042.02	3042.02
$\omega_{2}(a_{1}^{'})$	2324.25	2324.07	2324.17
$\omega_{3}(a_{1}^{'})$	1419.21	1420.71	1420.71
$\omega_4(a_1^{'})$	708.67	716.91	716.58
$\omega_{5\mathrm{a}}(e^{'})$	3125.31	3113.29	3113.29
$\omega_{5\mathrm{b}}(e^{'})$	3125.23	3113.28	3113.28
$\omega_{6\mathrm{a}}(e^{'})$	1483.19	1493.09	1493.09
$\omega_{6\mathrm{b}}(e^{'})$	1483.12	1493.07	1493.07
$\omega_{7\mathrm{a}}(e^{'})$	1068.90	1068.04	1068.04
$\omega_{7\mathrm{b}}(e^{'})$	1068.88	1068.04	1068.04
$\omega_{8\mathrm{a}}(e^{'})$	200.10	197.36	197.36
$\omega_{8\mathrm{b}}(e^{'})$	17.59	18.84	18.84
$\omega_9(a_1^{''})$	200.08	197.36	197.36
$\omega_{10}(a_2^{''})$	3059.68	3042.52	3042.52
$\omega_{11}(a_2^{''})$	1411.48	1415.14	1415.14
$\omega_{12}(a_2^{\prime\prime})$	1141.73	1168.27	1168.27
$\omega_{13\mathrm{a}}(e^{''})$	3125.85	3113.84	3113.84
$\omega_{13\mathrm{b}}(e^{''})$	3125.77	3113.84	3113.84
$\omega_{14\mathrm{a}}(e^{''})$	1482.77	1492.04	1492.04
$\omega_{14\mathrm{b}}(e^{''})$	1482.76	1492.04	1492.04
$\omega_{15\mathrm{a}}(e^{''})$	1043.84	1046.12	1046.14
$\omega_{15\mathrm{b}}(e^{''})$	1043.82	1046.12	1046.14
$\omega_{16\mathrm{a}}(e^{''})$	369.42	348.92	348.86
$\omega_{16\mathrm{b}}(e^{''})$	369.33	348.91	348.85

Table S323: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S324: Symmetrized, unnormalized natural internal coordinates for 2-butyne.

1 $r_{1,2}$ $\mathbf{2}$ $r_{1,3} + r_{2,4}$ 3 $r_{1,3} - r_{2,4}$ 4 $r_{3,6} + r_{3,5} + r_{3,7} + r_{4,10} + r_{4,9} + r_{4,8}$ 5 $r_{3,6} + r_{3,5} + r_{3,7} - r_{4,10} - r_{4,9} - r_{4,8}$ 6 $2r_{3,6} - r_{3,5} - r_{3,7} + 2r_{4,10} - r_{4,9} - r_{4,8}$ 7 $2r_{3,6} - r_{3,5} - r_{3,7} - 2r_{4,10} + r_{4,9} + r_{4,8}$ 8 $r_{3,5} - r_{3,7} + r_{4,9} - r_{4,8}$ 9 $r_{3,5} - r_{3,7} - r_{4,9} + r_{4,8}$ $10 \quad \phi_{6,3,1} + \phi_{5,3,1} + \phi_{7,3,1} - \phi_{5,3,7} - \phi_{6,3,5} - \phi_{6,3,7} + \phi_{10,4,2} + \phi_{9,4,2} + \phi_{8,4,2} - \phi_{8,4,9}$ $-\phi_{10,4,9} - \phi_{10,4,8}$ $11 \quad \phi_{6,3,1} + \phi_{5,3,1} + \phi_{7,3,1} - \phi_{5,3,7} - \phi_{6,3,5} - \phi_{6,3,7} - \phi_{10,4,2} - \phi_{9,4,2} - \phi_{8,4,2} + \phi_{8,4,9}$ $+\phi_{10,4,9}+\phi_{10,4,8}$ 12 $2\phi_{6,3,1} - \phi_{5,3,1} - \phi_{7,3,1} + 2\phi_{10,4,2} - \phi_{9,4,2} - \phi_{8,4,2}$ 13 $2\phi_{6,3,1} - \phi_{5,3,1} - \phi_{7,3,1} - 2\phi_{10,4,2} + \phi_{9,4,2} + \phi_{8,4,2}$ 14 $\phi_{5,3,1} - \phi_{7,3,1} + \phi_{9,4,2} - \phi_{8,4,2}$ 15 $\phi_{5,3,1} - \phi_{7,3,1} - \phi_{9,4,2} + \phi_{8,4,2}$ 16 $2\phi_{5,3,7} - \phi_{6,3,5} - \phi_{6,3,7} + 2\phi_{8,4,9} - \phi_{10,4,9} - \phi_{10,4,8}$ 17 $2\phi_{5,3,7} - \phi_{6,3,5} - \phi_{6,3,7} - 2\phi_{8,4,9} + \phi_{10,4,9} + \phi_{10,4,8}$ 18 $\phi_{6,3,5} - \phi_{6,3,7} + \phi_{10,4,9} - \phi_{10,4,8}$ 19 $\phi_{6,3,5} - \phi_{6,3,7} - \phi_{10,4,9} + \phi_{10,4,8}$ 20 $\tau_{5,3,4,9} + \tau_{6,3,4,10} + \tau_{7,3,4,8}$ 21 $2\alpha_{6,3,1,2}^x - \alpha_{5,3,1,2}^x - \alpha_{7,3,1,2}^x + 2\alpha_{10,4,2,1}^x - \alpha_{9,4,2,1}^x - \alpha_{8,4,2,1}^x$ 22 $2\alpha_{6,3,1,2}^x - \alpha_{5,3,1,2}^x - \alpha_{7,3,1,2}^x - 2\alpha_{10,4,2,1}^x + \alpha_{9,4,2,1}^x + \alpha_{8,4,2,1}^x$ 23 $\alpha_{5,3,1,2}^x - \alpha_{7,3,1,2}^x + \alpha_{9,4,2,1}^x - \alpha_{8,4,2,1}^x$ 24 $\alpha_{5,3,1,2}^x - \alpha_{7,3,1,2}^x - \alpha_{9,4,2,1}^x + \alpha_{8,4,2,1}^x$

Table S325: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	С	-2.14477327	-0.00000001	0.59607608
2	Х	-0.00000000	0.00000000	-0.59997220
3	\mathbf{C}	2.14477327	0.00000001	0.59607608
4	С	0.00000000	-1.41792102	-0.59997220
5	\mathbf{C}	-0.00000000	1.41792102	-0.59997220
6	Η	0.00000005	-2.68099401	-2.19312163
7	Η	-0.00000005	2.68099401	-2.19312163
8	Η	-2.30669887	-0.00000001	2.64760291
9	Η	-3.93191124	-0.00000001	-0.40809085
10	Η	2.30669887	0.0000001	2.64760291
11	Η	3.93191124	0.00000001	-0.40809085

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	CCSD(T)/	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	CCSD(T)/	CCSD(T)/
	cc- $pVTZ$	cc- $pVTZ$	cc-pVTZ	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3272.01	3288.96	3272.00	3272.00	3412.53	3271.98	3271.98
$\omega_2(a_1)$	3182.39	3203.94	3182.35	3182.35	3329.57	3182.30	3182.30
$\omega_3(a_1)$	3076.39	3091.77	3076.44	3076.44	3213.60	3076.47	3076.47
$\omega_4(a_1)$	1533.54	1531.42	1533.52	1533.52	1557.20	1532.31	1533.35
$\omega_5(a_1)$	1290.37	1287.31	1290.31	1290.35	1327.22	1290.73	1290.16
$\omega_6(a_1)$	1109.26	1106.53	1109.31	1109.26	1127.36	1110.40	1109.62
$\omega_7(a_1)$	867.00	870.32	866.95	866.95	893.20	866.17	866.26
$\omega_8(a_1)$	664.94	655.83	665.01	665.07	678.38	666.14	666.19
$\omega_9(a_1)$	413.18	409.76	413.31	413.20	422.45	413.61	413.35
$\omega_{10}(a_2)$	1185.40	1177.60	1185.26	1185.26	1207.30	1184.57	1184.90
$\omega_{11}(a_2)$	1091.12	1082.06	1090.91	1091.12	1104.57	1090.95	1090.95
$\omega_{12}(a_2)$	925.74	927.99	925.71	925.77	943.59	923.30	925.61
$\omega_{13}(a_2)$	865.50	859.13	866.00	865.66	891.80	869.46	866.54
$\omega_{14}(b_1)$	3259.49	3276.76	3259.49	3259.49	3399.55	3259.48	3259.48
$\omega_{15}(b_1)$	1172.20	1163.71	1170.76	1172.21	1196.72	1171.01	1171.35
$\omega_{16}(b_1)$	1145.12	1137.90	1146.40	1145.11	1157.61	1145.96	1145.96
$\omega_{17}(b_1)$	1003.90	997.61	1004.02	1003.90	1014.72	1003.91	1003.91
$\omega_{18}(b_1)$	751.54	749.53	751.66	751.54	778.20	752.12	751.57
$\omega_{19}(b_2)$	3184.18	3206.65	3184.11	3184.11	3330.82	3184.10	3184.10
$\omega_{20}(b_2)$	3082.35	3099.87	3082.41	3082.41	3218.06	3082.40	3082.40
$\omega_{21}(b_2)$	1498.45	1496.01	1498.36	1498.36	1516.48	1497.36	1497.36
$\omega_{22}(b_2)$	1320.75	1312.77	1320.80	1320.85	1360.98	1321.16	1321.84
$\omega_{23}(b_2)$	1106.79	1107.91	1106.86	1106.79	1126.13	1107.79	1106.98
$\omega_{24}(b_2)$	948.54	949.43	948.56	948.56	959.25	948.64	948.64

Table S326: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3277.52	3271.96	3271.96
$\omega_2(a_1)$	3193.57	3182.41	3182.41
$\omega_3(a_1)$	3085.19	3076.38	3076.38
$\omega_4(a_1)$	1528.57	1533.53	1533.53
$\omega_5(a_1)$	1291.57	1290.33	1290.33
$\omega_6(a_1)$	1110.83	1109.18	1109.18
$\omega_7(a_1)$	863.54	867.17	867.17
$\omega_8(a_1)$	678.87	664.87	664.87
$\omega_9(a_1)$	422.90	413.49	413.49
$\omega_{10}(a_2)$	1184.24	1185.16	1185.16
$\omega_{11}(a_2)$	1093.26	1091.14	1091.14
$\omega_{12}(a_2)$	926.68	925.59	925.90
$\omega_{13}(a_2)$	848.90	865.96	865.64
$\omega_{14}(b_1)$	3264.67	3259.48	3259.48
$\omega_{15}(b_1)$	1177.22	1171.76	1171.76
$\omega_{16}(b_1)$	1146.74	1145.49	1145.49
$\omega_{17}(b_1)$	1009.79	1003.98	1004.01
$\omega_{18}(b_1)$	745.40	751.58	751.54
$\omega_{19}(b_2)$	3195.79	3184.15	3184.15
$\omega_{20}(b_2)$	3088.95	3082.34	3082.34
$\omega_{21}(b_2)$	1489.90	1498.26	1498.26
$\omega_{22}(b_2)$	1314.09	1320.89	1321.00
$\omega_{23}(b_2)$	1110.52	1106.95	1106.83
$\omega_{24}(b_2)$	951.54	948.58	948.58

Table S327: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S328: Symmetrized, unnormalized natural internal coordinates for bicyclobutane.

```
1
                     r_{4,5}
2
                   r_{4,1} + r_{4,3} + r_{5,1} + r_{5,3}
3
               r_{4,1} + r_{4,3} - r_{5,1} - r_{5,3}
4
                r_{4,1} - r_{4,3} + r_{5,1} - r_{5,3}
5
                  r_{4,1} - r_{4,3} - r_{5,1} + r_{5,3}
6
                 r_{4,6} + r_{5,7}
7
                 r_{4,6} - r_{5,7}
8
               r_{1,8} + r_{1,9} + r_{3,10} + r_{3,11}
9
                  r_{1,8} + r_{1,9} - r_{3,10} - r_{3,11}
10 r_{1,8} - r_{1,9} + r_{3,10} - r_{3,11}
11 \quad r_{1,8} - r_{1,9} - r_{3,10} + r_{3,11}
12 \phi_{6,4,1} - \phi_{6,4,3} + \phi_{7,5,1} - \phi_{7,5,3}
13
                   \phi_{6,4,1} - \phi_{6,4,3} - \phi_{7,5,1} + \phi_{7,5,3}
14 \quad 4\phi_{8,1,9} - \phi_{8,1,4} - \phi_{8,1,5} - \phi_{9,1,4} - \phi_{9,1,5} + 4\phi_{10,3,11} - \phi_{10,3,4} - \phi_{10,3,5} - \phi_{11,3,4} - \phi_{11,3,5} - 
15
                  4\phi_{8,1,9} - \phi_{8,1,4} - \phi_{8,1,5} - \phi_{9,1,4} - \phi_{9,1,5} - 4\phi_{10,3,11} + \phi_{10,3,4} + \phi_{10,3,5} + \phi_{11,3,4} + \phi_{11,3,5}
16 \quad \phi_{8,1,4} + \phi_{8,1,5} - \phi_{9,1,4} - \phi_{9,1,5} + \phi_{10,3,4} + \phi_{10,3,5} - \phi_{11,3,4} - \phi_{11,3,5}
17
                     \phi_{8,1,4} + \phi_{8,1,5} - \phi_{9,1,4} - \phi_{9,1,5} - \phi_{10,3,4} - \phi_{10,3,5} + \phi_{11,3,4} + \phi_{11,3,5}
 18
                  \phi_{8,1,4} - \phi_{8,1,5} + \phi_{9,1,4} - \phi_{9,1,5} + \phi_{10,3,4} - \phi_{10,3,5} + \phi_{11,3,4} - \phi_{11,3,5}
19
                    \phi_{8,1,4} - \phi_{8,1,5} + \phi_{9,1,4} - \phi_{9,1,5} - \phi_{10,3,4} + \phi_{10,3,5} - \phi_{11,3,4} + \phi_{11,3,5}
20
                  \phi_{8,1,4} - \phi_{8,1,5} - \phi_{9,1,4} + \phi_{9,1,5} + \phi_{10,3,4} - \phi_{10,3,5} - \phi_{11,3,4} + \phi_{11,3,5}
21
                     \phi_{8,1,4} - \phi_{8,1,5} - \phi_{9,1,4} + \phi_{9,1,5} - \phi_{10,3,4} + \phi_{10,3,5} + \phi_{11,3,4} - \phi_{11,3,5}
22
                    	au_{3,4,5,1}
23
                    \gamma_{6,4,3,1} + \gamma_{7,5,1,3}
24 \gamma_{6,4,3,1} - \gamma_{7,5,1,3}
```

Table S329: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Х	0.00000000	0.00000000	-1.56928405
2	С	-1.27271501	0.00000000	1.49443431
3	С	1.27271501	0.00000000	1.49443431
4	С	-1.48500902	-0.00000000	-1.37404402
5	С	1.48500902	0.00000000	-1.37404402
6	Η	-2.68110230	-0.00000000	2.97904070
7	Η	2.68110230	0.00000000	2.97904070
8	Η	-2.34440091	1.68113477	-2.20625364
9	Η	-2.34440091	-1.68113477	-2.20625364
10	Η	2.34440091	-1.68113477	-2.20625364
11	Η	2.34440091	1.68113477	-2.20625364

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	CCSD(T)/	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	CCSD(T)/	CCSD(T)/
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3213.66	3230.26	3213.65	3213.65	3358.18	3213.65	3213.65
$\omega_2(a_1)$	3058.21	3073.98	3058.22	3058.22	3192.46	3058.18	3058.18
$\omega_3(a_1)$	1604.92	1595.28	1604.87	1604.88	1670.39	1604.33	1604.44
$\omega_4(a_1)$	1493.88	1490.13	1493.91	1493.91	1511.07	1494.07	1494.07
$\omega_5(a_1)$	1219.17	1205.39	1218.92	1219.14	1244.98	1218.92	1218.77
$\omega_6(a_1)$	1134.81	1131.90	1135.05	1134.83	1159.69	1133.75	1135.14
$\omega_7(a_1)$	1002.35	1002.54	1002.36	1002.34	1020.53	1004.29	1002.72
$\omega_8(a_1)$	895.58	896.49	895.65	895.65	922.17	895.96	895.96
$\omega_9(a_2)$	3097.01	3123.92	3097.00	3097.00	3243.53	3096.99	3096.99
$\omega_{10}(a_2)$	1176.53	1173.10	1176.36	1176.37	1186.64	1176.51	1176.51
$\omega_{11}(a_2)$	1029.84	1024.24	1029.74	1029.93	1039.85	1029.87	1029.88
$\omega_{12}(a_2)$	916.36	927.16	916.68	916.48	926.78	916.39	916.39
$\omega_{13}(a_2)$	302.28	295.95	302.36	302.28	296.27	302.34	302.31
$\omega_{14}(b_1)$	3111.42	3136.64	3111.42	3111.42	3257.48	3111.39	3111.39
$\omega_{15}(b_1)$	1099.90	1100.17	1099.88	1099.88	1110.65	1099.89	1099.89
$\omega_{16}(b_1)$	864.96	868.94	864.92	864.92	878.05	864.98	865.02
$\omega_{17}(b_1)$	644.45	643.28	644.54	644.54	653.19	644.59	644.54
$\omega_{18}(b_2)$	3181.94	3198.25	3181.93	3181.93	3326.33	3181.93	3181.93
$\omega_{19}(b_2)$	3052.18	3070.00	3052.18	3052.18	3184.61	3052.17	3052.17
$\omega_{20}(b_2)$	1470.95	1467.98	1470.90	1470.90	1484.14	1470.78	1470.78
$\omega_{21}(b_2)$	1323.48	1315.33	1323.27	1323.50	1350.90	1322.97	1323.46
$\omega_{22}(b_2)$	1232.80	1226.09	1233.04	1232.80	1247.41	1232.97	1232.97
$\omega_{23}(b_2)$	901.87	902.24	901.88	901.88	924.62	902.65	901.93
$\omega_{24}(b_2)$	856.43	843.86	856.50	856.50	866.47	856.49	856.49

Table S330: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3221.11	3213.66	3213.66
$\omega_2(a_1)$	3069.23	3058.18	3058.18
$\omega_3(a_1)$	1610.89	1604.54	1604.80
$\omega_4(a_1)$	1488.59	1493.85	1493.85
$\omega_5(a_1)$	1223.53	1218.95	1219.18
$\omega_6(a_1)$	1131.63	1135.05	1134.43
$\omega_7(a_1)$	1000.25	1002.98	1002.98
$\omega_8(a_1)$	896.17	895.74	895.74
$\omega_9(a_2)$	3106.40	3097.00	3097.00
$\omega_{10}(a_2)$	1176.27	1176.35	1176.35
$\omega_{11}(a_2)$	1042.29	1029.84	1029.88
$\omega_{12}(a_2)$	935.31	916.50	916.47
$\omega_{13}(a_2)$	319.68	302.61	302.56
$\omega_{14}(b_1)$	3121.46	3111.42	3111.42
$\omega_{15}(b_1)$	1101.91	1099.81	1099.81
$\omega_{16}(b_1)$	873.91	864.99	864.99
$\omega_{17}(b_1)$	655.30	644.59	644.59
$\omega_{18}(b_2)$	3189.01	3181.92	3181.92
$\omega_{19}(b_2)$	3063.32	3052.16	3052.16
$\omega_{20}(b_2)$	1470.78	1470.85	1470.85
$\omega_{21}(b_2)$	1319.90	1323.24	1323.24
$\omega_{22}(b_2)$	1241.22	1233.10	1233.10
$\omega_{23}(b_2)$	898.72	902.03	902.03
$\omega_{24}(b_2)$	858.70	856.47	856.47

Table S331: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S332: Symmetrized, unnormalized natural internal coordinates for cyclobutene.

```
1
                     r_{2,3}
2
                    r_{4,5}
3
                 r_{2,4} + r_{3,5}
4
                 r_{2,4} - r_{3,5}
5
                   r_{2,6} + r_{3,7}
6
                 r_{2,6} - r_{3,7}
7
                 r_{4,8} + r_{4,9} + r_{5,11} + r_{5,10}
8
                r_{4,8} + r_{4,9} - r_{5,11} - r_{5,10}
9
                  r_{4,8} - r_{4,9} + r_{5,11} - r_{5,10}
10 r_{4,8} - r_{4,9} - r_{5,11} + r_{5,10}
11 \phi_{2,3,5} - \phi_{3,5,4} + \phi_{5,4,2} - \phi_{4,2,3}
12 \phi_{6,2,3} - \phi_{6,2,4} + \phi_{7,3,2} - \phi_{7,3,5}
                    \phi_{6,2,3} - \phi_{6,2,4} - \phi_{7,3,2} + \phi_{7,3,5}
13
14 \quad 4\phi_{8,4,9} - \phi_{8,4,2} - \phi_{8,4,5} - \phi_{9,4,2} - \phi_{9,4,5} + 4\phi_{10,5,11} - \phi_{11,5,3} - \phi_{11,5,4} - \phi_{10,5,3} - \phi_{10,5,4} - 
15
                  4\phi_{8,4,9} - \phi_{8,4,2} - \phi_{8,4,5} - \phi_{9,4,2} - \phi_{9,4,5} - 4\phi_{10,5,11} + \phi_{11,5,3} + \phi_{11,5,4} + \phi_{10,5,3} + \phi_{10,5,4}
 16 \quad \phi_{8,4,2} + \phi_{8,4,5} - \phi_{9,4,2} - \phi_{9,4,5} + \phi_{11,5,3} + \phi_{11,5,4} - \phi_{10,5,3} - \phi_{10,5,4}
17
                    \phi_{8,4,2} + \phi_{8,4,5} - \phi_{9,4,2} - \phi_{9,4,5} - \phi_{11,5,3} - \phi_{11,5,4} + \phi_{10,5,3} + \phi_{10,5,4}
 18
                   \phi_{8,4,2} - \phi_{8,4,5} + \phi_{9,4,2} - \phi_{9,4,5} + \phi_{11,5,3} - \phi_{11,5,4} + \phi_{10,5,3} - \phi_{10,5,4}
19
                     \phi_{8,4,2} - \phi_{8,4,5} + \phi_{9,4,2} - \phi_{9,4,5} - \phi_{11,5,3} + \phi_{11,5,4} - \phi_{10,5,3} + \phi_{10,5,4}
20
                  \phi_{8,4,2} - \phi_{8,4,5} - \phi_{9,4,2} + \phi_{9,4,5} + \phi_{11,5,3} - \phi_{11,5,4} - \phi_{10,5,3} + \phi_{10,5,4}
21
                     \phi_{8,4,2} - \phi_{8,4,5} - \phi_{9,4,2} + \phi_{9,4,5} - \phi_{11,5,3} + \phi_{11,5,4} + \phi_{10,5,3} - \phi_{10,5,4}
22 \tau_{2,3,5,4} - \tau_{3,5,4,2} + \tau_{5,4,2,3} - \tau_{4,2,3,5}
23
                    	au_{6,2,3,7}
24
                  \gamma_{6,2,3,4} + \gamma_{7,3,5,2}
```

S4.84 methylenecyclopropane

Table S333: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-0.00000000	-0.00000000	-3.08775292
2	С	-0.00000000	-0.00000000	-0.58010955
3	С	1.45965770	-0.00000000	1.78621232
4	\mathbf{C}	-1.45965770	0.00000000	1.78621232
5	Η	1.75483322	-0.00000000	-4.14277197
6	Η	-1.75483322	0.00000000	-4.14277197
7	Η	2.39963805	1.72748285	2.35547647
8	Η	2.39963805	-1.72748285	2.35547647
9	Η	-2.39963805	-1.72748285	2.35547647
10	Η	-2.39963805	1.72748285	2.35547647

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3139.91	3155.36	3139.88	3139.88	3277.45	3139.90	3139.90
$\omega_2(a_1)$	3130.33	3144.85	3130.35	3130.35	3267.83	3130.31	3130.31
$\omega_3(a_1)$	1819.35	1813.46	1819.30	1819.33	1900.93	1819.31	1819.31
$\omega_4(a_1)$	1493.03	1489.03	1493.01	1493.01	1515.51	1492.66	1492.66
$\omega_5(a_1)$	1450.53	1449.24	1450.58	1450.53	1467.42	1450.57	1450.57
$\omega_6(a_1)$	1055.32	1057.26	1055.09	1055.09	1093.16	1055.79	1055.79
$\omega_7(a_1)$	1041.01	1026.72	1041.24	1041.29	1059.23	1040.89	1040.89
$\omega_8(a_1)$	737.67	740.32	737.77	737.69	763.18	738.08	738.08
$\omega_9(a_2)$	3207.30	3229.97	3207.30	3207.30	3357.19	3207.28	3207.28
$\omega_{10}(a_2)$	1171.65	1170.62	1171.64	1171.64	1182.12	1171.65	1171.65
$\omega_{11}(a_2)$	953.99	960.99	953.80	954.01	963.56	954.01	954.01
$\omega_{12}(a_2)$	615.74	618.35	616.06	615.74	619.86	615.77	615.77
$\omega_{13}(b_1)$	3219.40	3241.35	3219.40	3219.40	3369.12	3219.38	3219.38
$\omega_{14}(b_1)$	1097.51	1095.79	1097.51	1097.51	1107.52	1097.54	1097.54
$\omega_{15}(b_1)$	907.70	914.08	907.70	907.70	915.81	907.70	907.70
$\omega_{16}(b_1)$	753.14	752.51	753.12	753.12	766.01	753.18	753.18
$\omega_{17}(b_1)$	277.65	277.48	277.75	277.72	281.00	277.66	277.66
$\omega_{18}(b_2)$	3225.95	3247.72	3225.95	3225.95	3378.09	3225.95	3225.95
$\omega_{19}(b_2)$	3126.92	3142.68	3126.92	3126.92	3263.42	3126.90	3126.90
$\omega_{20}(b_2)$	1455.65	1453.46	1455.61	1455.61	1468.19	1455.54	1455.54
$\omega_{21}(b_2)$	1147.39	1137.20	1147.30	1147.32	1176.57	1146.11	1146.95
$\omega_{22}(b_2)$	1072.85	1060.07	1072.96	1072.96	1088.85	1073.07	1073.37
$\omega_{23}(b_2)$	908.26	905.43	908.30	908.28	938.91	909.83	908.41
$\omega_{24}(b_2)$	349.27	348.13	349.32	349.29	353.45	349.30	349.30

Table S334: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3148.88	3139.73	3139.73
$\omega_2(a_1)$	3138.31	3130.42	3130.42
$\omega_3(a_1)$	1808.49	1819.25	1819.40
$\omega_4(a_1)$	1479.59	1493.03	1493.03
$\omega_5(a_1)$	1441.81	1450.70	1450.52
$\omega_6(a_1)$	1055.70	1055.36	1055.43
$\omega_7(a_1)$	1045.89	1041.09	1041.02
$\omega_8(a_1)$	737.75	737.79	737.79
$\omega_9(a_2)$	3216.80	3207.30	3207.30
$\omega_{10}(a_2)$	1169.74	1171.60	1171.60
$\omega_{11}(a_2)$	959.53	954.01	954.01
$\omega_{12}(a_2)$	617.66	615.81	615.81
$\omega_{13}(b_1)$	3230.59	3219.40	3219.40
$\omega_{14}(b_1)$	1096.95	1097.32	1097.32
$\omega_{15}(b_1)$	918.87	907.73	907.73
$\omega_{16}(b_1)$	751.60	753.10	753.18
$\omega_{17}(b_1)$	296.66	278.39	278.17
$\omega_{18}(b_2)$	3238.85	3225.95	3225.95
$\omega_{19}(b_2)$	3136.69	3126.90	3126.90
$\omega_{20}(b_2)$	1447.99	1455.44	1455.44
$\omega_{21}(b_2)$	1141.34	1146.90	1146.90
$\omega_{22}(b_2)$	1075.74	1073.15	1073.15
$\omega_{23}(b_2)$	896.27	908.89	908.89
$\omega_{24}(b_2)$	357.06	349.31	349.31

Table S335: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).
Table S336: Symmetrized, unnormalized natural internal coordinates for methylenecyclopropane.

```
1
        r_{1,2}
2
        r_{3,4} + r_{2,3} + r_{2,4}
3
     2r_{3,4} - r_{2,3} - r_{2,4}
4
       r_{2,3} - r_{2,4}
5
       r_{1,5} + r_{1,6}
6
       r_{1,5} - r_{1,6}
7
       r_{3,7} + r_{3,8} + r_{4,10} + r_{4,9}
8
       r_{3,7} + r_{3,8} - r_{4,10} - r_{4,9}
9
       r_{3,7} - r_{3,8} + r_{4,10} - r_{4,9}
10 \quad r_{3,7} - r_{3,8} - r_{4,10} + r_{4,9}
11 \phi_{1,2,3} - \phi_{1,2,4}
12 2\phi_{5,1,6} - \phi_{5,1,2} - \phi_{6,1,2}
13 \phi_{5,1,2} - \phi_{6,1,2}
14 \quad 4\phi_{7,3,8} - \phi_{7,3,2} - \phi_{7,3,4} - \phi_{8,3,2} - \phi_{8,3,4} + 4\phi_{9,4,10} - \phi_{10,4,2} - \phi_{10,4,3} - \phi_{9,4,2} - \phi_{9,4,3}
15 \quad 4\phi_{7,3,8} - \phi_{7,3,2} - \phi_{7,3,4} - \phi_{8,3,2} - \phi_{8,3,4} - 4\phi_{9,4,10} + \phi_{10,4,2} + \phi_{10,4,3} + \phi_{9,4,2} + \phi_{9,4,3}
16 \quad \phi_{7,3,2} + \phi_{7,3,4} - \phi_{8,3,2} - \phi_{8,3,4} + \phi_{10,4,2} + \phi_{10,4,3} - \phi_{9,4,2} - \phi_{9,4,3}
17 \phi_{7,3,2} + \phi_{7,3,4} - \phi_{8,3,2} - \phi_{8,3,4} - \phi_{10,4,2} - \phi_{10,4,3} + \phi_{9,4,2} + \phi_{9,4,3}
18 \phi_{7,3,2} - \phi_{7,3,4} + \phi_{8,3,2} - \phi_{8,3,4} + \phi_{10,4,2} - \phi_{10,4,3} + \phi_{9,4,2} - \phi_{9,4,3}
19 \phi_{7,3,2} - \phi_{7,3,4} + \phi_{8,3,2} - \phi_{8,3,4} - \phi_{10,4,2} + \phi_{10,4,3} - \phi_{9,4,2} + \phi_{9,4,3}
20 \quad \phi_{7,3,2} - \phi_{7,3,4} - \phi_{8,3,2} + \phi_{8,3,4} + \phi_{10,4,2} - \phi_{10,4,3} - \phi_{9,4,2} + \phi_{9,4,3}
21 \phi_{7,3,2} - \phi_{7,3,4} - \phi_{8,3,2} + \phi_{8,3,4} - \phi_{10,4,2} + \phi_{10,4,3} + \phi_{9,4,2} - \phi_{9,4,3}
22 \tau_{5,1,2,3} + \tau_{5,1,2,4} + \tau_{6,1,2,3} + \tau_{6,1,2,4}
23 \gamma_{1,2,3,4} + \gamma_{3,2,4,1} + \gamma_{4,2,1,3}
24 \gamma_{2,1,5,6}
```

Table S337: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	С	1.44092954	1.44092961	0.27437752
2	С	-1.44092954	-1.44092961	0.27437752
3	С	-1.44092961	1.44092954	-0.27437752
4	С	1.44092961	-1.44092954	-0.27437752
5	Η	2.65209587	2.65209594	-0.87006940
6	Η	1.80908702	1.80908712	2.27117006
7	Η	-2.65209587	-2.65209594	-0.87006940
8	Η	-1.80908702	-1.80908712	2.27117006
9	Η	-2.65209600	2.65209581	0.87006940
10	Η	-1.80908711	1.80908703	-2.27117006
11	Η	2.65209600	-2.65209581	0.87006940
12	Н	1.80908711	-1.80908703	-2.27117006

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	CCSD(T)/	MP2/	MP2/	MP2/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc- $pVTZ$	cc- $pVTZ$	cc-pVTZ	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3104.84	3129.06	3104.36	3104.36	3250.94	3104.55	3104.55
$\omega_2(a_1)$	3063.38	3078.78	3063.86	3063.86	3201.97	3063.65	3063.65
$\omega_3(a_1)$	1526.19	1523.81	1526.18	1526.18	1541.42	1526.08	1526.08
$\omega_4(a_1)$	1180.55	1171.63	1180.56	1180.56	1191.43	1180.51	1180.51
$\omega_5(a_1)$	1025.35	1025.24	1025.37	1025.37	1054.32	1025.63	1025.63
$\omega_6(a_1)$	230.64	224.68	230.65	230.64	233.91	230.66	230.65
$\omega_7(a_2)$	1254.84	1249.31	1254.84	1254.84	1268.33	1254.82	1254.82
$\omega_8(a_2)$	958.26	959.86	958.26	958.26	970.94	958.28	958.28
$\omega_9(b_1)$	1259.25	1255.20	1258.78	1259.22	1282.74	1258.39	1258.39
$\omega_{10}(b_1)$	1167.70	1164.82	1168.16	1167.69	1184.82	1167.86	1168.47
$\omega_{11}(b_1)$	942.94	946.23	943.00	943.00	969.33	943.89	943.13
$\omega_{12}(b_2)$	3131.28	3155.76	3131.27	3131.27	3276.53	3131.24	3131.24
$\omega_{13}(b_2)$	3058.08	3075.59	3058.09	3058.09	3191.32	3058.09	3058.09
$\omega_{14}(b_2)$	1493.48	1492.08	1493.45	1493.45	1502.21	1493.49	1493.49
$\omega_{15}(b_2)$	909.40	903.57	909.34	909.34	921.39	909.44	909.44
$\omega_{16}(b_2)$	620.26	614.83	620.43	620.43	630.43	620.30	620.30
$\omega_{17a}(e)$	3115.63	3141.49	3115.58	3115.58	3261.81	3115.60	3115.60
$\omega_{17b}(e)$	3115.63	3141.39	3115.57	3115.57	3261.70	3115.60	3115.60
$\omega_{18a}(e)$	3058.79	3075.94	3058.85	3058.85	3193.59	3058.80	3058.80
$\omega_{18b}(e)$	3058.79	3075.88	3058.84	3058.84	3193.54	3058.79	3058.79
$\omega_{19a}(e)$	1486.52	1484.22	1486.49	1486.49	1496.71	1486.33	1486.33
$\omega_{19\mathrm{b}}(e)$	1486.52	1484.21	1486.49	1486.49	1496.71	1486.33	1486.33
$\omega_{20a}(e)$	1288.37	1278.26	1287.95	1288.38	1313.42	1288.01	1288.01
$\omega_{20\mathrm{b}}(e)$	1288.37	1278.25	1287.94	1288.38	1313.40	1288.00	1288.00
$\omega_{21a}(e)$	1253.51	1252.73	1253.97	1253.52	1265.91	1253.74	1253.74
$\omega_{21\mathrm{b}}(e)$	1253.51	1252.71	1253.96	1253.52	1265.90	1253.73	1253.73
$\omega_{22a}(e)$	916.90	918.90	916.92	916.92	939.81	917.25	917.25
$\omega_{22b}(e)$	916.90	918.87	916.92	916.92	939.78	917.24	917.24
$\omega_{23a}(e)$	755.06	753.20	755.09	755.09	766.47	755.39	755.39
$\omega_{23b}(e)$	755.06	753.19	755.09	755.09	766.46	755.39	755.39

Table S338: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2df,p)$	$6\text{-}31\mathrm{G}(2df,p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3115.22	3104.82	3104.82
$\omega_2(a_1)$	3075.41	3063.35	3063.35
$\omega_3(a_1)$	1523.79	1526.16	1526.16
$\omega_4(a_1)$	1188.87	1180.60	1180.60
$\omega_5(a_1)$	1023.73	1025.45	1025.45
$\omega_6(a_1)$	238.68	230.68	230.68
$\omega_7(a_2)$	1265.76	1254.80	1254.80
$\omega_8(a_2)$	959.17	958.31	958.31
$\omega_9(b_1)$	1263.85	1259.19	1259.24
$\omega_{10}(b_1)$	1165.75	1167.51	1167.51
$\omega_{11}(b_1)$	937.85	943.24	943.18
$\omega_{12}(b_2)$	3147.03	3131.14	3131.14
$\omega_{13}(b_2)$	3073.95	3058.21	3058.21
$\omega_{14}(b_2)$	1500.61	1493.48	1493.48
$\omega_{15}(b_2)$	911.47	909.31	909.40
$\omega_{16}(b_2)$	632.00	620.43	620.30
$\omega_{17a}(e)$	3128.80	3115.60	3115.60
$\omega_{17b}(e)$	3124.83	3115.58	3115.58
$\omega_{18a}(e)$	3071.46	3058.82	3058.82
$\omega_{18b}(e)$	3069.19	3058.78	3058.78
$\omega_{19a}(e)$	1488.93	1486.47	1486.47
$\omega_{19b}(e)$	1484.03	1486.45	1486.45
$\omega_{20a}(e)$	1298.33	1288.37	1288.37
$\omega_{20\mathrm{b}}(e)$	1296.81	1288.25	1288.25
$\omega_{21a}(e)$	1256.28	1253.67	1253.67
$\omega_{21\mathrm{b}}(e)$	1253.39	1253.53	1253.53
$\omega_{22a}(e)$	920.34	916.92	916.92
$\omega_{22b}(e)$	918.64	916.90	916.90
$\omega_{23a}(e)$	763.85	755.30	755.30
$\omega_{23b}(e)$	762.27	755.17	755.17

Table S339: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S340: Symmetrized, unnormalized natural internal coordinates for cyclobutane.

```
1
                r_{1,3} + r_{3,2} + r_{2,4} + r_{4,1}
2
                r_{1,3} + r_{3,2} - r_{2,4} - r_{4,1}
3
              r_{1,3} - r_{3,2} + r_{2,4} - r_{4,1}
4
               r_{1,3} - r_{3,2} - r_{2,4} + r_{4,1}
5
               r_{1,5} + r_{1,6} + r_{3,9} + r_{3,10} + r_{2,7} + r_{2,8} + r_{4,11} + r_{4,12}
6
               r_{1,5} + r_{1,6} + r_{3,9} + r_{3,10} - r_{2,7} - r_{2,8} - r_{4,11} - r_{4,12}
7
               r_{1,5} + r_{1,6} - r_{3,9} - r_{3,10} + r_{2,7} + r_{2,8} - r_{4,11} - r_{4,12}
8
               r_{1,5} + r_{1,6} - r_{3,9} - r_{3,10} - r_{2,7} - r_{2,8} + r_{4,11} + r_{4,12}
9
                r_{1,5} - r_{1,6} + r_{3,9} - r_{3,10} + r_{2,7} - r_{2,8} + r_{4,11} - r_{4,12}
10 \quad r_{1,5} - r_{1,6} + r_{3,9} - r_{3,10} - r_{2,7} + r_{2,8} - r_{4,11} + r_{4,12}
11
              r_{1,5} - r_{1,6} - r_{3,9} + r_{3,10} + r_{2,7} - r_{2,8} - r_{4,11} + r_{4,12}
12 r_{1,5} - r_{1,6} - r_{3,9} + r_{3,10} - r_{2,7} + r_{2,8} + r_{4,11} - r_{4,12}
13
                \phi_{4,1,3} - \phi_{1,3,2} + \phi_{3,2,4} - \phi_{2,4,1}
14 \quad 4\phi_{5,1,6} - \phi_{5,1,3} - \phi_{5,1,4} - \phi_{6,1,3} - \phi_{6,1,4} + 4\phi_{9,3,10} - \phi_{9,3,2} - \phi_{9,3,1} - \phi_{10,3,2} - \phi_{10,3,1}
                 +4\phi_{7,2,8}-\phi_{7,2,4}-\phi_{7,2,3}-\phi_{8,2,4}-\phi_{8,2,3}+4\phi_{11,4,12}-\phi_{11,4,1}-\phi_{11,4,2}-\phi_{12,4,1}-\phi_{12,4,2}-\phi_{12,4,1}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}-\phi_{12,4,2}
15 4\phi_{5,1,6} - \phi_{5,1,3} - \phi_{5,1,4} - \phi_{6,1,3} - \phi_{6,1,4} + 4\phi_{9,3,10} - \phi_{9,3,2} - \phi_{9,3,1} - \phi_{10,3,2} - \phi_{10,3,1}
                 -4\phi_{7,2,8}+\phi_{7,2,4}+\phi_{7,2,3}+\phi_{8,2,4}+\phi_{8,2,3}-4\phi_{11,4,12}+\phi_{11,4,1}+\phi_{11,4,2}+\phi_{12,4,1}+\phi_{12,4,2}
16 \quad 4\phi_{5,1,6} - \phi_{5,1,3} - \phi_{5,1,4} - \phi_{6,1,3} - \phi_{6,1,4} - 4\phi_{9,3,10} + \phi_{9,3,2} + \phi_{9,3,1} + \phi_{10,3,2} + \phi_{10,3,1}
                 +4\phi_{7,2,8}-\phi_{7,2,4}-\phi_{7,2,3}-\phi_{8,2,4}-\phi_{8,2,3}-4\phi_{11,4,12}+\phi_{11,4,1}+\phi_{11,4,2}+\phi_{12,4,1}+\phi_{12,4,2}
17 \quad 4\phi_{5,1,6} - \phi_{5,1,3} - \phi_{5,1,4} - \phi_{6,1,3} - \phi_{6,1,4} - 4\phi_{9,3,10} + \phi_{9,3,2} + \phi_{9,3,1} + \phi_{10,3,2} + \phi_{10,3,1}
                 -4\phi_{7,2,8} + \phi_{7,2,4} + \phi_{7,2,3} + \phi_{8,2,4} + \phi_{8,2,3} + 4\phi_{11,4,12} - \phi_{11,4,1} - \phi_{11,4,2} - \phi_{12,4,1} - \phi_{12,4,2} - \phi_{12,4,2} - \phi_{12,4,1} - \phi_{12,4,2} - \phi_{12,4,4} - \phi_{1
18
              \phi_{5,1,3} + \phi_{5,1,4} - \phi_{6,1,3} - \phi_{6,1,4} + \phi_{9,3,2} + \phi_{9,3,1} - \phi_{10,3,2} - \phi_{10,3,1} + \phi_{7,2,4} + \phi_{7,2,3}
                 -\phi_{8,2,4} - \phi_{8,2,3} + \phi_{11,4,1} + \phi_{11,4,2} - \phi_{12,4,1} - \phi_{12,4,2}
             \phi_{5,1,3} + \phi_{5,1,4} - \phi_{6,1,3} - \phi_{6,1,4} + \phi_{9,3,2} + \phi_{9,3,1} - \phi_{10,3,2} - \phi_{10,3,1} - \phi_{7,2,4} - \phi_{7,2,3}
19
                 +\phi_{8,2,4}+\phi_{8,2,3}-\phi_{11,4,1}-\phi_{11,4,2}+\phi_{12,4,1}+\phi_{12,4,2}
20
              \phi_{5,1,3} + \phi_{5,1,4} - \phi_{6,1,3} - \phi_{6,1,4} - \phi_{9,3,2} - \phi_{9,3,1} + \phi_{10,3,2} + \phi_{10,3,1} + \phi_{7,2,4} + \phi_{7,2,3}
                 -\phi_{8,2,4} - \phi_{8,2,3} - \phi_{11,4,1} - \phi_{11,4,2} + \phi_{12,4,1} + \phi_{12,4,2}
21
             \phi_{5,1,3} + \phi_{5,1,4} - \phi_{6,1,3} - \phi_{6,1,4} - \phi_{9,3,2} - \phi_{9,3,1} + \phi_{10,3,2} + \phi_{10,3,1} - \phi_{7,2,4} - \phi_{7,2,3}
                 +\phi_{8,2,4}+\phi_{8,2,3}+\phi_{11,4,1}+\phi_{11,4,2}-\phi_{12,4,1}-\phi_{12,4,2}
22
                \phi_{5,1,3} - \phi_{5,1,4} + \phi_{6,1,3} - \phi_{6,1,4} + \phi_{9,3,2} - \phi_{9,3,1} + \phi_{10,3,2} - \phi_{10,3,1} + \phi_{7,2,4} - \phi_{7,2,3}
                 +\phi_{8,2,4}-\phi_{8,2,3}+\phi_{11,4,1}-\phi_{11,4,2}+\phi_{12,4,1}-\phi_{12,4,2}
23
             \phi_{5,1,3} - \phi_{5,1,4} + \phi_{6,1,3} - \phi_{6,1,4} + \phi_{9,3,2} - \phi_{9,3,1} + \phi_{10,3,2} - \phi_{10,3,1} - \phi_{7,2,4} + \phi_{7,2,3}
                 -\phi_{8,2,4} + \phi_{8,2,3} - \phi_{11,4,1} + \phi_{11,4,2} - \phi_{12,4,1} + \phi_{12,4,2}
24
             \phi_{5,1,3} - \phi_{5,1,4} + \phi_{6,1,3} - \phi_{6,1,4} - \phi_{9,3,2} + \phi_{9,3,1} - \phi_{10,3,2} + \phi_{10,3,1} + \phi_{7,2,4} - \phi_{7,2,3}
                 +\phi_{8,2,4}-\phi_{8,2,3}-\phi_{11,4,1}+\phi_{11,4,2}-\phi_{12,4,1}+\phi_{12,4,2}
25
              \phi_{5,1,3} - \phi_{5,1,4} + \phi_{6,1,3} - \phi_{6,1,4} - \phi_{9,3,2} + \phi_{9,3,1} - \phi_{10,3,2} + \phi_{10,3,1} - \phi_{7,2,4} + \phi_{7,2,3}
                 -\phi_{8,2,4} + \phi_{8,2,3} + \phi_{11,4,1} - \phi_{11,4,2} + \phi_{12,4,1} - \phi_{12,4,2}
26
                \phi_{5,1,3} - \phi_{5,1,4} - \phi_{6,1,3} + \phi_{6,1,4} + \phi_{9,3,2} - \phi_{9,3,1} - \phi_{10,3,2} + \phi_{10,3,1} + \phi_{7,2,4} - \phi_{7,2,3}
                 -\phi_{8,2,4} + \phi_{8,2,3} + \phi_{11,4,1} - \phi_{11,4,2} - \phi_{12,4,1} + \phi_{12,4,2}
27 \quad \phi_{5,1,3} - \phi_{5,1,4} - \phi_{6,1,3} + \phi_{6,1,4} + \phi_{9,3,2} - \phi_{9,3,1} - \phi_{10,3,2} + \phi_{10,3,1} - \phi_{7,2,4} + \phi_{7,2,3}
                 +\phi_{8,2,4}-\phi_{8,2,3}-\phi_{11,4,1}+\phi_{11,4,2}+\phi_{12,4,1}-\phi_{12,4,2}
28
                \phi_{5,1,3} - \phi_{5,1,4} - \phi_{6,1,3} + \phi_{6,1,4} - \phi_{9,3,2} + \phi_{9,3,1} + \phi_{10,3,2} - \phi_{10,3,1} + \phi_{7,2,4} - \phi_{7,2,3}
                 -\phi_{8,2,4} + \phi_{8,2,3} - \phi_{11,4,1} + \phi_{11,4,2} + \phi_{12,4,1} - \phi_{12,4,2}
29
              \phi_{5,1,3} - \phi_{5,1,4} - \phi_{6,1,3} + \phi_{6,1,4} - \phi_{9,3,2} + \phi_{9,3,1} + \phi_{10,3,2} - \phi_{10,3,1} - \phi_{7,2,4} + \phi_{7,2,3}
                 +\phi_{8,2,4}-\phi_{8,2,3}+\phi_{11,4,1}-\phi_{11,4,2}-\phi_{12,4,1}+\phi_{12,4,2}
30 \quad \tau_{1,3,2,4} - \tau_{3,2,4,1} + \tau_{2,4,1,3} - \tau_{4,1,3,2}
```

Table S341: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	С	-0.00000000	0.00000000	2.71646372
2	С	-0.00000000	0.00000000	0.18428612
3	С	0.0000001	2.41084481	-1.32906270
4	С	-0.00000001	-2.41084481	-1.32906270
5	Η	0.00000000	1.75056828	3.77931442
6	Η	-0.00000000	-1.75056828	3.77931442
7	Η	0.0000001	4.07103635	-0.10803955
8	Η	1.66120238	2.49911784	-2.55785943
9	Η	-1.66120264	2.49911759	-2.55785931
10	Η	-0.00000001	-4.07103635	-0.10803955
11	Η	-1.66120238	-2.49911784	-2.55785943
12	Н	1.66120264	-2.49911759	-2.55785931

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	CCSD(T)/	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	CCSD(T)/	CCSD(T)/
	cc- $pVTZ$	cc- $pVTZ$	cc-pVTZ	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3140.78	3155.98	3140.76	3140.76	3278.74	3140.69	3140.69
$\omega_2(a_1)$	3121.46	3144.54	3121.41	3121.41	3268.92	3121.42	3121.42
$\omega_3(a_1)$	3024.21	3036.24	3024.28	3024.28	3155.01	3024.27	3024.27
$\omega_4(a_1)$	1710.58	1703.28	1710.53	1710.54	1777.47	1709.78	1709.96
$\omega_5(a_1)$	1506.87	1507.55	1506.89	1506.89	1518.85	1506.76	1506.76
$\omega_6(a_1)$	1447.53	1445.18	1447.34	1447.35	1469.78	1448.41	1448.41
$\omega_7(a_1)$	1410.43	1402.74	1410.64	1410.64	1430.24	1410.44	1410.44
$\omega_8(a_1)$	1081.39	1078.02	1081.42	1081.40	1096.60	1081.75	1081.46
$\omega_9(a_1)$	818.69	817.06	818.71	818.71	846.03	818.81	818.81
$\omega_{10}(a_1)$	368.49	367.10	368.49	368.49	376.37	368.52	368.52
$\omega_{11}(a_2)$	3077.66	3103.21	3077.65	3077.65	3226.57	3077.62	3077.62
$\omega_{12}(a_2)$	1478.41	1478.94	1478.40	1478.40	1488.84	1478.45	1478.45
$\omega_{13}(a_2)$	1019.76	1021.15	1019.60	1019.78	1029.30	1019.79	1019.79
$\omega_{14}(a_2)$	702.97	710.00	703.22	702.97	708.11	702.98	702.98
$\omega_{15}(a_2)$	161.02	164.98	161.05	161.05	169.36	161.04	161.04
$\omega_{16}(b_1)$	3079.75	3104.29	3079.75	3079.75	3228.61	3079.72	3079.72
$\omega_{17}(b_1)$	1495.10	1496.74	1495.09	1495.09	1505.84	1495.12	1495.12
$\omega_{18}(b_1)$	1103.26	1099.41	1103.28	1103.28	1112.96	1103.26	1103.28
$\omega_{19}(b_1)$	905.22	910.60	905.23	905.23	918.16	905.26	905.27
$\omega_{20}(b_1)$	424.36	425.38	424.37	424.37	430.99	424.30	424.36
$\omega_{21}(b_1)$	206.05	210.55	206.05	206.05	210.48	206.31	206.07
$\omega_{22}(b_2)$	3226.12	3248.14	3226.11	3226.11	3377.57	3226.11	3226.11
$\omega_{23}(b_2)$	3119.46	3143.28	3119.40	3119.40	3267.28	3119.34	3119.34
$\omega_{24}(b_2)$	3020.52	3033.41	3020.58	3020.58	3151.17	3020.57	3020.57
$\omega_{25}(b_2)$	1491.26	1491.93	1491.25	1491.25	1501.48	1491.30	1491.30
$\omega_{26}(b_2)$	1414.34	1402.46	1414.26	1414.26	1442.63	1413.15	1413.15
$\omega_{27}(b_2)$	1305.99	1297.70	1306.08	1306.08	1334.40	1306.78	1307.02
$\omega_{28}(b_2)$	988.25	985.44	988.26	988.25	1012.97	988.41	988.15
$\omega_{29}(b_2)$	963.57	959.98	963.59	963.59	978.43	964.23	964.17
$\omega_{30}(b_2)$	426.37	424.74	426.38	426.38	435.89	426.43	426.43

Table S342: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3149.76	3140.72	3140.72
$\omega_2(a_1)$	3135.99	3121.48	3121.48
$\omega_3(a_1)$	3042.35	3024.20	3024.20
$\omega_4(a_1)$	1706.21	1710.31	1710.31
$\omega_5(a_1)$	1503.53	1506.75	1506.75
$\omega_6(a_1)$	1443.51	1447.41	1447.41
$\omega_7(a_1)$	1416.12	1410.89	1410.89
$\omega_8(a_1)$	1087.88	1081.47	1081.47
$\omega_9(a_1)$	816.06	818.97	818.97
$\omega_{10}(a_1)$	376.56	368.54	368.54
$\omega_{11}(a_2)$	3089.16	3077.65	3077.65
$\omega_{12}(a_2)$	1475.31	1478.36	1478.36
$\omega_{13}(a_2)$	1025.32	1019.80	1019.80
$\omega_{14}(a_2)$	703.70	703.00	703.00
$\omega_{15}(a_2)$	172.11	161.16	161.16
$\omega_{16}(b_1)$	3092.20	3079.74	3079.74
$\omega_{17}(b_1)$	1492.42	1495.07	1495.07
$\omega_{18}(b_1)$	1109.78	1103.23	1103.23
$\omega_{19}(b_1)$	920.39	905.23	905.23
$\omega_{20}(b_1)$	441.01	424.49	424.49
$\omega_{21}(b_1)$	209.67	206.25	206.25
$\omega_{22}(b_2)$	3237.64	3226.11	3226.11
$\omega_{23}(b_2)$	3133.77	3119.44	3119.44
$\omega_{24}(b_2)$	3036.96	3020.49	3020.49
$\omega_{25}(b_2)$	1487.87	1490.98	1490.98
$\omega_{26}(b_2)$	1411.36	1412.85	1412.85
$\omega_{27}(b_2)$	1294.78	1307.29	1307.29
$\omega_{28}(b_2)$	986.67	986.66	986.66
$\omega_{29}(b_2)$	965.74	966.21	966.21
$\omega_{30}(b_2)$	432.59	426.41	426.41

Table S343: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S344: Symmetrized, unnormalized natural internal coordinates for isobutene.

- 1 $r_{1,2}$ 2 $r_{2,3} + r_{2,4}$ $3 r_{2,3} - r_{2,4}$ 4 $r_{1,5} + r_{1,6}$ 5 $r_{1,5} - r_{1,6}$ $6 \qquad r_{3,7} + r_{3,9} + r_{3,8} + r_{4,10} + r_{4,11} + r_{4,12}$ $\overline{7}$ $r_{3,7} + r_{3,9} + r_{3,8} - r_{4,10} - r_{4,11} - r_{4,12}$ 8 $2r_{3,7} - r_{3,9} - r_{3,8} + 2r_{4,10} - r_{4,11} - r_{4,12}$ 9 $2r_{3,7} - r_{3,9} - r_{3,8} - 2r_{4,10} + r_{4,11} + r_{4,12}$ $10 \quad r_{3,9} - r_{3,8} + r_{4,11} - r_{4,12}$ $11 \quad r_{3,9} - r_{3,8} - r_{4,11} + r_{4,12}$ 12 $2\phi_{3,2,4} - \phi_{3,2,1} - \phi_{4,2,1}$ 13 $\phi_{3,2,1} - \phi_{4,2,1}$ 14 $2\phi_{5,1,6} - \phi_{5,1,2} - \phi_{6,1,2}$ 15 $\phi_{5,1,2} - \phi_{6,1,2}$ 16 $\phi_{7,3,2} + \phi_{9,3,2} + \phi_{8,3,2} - \phi_{8,3,9} - \phi_{7,3,9} - \phi_{7,3,8} + \phi_{10,4,2} + \phi_{11,4,2} + \phi_{12,4,2} - \phi_{11,4,12}$ $-\phi_{10,4,11} - \phi_{10,4,12}$ $17 \quad \phi_{7,3,2} + \phi_{9,3,2} + \phi_{8,3,2} - \phi_{8,3,9} - \phi_{7,3,9} - \phi_{7,3,8} - \phi_{10,4,2} - \phi_{11,4,2} - \phi_{12,4,2} + \phi_{11,4,12}$ $+\phi_{10,4,11}+\phi_{10,4,12}$ 18 $2\phi_{7,3,2} - \phi_{9,3,2} - \phi_{8,3,2} + 2\phi_{10,4,2} - \phi_{11,4,2} - \phi_{12,4,2}$ 19 $2\phi_{7,3,2} - \phi_{9,3,2} - \phi_{8,3,2} - 2\phi_{10,4,2} + \phi_{11,4,2} + \phi_{12,4,2}$ 20 $\phi_{9,3,2} - \phi_{8,3,2} + \phi_{11,4,2} - \phi_{12,4,2}$
- $21 \quad \phi_{9,3,2} \phi_{8,3,2} \phi_{11,4,2} + \phi_{12,4,2}$
- 22 $2\phi_{8,3,9} \phi_{7,3,9} \phi_{7,3,8} + 2\phi_{11,4,12} \phi_{10,4,11} \phi_{10,4,12}$
- 23 $2\phi_{8,3,9} \phi_{7,3,9} \phi_{7,3,8} 2\phi_{11,4,12} + \phi_{10,4,11} + \phi_{10,4,12}$
- $24 \quad \phi_{7,3,9} \phi_{7,3,8} + \phi_{10,4,11} \phi_{10,4,12}$
- $25 \quad \phi_{7,3,9} \phi_{7,3,8} \phi_{10,4,11} + \phi_{10,4,12}$
- 26 $\tau_{6,1,2,4} + \tau_{5,1,2,3}$
- 27 $\tau_{7,3,2,1} + \tau_{9,3,2,1} + \tau_{8,3,2,1} + \tau_{7,3,2,4} + \tau_{9,3,2,4} + \tau_{8,3,2,4} + \tau_{10,4,2,1} + \tau_{11,4,2,1} + \tau_{12,4,2,1} + \tau_{10,4,2,3} + \tau_{11,4,2,3} + \tau_{11,4,2,3} + \tau_{12,4,2,3}$
- 28 $\tau_{7,3,2,1} + \tau_{9,3,2,1} + \tau_{8,3,2,1} + \tau_{7,3,2,4} + \tau_{9,3,2,4} + \tau_{8,3,2,4} \tau_{10,4,2,1} \tau_{11,4,2,1} \tau_{12,4,2,1} \tau_{10,4,2,3} \tau_{11,4,2,3} \tau_{11,4,2,3} \tau_{12,4,2,3}$
- 29 $\gamma_{1,2,3,4}$
- $30 \quad \gamma_{2,1,5,6}$

Table S345: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Ν	0.00000000	0.00000000	-2.12001408
2	С	-0.00000000	2.12543160	-0.62715050
3	С	-0.00000000	-2.12543160	-0.62715050
4	С	-0.00000000	-1.34928425	1.86128652
5	С	0.00000000	1.34928425	1.86128652
6	Η	0.00000000	3.98802740	-1.44697684
7	Η	-0.00000000	-3.98802740	-1.44697684
8	Η	0.00000000	-2.57429947	3.48805942
9	Η	0.00000000	2.57429947	3.48805942
10	Η	0.00000000	0.00000000	-4.01523914

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3700.44	3711.27	3700.44	3700.44	3803.79	3700.44	3700.44
$\omega_2(a_1)$	3279.10	3294.26	3279.07	3279.07	3419.76	3279.08	3279.08
$\omega_3(a_1)$	3257.75	3273.66	3257.77	3257.77	3396.92	3257.75	3257.75
$\omega_4(a_1)$	1508.88	1506.22	1508.04	1508.86	1559.25	1505.54	1508.68
$\omega_5(a_1)$	1423.16	1415.40	1423.60	1423.13	1481.63	1425.05	1423.21
$\omega_6(a_1)$	1167.23	1164.53	1167.09	1167.27	1203.98	1166.54	1167.26
$\omega_7(a_1)$	1094.84	1100.08	1095.54	1094.83	1116.97	1096.73	1094.71
$\omega_8(a_1)$	1032.96	1031.24	1033.01	1033.01	1053.30	1033.98	1033.26
$\omega_9(a_1)$	889.60	884.03	889.61	889.61	899.23	889.71	889.71
$\omega_{10}(a_2)$	854.80	853.97	854.55	854.80	857.91	854.52	854.80
$\omega_{11}(a_2)$	689.51	679.29	689.71	689.49	697.04	689.52	689.48
$\omega_{12}(a_2)$	615.62	619.21	615.74	615.64	615.29	615.99	615.65
$\omega_{13}(b_1)$	825.18	817.75	824.81	825.17	831.66	825.02	825.17
$\omega_{14}(b_1)$	732.17	729.73	732.24	732.06	738.30	732.18	732.14
$\omega_{15}(b_1)$	634.23	643.44	634.28	634.36	642.47	634.14	634.27
$\omega_{16}(b_1)$	441.88	475.21	442.37	441.88	448.46	442.28	441.88
$\omega_{17}(b_2)$	3272.13	3287.47	3272.09	3272.09	3412.20	3272.12	3272.12
$\omega_{18}(b_2)$	3246.88	3264.03	3246.91	3246.91	3385.64	3246.87	3246.87
$\omega_{19}(b_2)$	1572.76	1562.94	1571.83	1572.75	1626.02	1570.82	1572.73
$\omega_{20}(b_2)$	1465.60	1468.23	1465.76	1465.55	1520.15	1466.34	1465.60
$\omega_{21}(b_2)$	1310.43	1305.09	1310.64	1310.45	1327.81	1310.78	1310.35
$\omega_{22}(b_2)$	1159.51	1160.93	1160.22	1159.51	1178.02	1159.91	1159.39
$\omega_{23}(b_2)$	1065.99	1063.66	1066.05	1065.98	1087.62	1066.93	1066.21
$\omega_{24}(b_2)$	868.69	862.38	868.76	868.76	878.02	868.78	868.78

Table S346: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3714.09	3700.44	3700.44
$\omega_2(a_1)$	3286.94	3279.03	3279.03
$\omega_3(a_1)$	3265.01	3257.79	3257.79
$\omega_4(a_1)$	1499.87	1508.42	1508.86
$\omega_5(a_1)$	1408.25	1423.47	1423.07
$\omega_6(a_1)$	1169.09	1167.30	1167.35
$\omega_7(a_1)$	1095.44	1094.83	1094.69
$\omega_8(a_1)$	1034.83	1033.07	1033.07
$\omega_9(a_1)$	895.57	889.74	889.74
$\omega_{10}(a_2)$	868.80	854.67	854.80
$\omega_{11}(a_2)$	693.15	689.56	689.50
$\omega_{12}(a_2)$	625.40	615.74	615.63
$\omega_{13}(b_1)$	828.04	824.92	825.17
$\omega_{14}(b_1)$	739.49	732.11	731.94
$\omega_{15}(b_1)$	638.18	634.51	634.49
$\omega_{16}(b_1)$	472.58	442.05	441.89
$\omega_{17}(b_2)$	3284.00	3272.11	3272.11
$\omega_{18}(b_2)$	3254.73	3246.86	3246.86
$\omega_{19}(b_2)$	1574.22	1572.44	1572.76
$\omega_{20}(b_2)$	1451.06	1465.71	1465.58
$\omega_{21}(b_2)$	1313.81	1310.62	1310.43
$\omega_{22}(b_2)$	1159.85	1159.51	1159.44
$\omega_{23}(b_2)$	1070.84	1066.16	1066.16
$\omega_{24}(b_2)$	872.30	868.72	868.72

Table S347: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S348: Symmetrized, unnormalized natural internal coordinates for pyrrole.

- 1 $r_{1,10}$ $\mathbf{2}$ $r_{4,5} + r_{2,5} + r_{3,4} + r_{1,2} + r_{1,3}$ 3 $3r_{4,5} + r_{2,5} + r_{3,4} - 3r_{1,2} - 3r_{1,3}$ $4 \qquad 2r_{2,5} - 2r_{3,4} + r_{1,2} - r_{1,3}$ 5 $3r_{4,5} - 3r_{2,5} - 3r_{3,4} + r_{1,2} + r_{1,3}$ 6 $r_{2,5} - r_{3,4} - 2r_{1,2} + 2r_{1,3}$ $\overline{7}$ $r_{2,6} + r_{3,7}$ 8 $r_{2,6} - r_{3,7}$ 9 $r_{4,8} + r_{5,9}$ $10 \quad r_{4,8} - r_{5,9}$ 11 $\phi_{10,1,2} - \phi_{10,1,3}$ 12 $3\phi_{2,1,3} - 3\phi_{1,2,5} - 3\phi_{1,3,4} + \phi_{2,5,4} + \phi_{3,4,5}$ 13 $-\phi_{1,2,5} + \phi_{1,3,4} + 2\phi_{2,5,4} - 2\phi_{3,4,5}$ 14 $\phi_{6,2,1} - \phi_{6,2,5} + \phi_{7,3,1} - \phi_{7,3,4}$ 15 $\phi_{6,2,1} - \phi_{6,2,5} - \phi_{7,3,1} + \phi_{7,3,4}$ 16 $\phi_{8,4,3} - \phi_{8,4,5} + \phi_{9,5,2} - \phi_{9,5,4}$ 17 $\phi_{8,4,3} - \phi_{8,4,5} - \phi_{9,5,2} + \phi_{9,5,4}$ 18 $3\tau_{2,5,4,3} + \tau_{4,3,1,2} + \tau_{3,1,2,5} - 3\tau_{5,4,3,1} - 3\tau_{1,2,5,4}$ 19 $2\tau_{4,3,1,2} - 2\tau_{3,1,2,5} - \tau_{5,4,3,1} + \tau_{1,2,5,4}$
- 20 $\gamma_{10,1,3,2}$
- 21 $\gamma_{6,2,1,5} + \gamma_{7,3,4,1}$
- 22 $\gamma_{6,2,1,5} \gamma_{7,3,4,1}$
- 23 $\gamma_{8,4,5,3} + \gamma_{9,5,2,4}$
- 24 $\gamma_{8,4,5,3} \gamma_{9,5,2,4}$

Table S349: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{S}	0.00000000	0.00000000	0.68492417
2	Ο	0.00000000	-2.35105565	-0.68454394
3	Ο	0.00000000	2.35105565	-0.68454394

Table S350: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/	Pure MP2/	CMA-0A MP2/	CMA-2A MP2/	Pure CCSD(T)/	CMA-0A CCSD(T)/	CMA-2A CCSD(T)/
	cc-pv1Z	cc-pv1Z	cc-pv1Z	cc-pv1Z	cc-pvDZ	cc-pvDZ	cc-pvDZ
$\omega_1(a_1)$	1169.10	1190.77	1169.07	1169.07	1178.07	1169.10	1169.10
$\omega_2(a_1)$	519.25	518.10	519.31	519.31	527.44	519.25	519.25
$\omega_2(b_2)$	1388.91	1420.92	1388.91	1388.91	1409.58	1388.91	1388.91

Table S351: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	1186.62	1169.10	1169.10
$\omega_2(a_1)$	520.19	519.25	519.25
$\omega_2(b_2)$	1399.97	1388.91	1388.91

Table S352: Symmetrized, unnormalized natural internal coordinates for sulfur dioxide.

 $\begin{array}{rrr} 1 & r_{1,2}+r_{1,3} \\ 2 & r_{1,2}-r_{1,3} \\ 3 & \phi_{2,1,3} \end{array}$

S4.89 hydrogen sulfide

Table S353: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{S}	0.00000000	0.00000000	0.10390451
2	Η	0.00000000	-1.82244988	-1.64812453
3	Н	0.00000000	1.82244988	-1.64812453

Table S354: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/	Pure MP2/	CMA-0A MP2/	CMA-2A MP2/	Pure CCSD(T)/	CMA-0A CCSD(T)/	CMA-2A CCSD(T)/
	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	2722.07	2761.49	2722.07	2722.07	2807.33	2722.07	2722.07
$\omega_2(a_1)$	1209.65	1206.85	1209.65	1209.65	1229.67	1209.66	1209.66
$\omega_2(b_2)$	2736.76	2780.97	2736.76	2736.76	2827.77	2736.76	2736.76

Table S355: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure P21 VD /	CMA-0A	CMA-2A P2I VD/
	6-31G(2df,p)	6-31G(2df,p)	6-31G(2df,p)
$\omega_1(a_1)$	2747.08	2722.07	2722.07
$\omega_2(a_1)$	1220.85	1209.65	1209.65
$\omega_2(b_2)$	2761.81	2736.76	2736.76

Table S356: Symmetrized, unnormalized natural internal coordinates for hydrogen sulfide.

 $\begin{array}{rrr} 1 & r_{1,2}+r_{1,3} \\ 2 & r_{1,2}-r_{1,3} \\ 3 & \phi_{2,1,3} \end{array}$

S307

Table S357: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{S}	-0.00000000	-0.00000000	1.97114916
2	С	0.00000000	-0.00000000	-0.99620667
3	Х	1.88972652	-0.00000000	-0.99620667
4	Ο	0.00000000	0.00000000	-3.19271727
5	Х	0.00000000	1.88972652	-0.99620667

Table S358: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc- $pVDZ$
$\omega_1(\sigma^+)$	2091.68	2128.22	2091.47	2091.68	2158.00	2091.65	2091.68
$\omega_{2a}(\pi)$	523.09	524.86	523.09	523.09	522.79	523.09	523.09
$\omega_{2\mathrm{b}}(\pi)$	523.09	524.84	523.09	523.09	522.78	523.09	523.09
$\omega_3(\sigma^+)$	869.09	884.60	869.59	869.09	899.50	869.16	869.09

Table S359: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6-31\mathrm{G}(2df,p)$
$\omega_1(\sigma^+)$	2112.74	2091.65	2091.68
$\omega_{2a}(\pi)$	531.88	523.09	523.09
$\omega_{2\mathrm{b}}(\pi)$	531.87	523.09	523.09
$\omega_3(\sigma^+)$	867.79	869.15	869.09

Table S360: Symmetrized, unnormalized natural internal coordinates for carbonyl sulfide.

- $\begin{array}{ll}1 & r_{1,2} \\ 2 & r_{2,4} \\ 3 & \theta_{1,2,4,3} \end{array}$
- 4 $\theta_{1,2,4,5}$

Table S361: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{S}	-0.00000000	0.00000000	-1.50417512
2	С	-1.40520404	0.00000000	1.64054308
3	\mathbf{C}	1.40520404	0.00000000	1.64054308
4	Η	-2.36308175	1.72968642	2.16271655
5	Η	-2.36308175	-1.72968642	2.16271655
6	Η	2.36308175	-1.72968642	2.16271655
7	Η	2.36308175	1.72968642	2.16271655

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3142.69	3157.07	3142.68	3142.68	3282.83	3142.67	3142.67
$\omega_2(a_1)$	1502.57	1499.93	1502.52	1502.52	1524.60	1502.18	1502.18
$\omega_3(a_1)$	1139.93	1140.04	1139.91	1139.98	1176.66	1140.25	1140.47
$\omega_4(a_1)$	1048.53	1046.36	1048.62	1048.54	1067.61	1048.56	1048.52
$\omega_5(a_1)$	640.95	650.08	640.99	640.98	664.08	641.34	641.02
$\omega_6(a_2)$	3224.34	3246.36	3224.34	3224.34	3376.58	3224.33	3224.33
$\omega_7(a_2)$	1198.60	1196.20	1198.59	1198.59	1209.64	1198.60	1198.60
$\omega_8(a_1)$	904.36	910.85	904.39	904.39	915.07	904.39	904.39
$\omega_9(b_1)$	3238.02	3259.13	3238.01	3238.01	3389.78	3238.00	3238.00
$\omega_{10}(b_1)$	962.71	963.05	962.70	962.70	978.23	962.69	962.69
$\omega_{11}(b_1)$	833.27	834.59	833.28	833.28	848.89	833.34	833.34
$\omega_{12}(b_2)$	3139.04	3154.94	3139.04	3139.04	3277.34	3139.04	3139.04
$\omega_{13}(b_2)$	1477.31	1477.74	1477.31	1477.31	1490.92	1477.31	1477.31
$\omega_{14}(b_2)$	1073.84	1066.17	1073.84	1073.84	1089.95	1073.82	1073.82
$\omega_{15}(b_2)$	679.82	692.20	679.83	679.83	689.48	679.85	679.85

Table S362: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

Table S363: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3155.52	3142.65	3142.65
$\omega_2(a_1)$	1491.27	1502.53	1502.53
$\omega_3(a_1)$	1139.85	1139.90	1140.01
$\omega_4(a_1)$	1050.63	1048.72	1048.61
$\omega_5(a_1)$	639.23	640.98	640.96
$\omega_6(a_2)$	3241.20	3224.34	3224.34
$\omega_7(a_2)$	1196.59	1198.58	1198.58
$\omega_8(a_1)$	899.85	904.41	904.41
$\omega_9(b_1)$	3256.76	3238.01	3238.01
$\omega_{10}(b_1)$	957.83	962.70	962.72
$\omega_{11}(b_1)$	835.39	833.30	833.27
$\omega_{12}(b_2)$	3154.02	3139.03	3139.03
$\omega_{13}(b_2)$	1471.96	1477.30	1477.30
$\omega_{14}(b_2)$	1081.70	1073.87	1073.87
$\omega_{15}(b_2)$	678.64	679.87	679.87

Table S364: Symmetrized, unnormalized natural internal coordinates for thiirane.

```
1
        r_{1,2} + r_{1,3} + r_{2,3}
\mathbf{2}
        r_{1,2} - r_{1,3}
3
        -r_{1,2} - r_{1,3} + 2r_{2,3}
4
       r_{2,4} + r_{2,5} + r_{3,6} + r_{3,7}
5
       r_{2,4} + r_{2,5} - r_{3,6} - r_{3,7}
6
       r_{2,4} - r_{2,5} + r_{3,6} - r_{3,7}
\overline{7}
        r_{2,4} - r_{2,5} - r_{3,6} + r_{3,7}
8
       4\phi_{4,2,5} + 4\phi_{6,3,7} - \phi_{1,2,4} - \phi_{3,2,4} - \phi_{1,2,5} - \phi_{3,2,5} - \phi_{1,3,6} - \phi_{2,3,6} - \phi_{1,3,7} - \phi_{2,3,7}
9
        4\phi_{4,2,5} - 4\phi_{6,3,7} - \phi_{1,2,4} - \phi_{3,2,4} - \phi_{1,2,5} - \phi_{3,2,5} + \phi_{1,3,6} + \phi_{2,3,6} + \phi_{1,3,7} + \phi_{2,3,7}
10 \phi_{1,2,4} + \phi_{3,2,4} - \phi_{1,2,5} - \phi_{3,2,5} + \phi_{1,3,6} + \phi_{2,3,6} - \phi_{1,3,7} - \phi_{2,3,7}
11 \phi_{1,2,4} + \phi_{3,2,4} - \phi_{1,2,5} - \phi_{3,2,5} - \phi_{1,3,6} - \phi_{2,3,6} + \phi_{1,3,7} + \phi_{2,3,7}
12 \phi_{1,2,4} - \phi_{3,2,4} + \phi_{1,2,5} - \phi_{3,2,5} + \phi_{1,3,6} - \phi_{2,3,6} + \phi_{1,3,7} - \phi_{2,3,7}
13 \phi_{1,2,4} - \phi_{3,2,4} + \phi_{1,2,5} - \phi_{3,2,5} - \phi_{1,3,6} + \phi_{2,3,6} - \phi_{1,3,7} + \phi_{2,3,7}
14 \phi_{1,2,4} - \phi_{3,2,4} - \phi_{1,2,5} + \phi_{3,2,5} + \phi_{1,3,6} - \phi_{2,3,6} - \phi_{1,3,7} + \phi_{2,3,7}
```

15 $\phi_{1,2,4} - \phi_{3,2,4} - \phi_{1,2,5} + \phi_{3,2,5} - \phi_{1,3,6} + \phi_{2,3,6} + \phi_{1,3,7} - \phi_{2,3,7}$

Table S365: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{S}	-0.00000000	-0.00000000	1.12636820
2	С	-0.00000000	-2.58599764	-1.11200562
3	С	-0.00000000	2.58599764	-1.11200562
4	Η	0.00000000	-4.33900174	-0.03161213
5	Η	1.68595712	-2.53090490	-2.29714225
6	Η	-1.68595712	-2.53090490	-2.29714225
7	Η	-0.00000000	4.33900174	-0.03161213
8	Η	-1.68595712	2.53090490	-2.29714225
9	Η	1.68595712	2.53090490	-2.29714225

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3138.71	3161.78	3138.70	3138.70	3290.71	3138.61	3138.61
$\omega_2(a_1)$	3034.90	3046.90	3034.91	3034.91	3170.28	3034.94	3034.94
$\omega_3(a_1)$	1494.03	1497.17	1494.01	1494.01	1507.49	1494.05	1494.05
$\omega_4(a_1)$	1368.12	1364.18	1368.12	1368.12	1390.00	1368.13	1368.13
$\omega_5(a_1)$	1050.49	1050.65	1050.52	1050.52	1064.72	1050.59	1050.59
$\omega_6(a_1)$	708.45	715.50	708.46	708.46	720.20	708.52	708.52
$\omega_7(a_1)$	262.33	259.78	262.34	262.34	270.35	262.35	262.35
$\omega_8(a_2)$	3120.93	3145.50	3120.93	3120.93	3274.49	3120.89	3120.89
$\omega_9(a_2)$	1469.61	1472.60	1469.59	1469.59	1482.23	1469.65	1469.65
$\omega_{10}(a_2)$	953.94	957.67	953.96	953.96	969.58	954.00	954.00
$\omega_{11}(a_2)$	174.71	178.33	174.71	174.71	181.11	174.72	174.72
$\omega_{12}(b_1)$	3113.45	3136.86	3113.45	3113.45	3267.60	3113.41	3113.41
$\omega_{13}(b_1)$	1478.62	1481.94	1478.61	1478.61	1491.72	1478.65	1478.65
$\omega_{14}(b_1)$	990.25	993.10	990.27	990.27	1008.66	990.30	990.31
$\omega_{15}(b_1)$	186.14	189.00	186.14	186.14	192.75	186.18	186.15
$\omega_{16}(b_2)$	3139.38	3163.09	3139.36	3139.36	3291.17	3139.26	3139.26
$\omega_{17}(b_2)$	3038.72	3052.14	3038.74	3038.74	3173.26	3038.77	3038.77
$\omega_{18}(b_2)$	1486.48	1489.11	1486.47	1486.47	1500.06	1486.50	1486.50
$\omega_{19}(b_2)$	1343.74	1339.54	1343.74	1343.74	1363.34	1343.76	1343.76
$\omega_{20}(b_2)$	911.61	916.02	911.63	911.63	924.90	911.70	911.70
$\omega_{21}(b_2)$	762.13	768.68	762.15	762.15	775.03	762.19	762.19

Table S366: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2df,p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3157.49	3138.69	3138.69
$\omega_2(a_1)$	3055.19	3034.87	3034.87
$\omega_3(a_1)$	1492.25	1494.00	1494.00
$\omega_4(a_1)$	1374.52	1368.13	1368.17
$\omega_5(a_1)$	1057.82	1050.58	1050.58
$\omega_6(a_1)$	704.98	708.56	708.49
$\omega_7(a_1)$	270.60	262.36	262.36
$\omega_8(a_2)$	3139.15	3120.91	3120.91
$\omega_9(a_2)$	1469.76	1469.59	1469.59
$\omega_{10}(a_2)$	958.68	954.01	954.03
$\omega_{11}(a_2)$	187.11	174.83	174.72
$\omega_{12}(b_1)$	3132.10	3113.43	3113.43
$\omega_{13}(b_1)$	1479.82	1478.61	1478.61
$\omega_{14}(b_1)$	994.89	990.31	990.32
$\omega_{15}(b_1)$	189.01	186.24	186.18
$\omega_{16}(b_2)$	3158.13	3139.35	3139.35
$\omega_{17}(b_2)$	3058.17	3038.69	3038.69
$\omega_{18}(b_2)$	1484.92	1486.42	1486.42
$\omega_{19}(b_2)$	1349.50	1343.75	1343.81
$\omega_{20}(b_2)$	917.81	911.74	911.74
$\omega_{21}(b_2)$	753.15	762.27	762.16

Table S367: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S368: Symmetrized, unnormalized natural internal coordinates for dimethyl sulfide.

1 $r_{1,2} + r_{1,3}$ 2 $r_{1,2} - r_{1,3}$ 3 $r_{2,4} + r_{2,5} + r_{2,6} + r_{3,7} + r_{3,8} + r_{3,9}$ 4 $r_{2,4} + r_{2,5} + r_{2,6} - r_{3,7} - r_{3,8} - r_{3,9}$ 5 $2r_{2,4} - r_{2,5} - r_{2,6} + 2r_{3,7} - r_{3,8} - r_{3,9}$ 6 $2r_{2,4} - r_{2,5} - r_{2,6} - 2r_{3,7} + r_{3,8} + r_{3,9}$ $\overline{7}$ $r_{2,5} - r_{2,6} + r_{3,8} - r_{3,9}$ 8 $r_{2,5} - r_{2,6} - r_{3,8} + r_{3,9}$ 9 $\phi_{2,1,3}$ $10 \quad \phi_{4,2,1} + \phi_{5,2,1} + \phi_{6,2,1} - \phi_{5,2,6} - \phi_{4,2,5} - \phi_{4,2,6} + \phi_{7,3,1} + \phi_{8,3,1} + \phi_{9,3,1} - \phi_{8,3,9}$ $-\phi_{7,3,8}-\phi_{7,3,9}$ $11 \quad \phi_{4,2,1} + \phi_{5,2,1} + \phi_{6,2,1} - \phi_{5,2,6} - \phi_{4,2,5} - \phi_{4,2,6} - \phi_{7,3,1} - \phi_{8,3,1} - \phi_{9,3,1} + \phi_{8,3,9}$ $+\phi_{7,3,8}+\phi_{7,3,9}$ 12 $2\phi_{4,2,1} - \phi_{5,2,1} - \phi_{6,2,1} + 2\phi_{7,3,1} - \phi_{8,3,1} - \phi_{9,3,1}$ 13 $2\phi_{4,2,1} - \phi_{5,2,1} - \phi_{6,2,1} - 2\phi_{7,3,1} + \phi_{8,3,1} + \phi_{9,3,1}$ 14 $\phi_{5,2,1} - \phi_{6,2,1} + \phi_{8,3,1} - \phi_{9,3,1}$ 15 $\phi_{5,2,1} - \phi_{6,2,1} - \phi_{8,3,1} + \phi_{9,3,1}$ 16 $2\phi_{5,2,6} - \phi_{4,2,5} - \phi_{4,2,6} + 2\phi_{8,3,9} - \phi_{7,3,8} - \phi_{7,3,9}$ 17 $2\phi_{5,2,6} - \phi_{4,2,5} - \phi_{4,2,6} - 2\phi_{8,3,9} + \phi_{7,3,8} + \phi_{7,3,9}$ 18 $\phi_{4,2,5} - \phi_{4,2,6} + \phi_{7,3,8} - \phi_{7,3,9}$ 19 $\phi_{4,2,5} - \phi_{4,2,6} - \phi_{7,3,8} + \phi_{7,3,9}$ 20 $\tau_{4,2,1,3} + \tau_{5,2,1,3} + \tau_{6,2,1,3} + \tau_{7,3,1,2} + \tau_{8,3,1,2} + \tau_{9,3,1,2}$ 21 $\tau_{4,2,1,3} + \tau_{5,2,1,3} + \tau_{6,2,1,3} - \tau_{7,3,1,2} - \tau_{8,3,1,2} - \tau_{9,3,1,2}$

S4.93 thioethanol

Table S369: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{S}	-1.94413062	0.32139246	0.00000000
2	С	1.11416252	-1.29182836	0.00000000
3	С	3.20028202	0.69835977	0.00000000
4	Η	-3.38597804	-1.75712103	-0.00000000
5	Η	1.25064962	-2.48270008	1.67469531
6	Η	1.25064962	-2.48270008	-1.67469531
7	Η	5.05305419	-0.20846079	0.00000000
8	Η	3.06777149	1.90075538	1.67101309
9	Η	3.06777149	1.90075538	-1.67101309

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a^{'})$	3118.15	3142.85	3118.13	3118.13	3269.41	3118.03	3118.03
$\omega_{2}(a^{'})$	3068.16	3084.39	3068.14	3068.14	3206.96	3068.14	3068.14
$\omega_{3}(a^{'})$	3040.58	3052.91	3040.63	3040.63	3174.67	3040.65	3040.65
$\omega_{4}(a^{'})$	2709.33	2751.21	2709.33	2709.33	2796.68	2709.33	2709.33
$\omega_{5}(a^{'})$	1510.01	1512.18	1509.95	1509.95	1522.66	1510.05	1510.05
$\omega_{6}(a^{'})$	1496.40	1496.71	1496.41	1496.41	1512.96	1496.26	1496.26
$\omega_7(a^{'})$	1413.61	1405.70	1413.60	1413.60	1433.27	1413.34	1413.34
$\omega_{8}(a^{'})$	1302.20	1296.35	1302.20	1302.20	1325.81	1302.27	1302.27
$\omega_{9}(a^{'})$	1116.09	1113.71	1116.10	1116.12	1135.58	1115.88	1116.44
$\omega_{10}(a^{'})$	1001.77	1001.61	1001.79	1001.79	1027.55	1002.49	1001.88
$\omega_{11}(a^{'})$	863.95	860.16	863.96	863.94	882.54	864.16	864.15
$\omega_{12}(a^{'})$	687.08	694.65	687.14	687.14	698.22	687.11	687.12
$\omega_{13}(a^{'})$	301.94	302.79	301.97	301.97	308.37	301.97	301.96
$\omega_{14}(a^{''})$	3129.76	3153.78	3129.76	3129.76	3280.44	3129.68	3129.68
$\omega_{15}(a^{''})$	3107.06	3132.09	3107.06	3107.06	3260.50	3107.11	3107.11
$\omega_{16}(a^{''})$	1500.20	1502.55	1500.19	1500.19	1512.10	1500.23	1500.23
$\omega_{17}(a^{''})$	1271.87	1271.55	1271.82	1271.82	1285.97	1271.86	1271.86
$\omega_{18}(a^{''})$	1046.64	1048.45	1046.71	1046.71	1063.04	1046.67	1046.67
$\omega_{19}(a^{''})$	789.89	790.35	789.90	789.90	803.96	789.94	789.95
$\omega_{20}(a^{''})$	252.94	257.41	252.93	252.94	268.48	252.83	252.95
$\omega_{21}(a^{''})$	177.40	180.15	177.42	177.41	186.61	177.66	177.45

Table S370: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a^{'})$	3133.91	3118.14	3118.14
$\omega_{2}(a^{'})$	3082.36	3068.13	3068.13
$\omega_{3}(a^{'})$	3060.71	3040.59	3040.59
$\omega_{4}(a^{'})$	2732.64	2709.32	2709.32
$\omega_{5}(a^{'})$	1509.70	1509.93	1509.93
$\omega_{6}(a^{'})$	1494.76	1496.40	1496.40
$\omega_7(a^{'})$	1421.74	1413.46	1413.46
$\omega_{8}(a^{'})$	1305.25	1302.14	1302.14
$\omega_{9}(a^{'})$	1117.87	1115.89	1115.89
$\omega_{10}(a^{'})$	999.04	1002.13	1002.13
$\omega_{11}(a^{'})$	866.30	864.23	864.23
$\omega_{12}(a^{'})$	681.02	687.30	687.30
$\omega_{13}(a^{'})$	303.81	302.03	302.03
$\omega_{14}(a^{''})$	3146.90	3129.73	3129.73
$\omega_{15}(a^{''})$	3122.57	3107.07	3107.07
$\omega_{16}(a^{''})$	1499.64	1500.20	1500.20
$\omega_{17}(a^{''})$	1274.42	1271.79	1271.79
$\omega_{18}(a^{''})$	1047.44	1046.72	1046.72
$\omega_{19}(a^{''})$	795.85	789.98	789.98
$\omega_{20}(a^{''})$	252.75	252.94	252.98
$\omega_{21}(a^{''})$	184.36	177.48	177.42

Table S371: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S372: Symmetrized, unnormalized natural internal coordinates for thioethanol.

 $r_{3,2}$ $r_{3,1}$ $r_{1,4}$ $r_{3,7} + r_{3,8} + r_{3,9}$ $2r_{3,7} - r_{3,8} - r_{3,9}$ $r_{3,8} - r_{3,9}$ $\overline{7}$ $r_{2,5} + r_{2,6}$ $r_{2,5} - r_{2,6}$ $\phi_{3,2,1}$ $\phi_{2,1,4}$ $\phi_{7,3,2} + \phi_{8,3,2} + \phi_{9,3,2} - \phi_{8,3,9} - \phi_{7,3,8} - \phi_{7,3,9}$ $2\phi_{7,3,2} - \phi_{8,3,2} - \phi_{9,3,2}$ $\phi_{8,3,2} - \phi_{9,3,2}$ $2\phi_{8,3,9} - \phi_{7,3,8} - \phi_{7,3,9}$ $\phi_{7,3,8} - \phi_{7,3,9}$ $4\phi_{5,2,6} - \phi_{5,2,3} - \phi_{5,2,1} - \phi_{6,2,3} - \phi_{6,2,1}$ $\phi_{5,2,3} + \phi_{5,2,1} - \phi_{6,2,3} - \phi_{6,2,1}$ $\phi_{5,2,3} - \phi_{5,2,1} + \phi_{6,2,3} - \phi_{6,2,1}$ $\phi_{5,2,3} - \phi_{5,2,1} - \phi_{6,2,3} + \phi_{6,2,1}$ $\tau_{7,3,2,1} + \tau_{8,3,2,1} + \tau_{9,3,2,1}$ $\tau_{3,2,1,4}$

S4.94 dimethyl sulfoxide

Table S373: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{S}	-0.79551986	-0.28979430	-0.00000000
2	0	0.70249582	-2.66735948	-0.00000000
3	С	0.42748211	1.65658768	2.53093481
4	С	0.42748211	1.65658768	-2.53093481
5	Η	-0.13039689	0.76873497	4.30213494
6	Η	-0.39926512	3.54058228	2.39620963
7	Η	2.48361526	1.72913497	2.39620963
8	Η	-0.13039689	0.76873497	-4.30213494
9	Η	2.48361526	1.72913497	-2.39620963
10	Η	-0.39926512	3.54058228	-2.39620963

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a^{'})$	3153.52	3175.39	3153.50	3153.50	3302.98	3153.35	3153.35
$\omega_{2}(a^{'})$	3145.65	3167.15	3145.67	3145.67	3294.70	3145.68	3145.68
$\omega_{3}(a^{'})$	3041.26	3052.14	3041.27	3041.27	3172.11	3041.31	3041.31
$\omega_{4}(a^{'})$	1482.86	1486.44	1482.83	1482.83	1496.98	1482.85	1482.85
$\omega_{5}(a^{'})$	1460.90	1462.67	1460.87	1460.87	1472.87	1460.82	1460.82
$\omega_{6}(a^{'})$	1337.37	1331.30	1337.36	1337.36	1353.06	1337.37	1337.37
$\omega_7(a^{'})$	1134.06	1175.93	1133.63	1134.10	1153.12	1134.09	1134.09
$\omega_{8}(a^{'})$	1024.64	1021.74	1024.63	1024.64	1032.52	1024.74	1024.79
$\omega_{9}(a^{'})$	955.70	958.39	956.23	955.77	966.06	955.85	955.90
$\omega_{10}(a^{'})$	669.27	677.21	669.41	669.29	677.03	669.39	669.39
$\omega_{11}(a^{'})$	368.56	367.11	368.56	368.57	368.45	368.38	368.37
$\omega_{12}(a^{'})$	290.44	290.07	290.31	290.30	295.66	290.61	290.61
$\omega_{13}(a^{'})$	238.88	241.15	239.13	239.08	240.29	239.53	239.17
$\omega_{14}(a^{''})$	3152.29	3174.41	3152.28	3152.28	3301.83	3152.13	3152.13
$\omega_{15}(a^{''})$	3141.10	3163.22	3141.10	3141.10	3290.50	3141.12	3141.12
$\omega_{16}(a^{''})$	3039.48	3051.26	3039.49	3039.49	3170.30	3039.51	3039.51
$\omega_{17}(a^{''})$	1463.94	1466.98	1463.91	1463.91	1478.28	1463.92	1463.92
$\omega_{18}(a^{''})$	1446.99	1447.72	1446.99	1446.99	1458.92	1446.97	1446.97
$\omega_{19}(a^{''})$	1315.06	1309.06	1315.06	1315.06	1328.64	1315.04	1315.04
$\omega_{20}(a^{''})$	924.12	926.54	924.11	924.13	929.22	924.11	924.12
$\omega_{21}(a^{''})$	886.07	886.07	886.10	886.13	890.73	886.38	886.47
$\omega_{22}(a^{''})$	693.75	698.90	693.78	693.76	702.99	693.89	693.89
$\omega_{23}(a^{''})$	314.56	314.07	314.55	314.56	310.09	314.56	314.59
$\omega_{24}(a^{''})$	179.27	180.29	179.45	179.28	174.66	179.83	179.33

Table S374: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a^{'})$	3169.82	3153.47	3153.47
$\omega_{2}(a^{'})$	3161.96	3145.66	3145.66
$\omega_{3}(a^{'})$	3058.89	3041.21	3041.21
$\omega_{4}(a^{'})$	1482.53	1482.79	1482.79
$\omega_{5}(a^{'})$	1457.21	1460.83	1460.83
$\omega_{6}(a^{'})$	1340.69	1337.49	1337.49
$\omega_7(a^{'})$	1139.34	1134.07	1134.07
$\omega_{8}(a^{'})$	1029.20	1024.75	1024.75
$\omega_{9}(a^{'})$	959.20	955.83	955.83
$\omega_{10}(a^{'})$	668.59	669.37	669.37
$\omega_{11}(a^{'})$	368.87	368.25	368.25
$\omega_{12}(a^{'})$	297.04	290.56	290.56
$\omega_{13}(a^{'})$	227.74	239.37	239.36
$\omega_{14}(a^{''})$	3168.78	3152.22	3152.22
$\omega_{15}(a^{''})$	3156.76	3141.12	3141.12
$\omega_{16}(a^{''})$	3056.12	3039.44	3039.44
$\omega_{17}(a^{''})$	1462.48	1463.87	1463.87
$\omega_{18}(a^{''})$	1443.27	1446.93	1446.93
$\omega_{19}(a^{''})$	1318.65	1315.17	1315.17
$\omega_{20}(a^{''})$	931.44	924.20	924.22
$\omega_{21}(a^{''})$	889.74	886.22	886.22
$\omega_{22}(a^{''})$	690.70	693.89	693.86
$\omega_{23}(a^{''})$	319.24	314.59	314.59
$\omega_{24}(a^{''})$	176.64	179.38	179.31

Table S375: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).
Table S376: Symmetrized, unnormalized natural internal coordinates for dimethyl sulfoxide.

1	$r_{1,2}$
2	$r_{1,3} + r_{1,4}$
3	$r_{1,3} - r_{1,4}$
4	$r_{3,5} + r_{3,6} + r_{3,7} + r_{4,8} + r_{4,9} + r_{4,10}$
5	$r_{3,5} + r_{3,6} + r_{3,7} - r_{4,8} - r_{4,9} - r_{4,10}$
6	$2r_{3,5} - r_{3,6} - r_{3,7} + 2r_{4,8} - r_{4,9} - r_{4,10}$
7	$2r_{3,5} - r_{3,6} - r_{3,7} - 2r_{4,8} + r_{4,9} + r_{4,10}$
8	$r_{3,6} - r_{3,7} + r_{4,9} - r_{4,10}$
9	$r_{3,6} - r_{3,7} - r_{4,9} + r_{4,10}$
10	$2\phi_{3,1,4}-\phi_{2,1,3}-\phi_{2,1,4}$
11	$\phi_{2,1,3}-\phi_{2,1,4}$
12	$\phi_{5,3,1} + \phi_{6,3,1} + \phi_{7,3,1} - \phi_{6,3,7} - \phi_{5,3,6} - \phi_{5,3,7} + \phi_{8,4,1} + \phi_{9,4,1} + \phi_{10,4,1} - \phi_{9,4,10}$
	$-\phi_{8,4,9} - \phi_{8,4,10}$
13	$\phi_{5,3,1} + \phi_{6,3,1} + \phi_{7,3,1} - \phi_{6,3,7} - \phi_{5,3,6} - \phi_{5,3,7} - \phi_{8,4,1} - \phi_{9,4,1} - \phi_{10,4,1} + \phi_{9,4,10}$
	$+\phi_{8,4,9}+\phi_{8,4,10}$
14	$2\phi_{5,3,1} - \phi_{6,3,1} - \phi_{7,3,1} + 2\phi_{8,4,1} - \phi_{9,4,1} - \phi_{10,4,1}$
15	$2\phi_{5,3,1} - \phi_{6,3,1} - \phi_{7,3,1} - 2\phi_{8,4,1} + \phi_{9,4,1} + \phi_{10,4,1}$
16	$\phi_{6,3,1} - \phi_{7,3,1} + \phi_{9,4,1} - \phi_{10,4,1}$
17	$\phi_{6,3,1} - \phi_{7,3,1} - \phi_{9,4,1} + \phi_{10,4,1}$
18	$2\phi_{6,3,7} - \phi_{5,3,6} - \phi_{5,3,7} + 2\phi_{9,4,10} - \phi_{8,4,9} - \phi_{8,4,10}$
19	$2\phi_{6,3,7} - \phi_{5,3,6} - \phi_{5,3,7} - 2\phi_{9,4,10} + \phi_{8,4,9} + \phi_{8,4,10}$
20	$\phi_{5,3,6} - \phi_{5,3,7} + \phi_{8,4,9} - \phi_{8,4,10}$
21	$\phi_{5,3,6} - \phi_{5,3,7} - \phi_{8,4,9} + \phi_{8,4,10}$
22	$\tau_{5,3,1,4} + \tau_{6,3,1,4} + \tau_{7,3,1,4} + \tau_{8,4,1,3} + \tau_{9,4,1,3} + \tau_{10,4,1,3}$
23	$\tau_{5,3,1,4} + \tau_{6,3,1,4} + \tau_{7,3,1,4} - \tau_{8,4,1,3} - \tau_{9,4,1,3} - \tau_{10,4,1,3}$

24 $\gamma_{2,1,3,4}$

S4.95 thiophene

Table S377: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Х	0.00000000	0.00000000	-0.28192818
2	\mathbf{S}	0.00000000	0.00000000	-2.17165471
3	С	0.00000000	2.33762887	0.09177468
4	С	-0.00000000	-2.33762887	0.09177468
5	С	-0.00000000	-1.35030259	2.48887766
6	С	0.00000000	1.35030259	2.48887766
7	Η	0.00000000	4.29941975	-0.45873605
8	Η	-0.00000000	-4.29941975	-0.45873605
9	Η	-0.00000000	-2.49824704	4.17795384
10	Η	0.00000000	2.49824704	4.17795384

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3259.29	3274.28	3259.29	3259.29	3401.91	3259.28	3259.28
$\omega_2(a_1)$	3227.81	3243.48	3227.80	3227.80	3368.35	3227.81	3227.81
$\omega_3(a_1)$	1442.59	1431.52	1441.50	1442.60	1515.72	1440.39	1442.65
$\omega_4(a_1)$	1396.08	1388.53	1397.06	1396.07	1435.04	1397.20	1395.90
$\omega_5(a_1)$	1098.26	1093.31	1098.26	1098.25	1113.84	1098.50	1098.10
$\omega_6(a_1)$	1051.60	1050.22	1051.59	1051.60	1080.54	1052.61	1051.86
$\omega_7(a_1)$	845.49	854.01	845.62	845.50	867.61	845.77	845.60
$\omega_8(a_1)$	609.94	608.96	610.15	609.96	621.67	610.04	609.96
$\omega_9(a_2)$	902.59	899.84	902.33	902.59	908.03	902.43	902.59
$\omega_{10}(a_2)$	688.05	680.50	688.19	688.05	699.39	688.05	688.06
$\omega_{11}(a_2)$	565.53	572.20	565.77	565.53	564.75	565.79	565.53
$\omega_{12}(b_1)$	875.51	867.08	875.46	875.51	884.63	875.49	875.51
$\omega_{13}(b_1)$	725.76	728.43	725.75	725.76	734.62	725.76	725.76
$\omega_{14}(b_1)$	453.25	459.09	453.36	453.25	453.82	453.28	453.25
$\omega_{15}(b_2)$	3256.05	3271.39	3256.05	3256.05	3398.66	3256.05	3256.05
$\omega_{16}(b_2)$	3213.82	3230.68	3213.82	3213.82	3353.87	3213.82	3213.82
$\omega_{17}(b_2)$	1545.40	1532.18	1545.38	1545.39	1605.59	1544.78	1545.07
$\omega_{18}(b_2)$	1278.90	1270.27	1278.89	1278.89	1299.45	1279.20	1279.20
$\omega_{19}(b_2)$	1100.85	1098.79	1100.85	1100.84	1118.24	1101.29	1100.87
$\omega_{20}(b_2)$	878.28	879.42	878.27	878.27	896.34	878.10	878.33
$\omega_{21}(b_2)$	758.88	757.22	758.93	758.93	775.53	759.23	758.97

Table S378: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2df,p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3270.18	3259.24	3259.24
$\omega_2(a_1)$	3236.44	3227.83	3227.83
$\omega_3(a_1)$	1430.55	1442.22	1442.55
$\omega_4(a_1)$	1390.04	1396.31	1396.06
$\omega_5(a_1)$	1102.89	1098.26	1098.17
$\omega_6(a_1)$	1052.43	1051.76	1051.76
$\omega_7(a_1)$	844.89	845.58	845.57
$\omega_8(a_1)$	614.02	610.03	609.98
$\omega_9(a_2)$	919.45	902.49	902.59
$\omega_{10}(a_2)$	692.92	688.08	688.05
$\omega_{11}(a_2)$	576.77	565.65	565.53
$\omega_{12}(b_1)$	883.73	875.50	875.51
$\omega_{13}(b_1)$	734.63	725.77	725.77
$\omega_{14}(b_1)$	458.60	453.26	453.25
$\omega_{15}(b_2)$	3267.32	3256.02	3256.02
$\omega_{16}(b_2)$	3222.27	3213.82	3213.82
$\omega_{17}(b_2)$	1541.54	1545.29	1545.33
$\omega_{18}(b_2)$	1273.57	1278.88	1278.88
$\omega_{19}(b_2)$	1105.82	1100.95	1100.90
$\omega_{20}(b_2)$	875.32	878.12	878.12
$\omega_{21}(b_2)$	758.22	759.27	759.27

Table S379: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S380: Symmetrized, unnormalized natural internal coordinates for thiophene.

- $1 \qquad r_{5,6} + r_{3,6} + r_{4,5} + r_{2,3} + r_{2,4}$
- $2 \qquad 3r_{5,6} + r_{3,6} + r_{4,5} 3r_{2,3} 3r_{2,4}$
- $3 \qquad 2r_{3,6} 2r_{4,5} + r_{2,3} r_{2,4}$
- $4 \qquad 3r_{5,6} 3r_{3,6} 3r_{4,5} + r_{2,3} + r_{2,4}$
- $5 \qquad r_{3,6} r_{4,5} 2r_{2,3} + 2r_{2,4}$
- $6 r_{3,7} + r_{4,8}$
- $7 r_{3,7} r_{4,8}$
- 8 $r_{6,10} + r_{5,9}$
- 9 $r_{6,10} r_{5,9}$
- $10 \quad 3\phi_{3,2,4} 3\phi_{2,3,6} 3\phi_{2,4,5} + \phi_{3,6,5} + \phi_{4,5,6}$
- $11 \quad -\phi_{2,3,6} + \phi_{2,4,5} + 2\phi_{3,6,5} 2\phi_{4,5,6}$
- 12 $\phi_{7,3,2} \phi_{7,3,6} + \phi_{8,4,2} \phi_{8,4,5}$
- 13 $\phi_{7,3,2} \phi_{7,3,6} \phi_{8,4,2} + \phi_{8,4,5}$
- 14 $\phi_{10,6,3} \phi_{10,6,5} + \phi_{9,5,4} \phi_{9,5,6}$
- 15 $\phi_{10,6,3} \phi_{10,6,5} \phi_{9,5,4} + \phi_{9,5,6}$
- 16 $3\tau_{3,6,5,4} + \tau_{6,3,2,4} + \tau_{3,2,4,5} 3\tau_{5,6,3,2} 3\tau_{2,4,5,6}$
- 17 $2\tau_{6,3,2,4} 2\tau_{3,2,4,5} \tau_{5,6,3,2} + \tau_{2,4,5,6}$
- 18 $\gamma_{7,3,2,6} + \gamma_{8,4,5,2}$
- 19 $\gamma_{7,3,2,6} \gamma_{8,4,5,2}$
- 20 $\gamma_{10,6,3,5} + \gamma_{9,5,6,4}$
- 21 $\gamma_{10,6,3,5} \gamma_{9,5,6,4}$

Table S381: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-1.37507311	-0.02427686	0.0000035
2	0	1.30601636	0.12070128	0.0000030
3	Η	-2.07787395	1.90961292	-0.00007991
4	Η	-2.10898758	-0.97927269	1.68197389
5	Η	-2.10898055	-0.97940393	-1.68190173
6	Η	1.94117467	-1.57749284	-0.00000131

Table S382: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/	Pure MP2/	CMA-0A MP2/	CMA-2A MP2/	Pure CCSD(T)/	CMA-0A CCSD(T)/	CMA-2A CCSD(T)/
	$\cos p V T 7$	m 2/	n n 2/	n n 2/	ccod(1)	ccod(1)	$\cos pVDZ$
	cc-pv12	cc-pv12	cc-pv12	cc-pv12	cc-pvDZ	cc-pvDZ	
$\omega_{1}(a^{'})$	3864.98	3883.16	3864.97	3864.97	3934.93	3864.97	3864.97
$\omega_{2}(a^{'})$	3128.11	3153.00	3128.03	3128.03	3280.15	3127.99	3127.99
$\omega_{3}(a^{'})$	3009.29	3023.79	3009.36	3009.36	3142.54	3009.35	3009.35
$\omega_{4}(a^{'})$	1523.24	1529.06	1523.19	1523.19	1535.29	1523.15	1523.15
$\omega_{5}(a^{'})$	1487.64	1489.02	1487.66	1487.66	1508.03	1487.73	1487.73
$\omega_{6}(a^{'})$	1393.88	1383.49	1393.72	1393.72	1409.01	1393.81	1393.89
$\omega_7(a^{'})$	1095.54	1097.63	1095.56	1095.56	1105.59	1095.22	1095.60
$\omega_{8}(a^{'})$	1065.02	1062.30	1065.28	1065.28	1083.09	1065.66	1065.16
$\omega_9(a^{''})$	3064.49	3090.54	3064.48	3064.48	3212.32	3064.44	3064.44
$\omega_{10}(a^{''})$	1507.67	1514.46	1507.66	1507.66	1519.56	1507.74	1507.74
$\omega_{11}(a^{''})$	1179.62	1182.53	1179.63	1179.63	1190.26	1179.64	1179.65
$\omega_{12}(a^{''})$	304.11	306.45	304.13	304.13	343.42	304.14	304.14

Table S383: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a^{'})$	3864.98	3864.97	3864.97
$\omega_{2}(a^{'})$	3149.92	3128.06	3128.06
$\omega_{3}(a^{'})$	3028.93	3009.28	3009.28
$\omega_{4}(a^{'})$	1518.99	1523.17	1523.17
$\omega_{5}(a^{'})$	1483.41	1487.56	1487.56
$\omega_{6}(a^{'})$	1391.33	1393.94	1393.96
$\omega_7(a^{'})$	1092.21	1095.40	1095.60
$\omega_{8}(a^{'})$	1049.10	1065.47	1065.23
$\omega_9(a^{''})$	3079.55	3064.48	3064.48
$\omega_{10}(a^{''})$	1505.70	1507.61	1507.61
$\omega_{11}(a^{''})$	1172.61	1179.68	1179.68
$\omega_{12}(a^{''})$	305.10	304.29	304.20

Table S384: Symmetrized, unnormalized natural internal coordinates for methanol.

- $6 \phi_{1,2,6}$
- 7 $2\phi_{3,1,2} \phi_{4,1,2} \phi_{5,1,2}$
- 8 $\phi_{3,1,2} + \phi_{4,1,2} + \phi_{5,1,2}$
- 9 $\phi_{4,1,2} \phi_{5,1,2}$
- $10 \quad -\phi_{3,1,4} \phi_{3,1,5} + 2\phi_{4,1,5}$
- 11 $\phi_{3,1,4} \phi_{3,1,5}$
- 12 $au_{3,1,2,6}$

Table S385: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-2.37687297	0.33833882	0.0000007
2	С	0.19870321	-0.85510046	-0.00000006
3	С	2.37314150	0.43515597	0.00000003
4	Η	0.26291668	-2.90753182	-0.00000011
5	Η	4.18218979	-0.52060166	-0.00000005
6	Η	2.38999877	2.48486451	0.00000016
7	Η	-2.23672093	2.39600543	-0.0000030
8	Η	-3.45993967	-0.24053555	-1.66145087
9	Η	-3.45993980	-0.24053625	1.66145068

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a^{'})$	3230.27	3252.34	3230.27	3230.27	3384.61	3230.23	3230.23
$\omega_{2}(a^{'})$	3151.66	3170.07	3151.53	3151.53	3296.91	3151.65	3151.65
$\omega_{3}(a^{'})$	3138.19	3154.55	3138.26	3138.26	3279.75	3138.11	3138.11
$\omega_{4}(a^{'})$	3113.17	3137.28	3113.20	3113.20	3263.39	3113.22	3113.22
$\omega_{5}(a^{'})$	3029.48	3042.19	3029.51	3029.51	3161.65	3029.47	3029.47
$\omega_{6}(a^{'})$	1696.39	1688.41	1696.34	1696.36	1762.85	1695.53	1695.90
$\omega_{7}(a^{'})$	1501.66	1503.15	1501.66	1501.66	1512.85	1501.49	1501.49
$\omega_{8}(a^{'})$	1455.83	1453.34	1455.66	1455.66	1477.19	1456.25	1456.25
$\omega_{9}(a^{'})$	1408.10	1401.19	1408.25	1408.25	1427.02	1408.08	1408.08
$\omega_{10}(a^{'})$	1320.29	1319.32	1320.34	1320.31	1340.13	1320.86	1320.38
$\omega_{11}(a^{'})$	1191.64	1187.57	1191.68	1191.69	1210.06	1191.66	1191.85
$\omega_{12}(a^{'})$	942.38	939.57	942.39	942.39	960.44	941.12	941.12
$\omega_{13}(a^{'})$	930.94	929.75	930.97	930.97	956.81	932.83	932.59
$\omega_{14}(a^{'})$	418.07	417.01	418.08	418.08	427.33	418.14	418.14
$\omega_{15}(a^{''})$	3089.80	3115.11	3089.80	3089.80	3240.61	3089.77	3089.77
$\omega_{16}(a^{''})$	1488.14	1489.92	1488.13	1488.13	1498.45	1488.18	1488.18
$\omega_{17}(a^{''})$	1067.99	1066.45	1067.98	1067.99	1077.74	1067.98	1068.01
$\omega_{18}(a^{''})$	1014.26	1029.36	1014.22	1014.26	1027.57	1014.28	1014.26
$\omega_{19}(a^{''})$	925.24	931.87	925.24	925.24	935.55	925.26	925.26
$\omega_{20}(a^{''})$	582.65	587.09	582.77	582.69	587.71	582.67	582.66
$\omega_{21}(a^{''})$	199.43	203.88	199.44	199.44	201.25	199.47	199.45

Table S386: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2df,p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a^{'})$	3244.41	3230.27	3230.27
$\omega_{2}(a^{'})$	3163.35	3151.47	3151.47
$\omega_{3}(a^{'})$	3150.55	3138.27	3138.27
$\omega_4(a^{'})$	3128.21	3113.23	3113.23
$\omega_{5}(a^{'})$	3047.71	3029.46	3029.46
$\omega_{6}(a^{'})$	1692.38	1695.99	1696.11
$\omega_7(a^{'})$	1497.94	1501.48	1501.48
$\omega_8(a^{'})$	1448.12	1455.67	1455.67
$\omega_9(a^{'})$	1410.82	1408.43	1408.43
$\omega_{10}(a^{'})$	1324.00	1320.48	1320.33
$\omega_{11}(a^{'})$	1191.13	1191.73	1191.73
$\omega_{12}(a^{'})$	946.35	942.41	942.41
$\omega_{13}(a^{'})$	924.92	931.52	931.52
$\omega_{14}(a^{'})$	424.69	418.11	418.11
$\omega_{15}(a^{''})$	3102.53	3089.80	3089.80
$\omega_{16}(a^{''})$	1484.24	1488.05	1488.06
$\omega_{17}(a^{''})$	1074.72	1067.13	1067.14
$\omega_{18}(a^{''})$	1030.49	1015.00	1015.00
$\omega_{19}(a^{''})$	943.32	925.36	925.36
$\omega_{20}(a^{''})$	590.64	582.96	582.96
$\omega_{21}(a^{''})$	203.54	199.56	199.48

Table S387: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S388: Symmetrized, unnormalized natural internal coordinates for propene.

- 1 $r_{1,2}$ 2 $r_{2,3}$ 3 $r_{1,7} + r_{1,8} + r_{1,9}$ 4 $2r_{1,7} - r_{1,8} - r_{1,9}$ 5 $r_{1,8} - r_{1,9}$ 6 $r_{2,4}$ $\overline{7}$ $r_{3,5} + r_{3,6}$ $8 r_{3,5} - r_{3,6}$ 9 $2\phi_{1,2,3} - \phi_{4,2,1} - \phi_{4,2,3}$ 10 $\phi_{4,2,1} - \phi_{4,2,3}$ 11 $\phi_{7,1,2} + \phi_{8,1,2} + \phi_{9,1,2} - \phi_{8,1,9} - \phi_{7,1,8} - \phi_{7,1,9}$ $12 \quad 2\phi_{7,1,2} - \phi_{8,1,2} - \phi_{9,1,2}$ 13 $\phi_{8,1,2} - \phi_{9,1,2}$ 14 $2\phi_{8,1,9} - \phi_{7,1,8} - \phi_{7,1,9}$ 15 $\phi_{7,1,8} - \phi_{7,1,9}$ $16 \quad 2\phi_{5,3,6} - \phi_{5,3,2} - \phi_{6,3,2}$ 17 $\phi_{5,3,2} - \phi_{6,3,2}$ 18 $\tau_{7,1,2,3} + \tau_{8,1,2,3} + \tau_{9,1,2,3}$ 19 $\tau_{5,3,2,1} + \tau_{6,3,2,1}$
- $\begin{array}{ll} 20 & \gamma_{4,2,1,3} \\ 21 & \gamma_{2,3,5,6} \end{array}$

S336

Table S389: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	0	0.00000000	-0.00000000	1.51705162
2	\mathbf{C}	0.00000000	-1.38721508	-0.80610774
3	\mathbf{C}	-0.00000000	1.38721508	-0.80610774
4	Η	-1.73830814	-2.39048176	-1.22008415
5	Η	1.73830814	-2.39048176	-1.22008415
6	Η	-1.73830814	2.39048176	-1.22008415
7	Η	1.73830814	2.39048176	-1.22008415

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVDZ$	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3117.42	3132.89	3117.41	3117.41	3254.14	3117.40	3117.40
$\omega_2(a_1)$	1549.96	1548.52	1549.91	1549.91	1577.30	1549.12	1549.13
$\omega_3(a_1)$	1300.14	1301.10	1300.15	1300.18	1332.79	1300.83	1300.87
$\omega_4(a_1)$	1157.92	1150.36	1157.89	1157.86	1178.14	1157.92	1157.93
$\omega_5(a_1)$	899.68	900.96	899.78	899.78	920.80	900.18	900.10
$\omega_6(a_2)$	3210.77	3233.78	3210.76	3210.76	3357.92	3210.75	3210.75
$\omega_7(a_2)$	1175.07	1175.40	1175.07	1175.07	1185.51	1175.00	1175.07
$\omega_8(a_2)$	816.26	819.76	816.27	816.27	831.51	816.40	816.30
$\omega_9(b_1)$	3196.11	3219.80	3196.11	3196.11	3342.68	3196.11	3196.11
$\omega_{10}(b_1)$	1176.57	1175.53	1176.58	1176.58	1191.61	1176.43	1176.57
$\omega_{11}(b_1)$	1052.00	1054.88	1052.00	1052.00	1058.46	1052.17	1052.01
$\omega_{12}(b_2)$	3109.14	3125.29	3109.14	3109.14	3243.70	3109.13	3109.13
$\omega_{13}(b_2)$	1513.26	1516.14	1513.26	1513.26	1527.74	1513.26	1513.26
$\omega_{14}(b_2)$	1156.67	1151.71	1156.61	1156.67	1167.24	1156.65	1156.65
$\omega_{15}(b_2)$	849.93	856.01	850.01	849.94	864.94	850.00	850.00

Table S390: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

Table S391: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

		CD LL OL	G1 5 4 - 0 4
	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	3131.15	3117.39	3117.39
$\omega_2(a_1)$	1537.79	1549.95	1549.95
$\omega_3(a_1)$	1302.69	1300.02	1300.17
$\omega_4(a_1)$	1153.94	1158.10	1157.93
$\omega_5(a_1)$	898.22	899.72	899.72
$\omega_6(a_2)$	3228.15	3210.76	3210.76
$\omega_7(a_2)$	1165.24	1175.02	1175.07
$\omega_8(a_2)$	817.64	816.34	816.27
$\omega_9(b_1)$	3211.37	3196.11	3196.11
$\omega_{10}(b_1)$	1177.61	1176.57	1176.58
$\omega_{11}(b_1)$	1042.30	1052.01	1052.00
$\omega_{12}(b_2)$	3123.09	3109.11	3109.11
$\omega_{13}(b_2)$	1502.43	1513.13	1513.13
$\omega_{14}(b_2)$	1155.15	1156.73	1156.73
$\omega_{15}(b_2)$	846.43	850.18	850.18

Table S392: Symmetrized, unnormalized natural internal coordinates for oxirane.

```
1
        r_{1,2} + r_{1,3} + r_{2,3}
\mathbf{2}
        r_{1,2} - r_{1,3}
3
        -r_{1,2} - r_{1,3} + 2r_{2,3}
4
       r_{2,4} + r_{2,5} + r_{3,6} + r_{3,7}
5
       r_{2,4} + r_{2,5} - r_{3,6} - r_{3,7}
6
       r_{2,4} - r_{2,5} + r_{3,6} - r_{3,7}
7
        r_{2,4} - r_{2,5} - r_{3,6} + r_{3,7}
8
       4\phi_{4,2,5} + 4\phi_{6,3,7} - \phi_{1,2,4} - \phi_{3,2,4} - \phi_{1,2,5} - \phi_{3,2,5} - \phi_{1,3,6} - \phi_{2,3,6} - \phi_{1,3,7} - \phi_{2,3,7}
9
        4\phi_{4,2,5} - 4\phi_{6,3,7} - \phi_{1,2,4} - \phi_{3,2,4} - \phi_{1,2,5} - \phi_{3,2,5} + \phi_{1,3,6} + \phi_{2,3,6} + \phi_{1,3,7} + \phi_{2,3,7}
10 \phi_{1,2,4} + \phi_{3,2,4} - \phi_{1,2,5} - \phi_{3,2,5} + \phi_{1,3,6} + \phi_{2,3,6} - \phi_{1,3,7} - \phi_{2,3,7}
11 \phi_{1,2,4} + \phi_{3,2,4} - \phi_{1,2,5} - \phi_{3,2,5} - \phi_{1,3,6} - \phi_{2,3,6} + \phi_{1,3,7} + \phi_{2,3,7}
12 \phi_{1,2,4} - \phi_{3,2,4} + \phi_{1,2,5} - \phi_{3,2,5} + \phi_{1,3,6} - \phi_{2,3,6} + \phi_{1,3,7} - \phi_{2,3,7}
13 \phi_{1,2,4} - \phi_{3,2,4} + \phi_{1,2,5} - \phi_{3,2,5} - \phi_{1,3,6} + \phi_{2,3,6} - \phi_{1,3,7} + \phi_{2,3,7}
14 \phi_{1,2,4} - \phi_{3,2,4} - \phi_{1,2,5} + \phi_{3,2,5} + \phi_{1,3,6} - \phi_{2,3,6} - \phi_{1,3,7} + \phi_{2,3,7}
```

15 $\phi_{1,2,4} - \phi_{3,2,4} - \phi_{1,2,5} + \phi_{3,2,5} - \phi_{1,3,6} + \phi_{2,3,6} + \phi_{1,3,7} - \phi_{2,3,7}$

Table S393: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Х	-0.00000000	-1.00000000	-1.06129487
2	\mathbf{C}	-0.00000000	0.00000000	-1.06129487
3	Х	-1.00000000	0.00000000	-1.06129487
4	Η	-0.00000000	-0.00000000	-3.07732615
5	Ν	0.00000000	-0.00000000	1.13096201

Table S394: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc- $pVDZ$
$\omega_1(\sigma^+)$	3443.43	3455.99	3443.35	3443.35	3603.62	3443.41	3443.41
$\omega_{2\mathrm{a}}(\pi)$	716.01	723.19	716.01	716.01	736.37	716.01	716.01
$\omega_{2\mathrm{b}}(\pi)$	716.01	723.18	716.01	716.01	736.37	716.01	716.01
$\omega_3(\sigma^+)$	2111.38	2072.67	2111.51	2111.51	2206.41	2111.41	2111.41

Table S395: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2df,p)$
$\omega_1(\sigma^+)$	3476.33	3443.42	3443.42
$\omega_{2a}(\pi)$	776.85	716.01	716.01
$\omega_{2\mathrm{b}}(\pi)$	776.82	716.01	716.01
$\omega_3(\sigma^+)$	2147.46	2111.39	2111.39

Table S396: Symmetrized, unnormalized natural internal coordinates for hydrogen cyanide.

- $\begin{array}{ccc} 1 & r_{2,4} \\ 2 & r_{2,5} \\ \end{array}$
- 3 $\theta_{4,2,5,1}$
- 4 $\theta_{4,2,5,3}$

S4.100 triplet methylene

Table S397: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	С	0.00000000	0.00000000	0.11580983
2	Η	0.00000000	-1.87219122	-0.68946391
3	Н	0.00000000	1.87219122	-0.68946391

Table S398: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/	Pure MP2/	CMA-0A MP2/	CMA-2A MP2/	Pure CCSD(T)/	CMA-0A CCSD(T)/	CMA-2A CCSD(T)/
	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3139.22	3154.90	3139.22	3139.22	3296.46	3139.20	3139.20
$\omega_2(a_1)$	1105.77	1122.31	1105.77	1105.77	1124.62	1105.83	1105.83
$\omega_3(b_2)$	3365.40	3391.02	3365.40	3365.40	3534.89	3365.40	3365.40

Table S399: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Duna		CMA 9A
	Pure	CMA-0A	CMA-ZA
	B3LYP/	B3LYP/	B3LYP/
	6-31G(2df,p)	6-31G(2df,p)	$6\text{-}31\mathrm{G}(2df,p)$
$\omega_1(a_1)$	3152.26	3139.16	3139.22
$\omega_2(a_1)$	1092.86	1105.94	1105.77
$\omega_3(b_2)$	3392.18	3365.40	3365.40

Table S400: Symmetrized, unnormalized natural internal coordinates for triplet methylene.

 $\begin{array}{rrr} 1 & r_{1,2}+r_{1,3} \\ 2 & r_{1,2}-r_{1,3} \\ 3 & \phi_{2,1,3} \end{array}$

S345

Table S401: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	С	-1.17736294	0.18900598	0.00000000
2	Η	-2.55461370	-1.42021423	0.00000000
3	Ο	1.04426684	-0.05231315	0.00000000

Table S402: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/	Pure MP2/	CMA-0A MP2/	CMA-2A MP2/	Pure CCSD(T)/	CMA-0A CCSD(T)/	CMA-2A CCSD(T)/
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc- $pVDZ$
$\omega_1(a^{'})$	2691.42	2706.97	2691.37	2691.37	2829.67	2691.39	2691.39
$\omega_{2}(a^{'})$	1888.38	1898.35	1888.27	1888.45	1942.88	1888.34	1888.38
$\omega_{3}(a^{'})$	1122.70	1077.12	1123.00	1122.70	1143.81	1122.84	1122.76

Table S403: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_{1}(a^{'})$	2716.84	2691.42	2691.42
$\omega_{2}(a^{'})$	1912.60	1888.38	1888.38
$\omega_{3}(a^{'})$	1105.62	1122.70	1122.70

Table S404: Symmetrized, unnormalized natural internal coordinates for formyl radical.

- 3 $\phi_{2,1,3}$

Table S405: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	С	1.17395959	-0.03986833	0.00000000
2	Η	2.10304999	-1.87918602	0.00000000
3	Η	2.39183520	1.60942624	0.00000000
4	С	-1.30772223	0.15626308	0.00000000
5	Н	-2.90219632	-1.11613248	0.00000000

Table S406: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference $CCSD(T)/$	$\frac{\rm Pure}{\rm MP2}/$	CMA-0A MP2/	CMA-2A MP2/	$\frac{\rm Pure}{\rm CCSD(T)}/$	CMA-0A CCSD(T)/	CMA-2A CCSD(T)/
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVDZ$	cc-pVDZ	cc-pVDZ
$\omega_{1}(a^{'})$	3246.53	3263.15	3246.51	3246.51	3402.80	3246.52	3246.52
$\omega_{2}(a^{'})$	3178.90	3204.67	3178.70	3178.70	3335.88	3178.70	3178.70
$\omega_{3}(a^{'})$	3074.49	3099.49	3074.69	3074.69	3220.87	3074.65	3074.65
$\omega_{4}(a^{'})$	1614.03	1615.88	1614.06	1614.07	1688.83	1613.26	1614.08
$\omega_{5}(a^{'})$	1395.98	1398.31	1395.98	1395.98	1413.91	1396.91	1395.97
$\omega_{6}(a^{'})$	1070.93	1067.67	1070.84	1070.84	1086.60	1070.95	1070.95
$\omega_7(a^{'})$	726.00	722.51	726.16	726.15	740.00	726.06	726.06
$\omega_8(a^{''})$	914.78	924.29	914.68	914.78	920.82	914.60	914.60
$\omega_9(a^{''})$	806.12	818.34	806.24	806.12	815.55	806.33	806.33

Table S407: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2df,p)$	$6\text{-}31\mathrm{G}(2df,p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_{1}(a^{'})$	3257.03	3246.50	3246.50
$\omega_{2}(a^{'})$	3192.87	3178.90	3178.90
$\omega_{3}(a^{'})$	3088.33	3074.47	3074.47
$\omega_{4}(a^{'})$	1615.72	1613.39	1614.05
$\omega_{5}(a^{'})$	1390.68	1396.71	1395.97
$\omega_{6}(a^{'})$	1069.55	1070.98	1070.99
$\omega_7(a^{'})$	725.69	726.16	726.08
$\omega_8(a^{''})$	929.47	914.69	914.69
$\omega_9(a^{''})$	804.26	806.23	806.23

Table S408: Symmetrized, unnormalized natural internal coordinates for vinyl radical.

- $1 \quad r_{1,2} + r_{1,3}$
- 2 $r_{1,2} r_{1,3}$
- $3 r_{1,4}$
- $4 r_{4,5}$
- 5 $\phi_{1,4,5}$
- $6 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 7 $\phi_{2,1,4} \phi_{3,1,4}$
- 8 $\tau_{2,1,4,5} + \tau_{3,1,4,5}$
- 9 $\gamma_{4,1,2,3}$

Table S409: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-0.25873690	0.80450304	0.00000000
2	0	-2.19121944	-0.33285589	0.00000000
3	С	2.40971826	-0.24563821	0.00000000
4	Η	2.38285691	-2.30895956	0.00000000
5	Η	3.39100957	0.46865813	-1.66422836
6	Η	3.39100957	0.46865813	1.66422836

Table S410: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	CCSD(1)/	MPZ/	MPZ/	MPZ/	CCSD(1)/	CCSD(1)/	CCSD(1)/
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc- $pVDZ$	cc-pVDZ
$\omega_{1}(a^{'})$	3137.39	3159.37	3137.38	3137.38	3287.71	3137.25	3137.25
$\omega_{2}(a^{'})$	3039.37	3052.44	3039.38	3039.38	3172.30	3039.45	3039.45
$\omega_{3}(a^{'})$	1899.32	1911.57	1899.29	1899.31	1956.44	1899.27	1899.28
$\omega_{4}(a^{'})$	1468.66	1471.61	1468.61	1468.61	1478.81	1468.73	1468.73
$\omega_{5}(a^{'})$	1355.85	1349.67	1355.84	1355.85	1373.86	1355.65	1355.65
$\omega_{6}(a^{'})$	1050.41	1040.22	1050.28	1050.41	1063.43	1049.86	1049.85
$\omega_7(a')$	861.02	859.24	861.13	861.12	896.74	862.24	862.24
$\omega_{8}(a^{'})$	466.47	462.95	466.86	466.49	468.83	466.50	466.49
$\omega_9(a^{''})$	3143.08	3166.75	3143.08	3143.08	3294.28	3143.05	3143.05
$\omega_{10}(a^{''})$	1467.61	1470.71	1467.61	1467.61	1481.13	1467.63	1467.63
$\omega_{11}(a^{''})$	954.71	953.10	954.72	954.72	964.17	954.80	954.80
$\omega_{12}(a^{''})$	98.52	90.81	98.61	98.60	111.07	98.56	98.56

Table S411: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a^{'})$	3153.68	3137.29	3137.29
$\omega_{2}(a^{'})$	3056.59	3039.41	3039.41
$\omega_{3}(a^{'})$	1916.45	1899.20	1899.33
$\omega_{4}(a^{'})$	1462.95	1468.59	1468.59
$\omega_{5}(a^{'})$	1355.90	1355.70	1355.93
$\omega_{6}(a^{'})$	1051.48	1050.30	1050.31
$\omega_7(a^{'})$	841.34	861.92	861.37
$\omega_{8}(a^{'})$	460.62	466.70	466.50
$\omega_9(a^{''})$	3158.92	3143.08	3143.08
$\omega_{10}(a^{''})$	1461.45	1467.52	1467.52
$\omega_{11}(a^{''})$	948.48	954.85	954.85
$\omega_{12}(a^{''})$	112.00	98.65	98.52

Table S412: Symmetrized, unnormalized natural internal coordinates for acetyl radical.

1 $r_{3,1}$ 2 $r_{1,2}$ 3 $r_{3,4} + r_{3,5} + r_{3,6}$ 4 $2r_{3,4} - r_{3,5} - r_{3,6}$ 5 $r_{3,5} - r_{3,6}$ 6 $\phi_{3,1,2}$ $\overline{7}$ $\phi_{4,3,1} + \phi_{5,3,1} + \phi_{6,3,1} - \phi_{5,3,6} - \phi_{4,3,5} - \phi_{4,3,6}$ 8 $2\phi_{4,3,1} - \phi_{5,3,1} - \phi_{6,3,1}$ 9 $\phi_{5,3,1} - \phi_{6,3,1}$ $10 \quad 2\phi_{5,3,6} - \phi_{4,3,5} - \phi_{4,3,6}$ 11 $\phi_{4,3,5} - \phi_{4,3,6}$ 12 $\tau_{4,3,1,2}$

S4.104 hydroxymethyl radical

Table S413: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-1.37903910	0.02323044	0.05754946
2	Ο	1.20513902	-0.11712615	-0.00535801
3	Η	1.86898304	1.56393483	0.15950651
4	Η	-2.27904852	1.78239326	-0.47148778
5	Η	-2.29638299	-1.76405192	-0.28821473

Table S414: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\mathrm{CCSD}(\mathrm{T})/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a)$	3861.95	3878.86	3861.95	3861.95	3933.21	3861.95	3861.95
$\omega_2(a)$	3280.03	3305.28	3280.01	3280.01	3436.56	3280.02	3280.02
$\omega_3(a)$	3139.51	3156.76	3139.52	3139.52	3285.35	3139.50	3139.50
$\omega_4(a)$	1498.77	1504.89	1498.71	1498.72	1522.11	1498.50	1498.79
$\omega_5(a)$	1383.73	1375.68	1383.54	1383.58	1396.11	1383.64	1383.74
$\omega_6(a)$	1209.21	1205.02	1209.26	1209.20	1236.77	1209.49	1209.05
$\omega_7(a)$	1064.75	1067.31	1065.03	1065.03	1073.65	1064.95	1064.95
$\omega_8(a)$	620.09	613.53	620.00	620.12	619.89	619.93	620.16
$\omega_9(a)$	432.11	433.96	432.33	432.13	444.20	432.58	432.13

Table S415: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)	CMA-0A B3LYP/ 6-31G(2df,p)	CMA-2A B3LYP/ 6-31G(2df,p)
$\omega_1(a)$	3861.92	3861.95	3861.95
$\omega_2(a)$	3301.34	3280.01	3280.01
$\omega_3(a)$	3153.83	3139.49	3139.49
$\omega_4(a)$	1483.76	1498.73	1498.74
$\omega_5(a)$	1374.10	1383.73	1383.78
$\omega_6(a)$	1207.68	1209.22	1209.16
$\omega_7(a)$	1057.26	1064.88	1064.88
$\omega_8(a)$	600.34	620.13	620.13
$\omega_9(a)$	430.97	432.22	432.16

Table S416: Symmetrized, unnormalized natural internal coordinates for hydroxymethyl radical.

- $1 \quad r_{1,4} + r_{1,5}$
- $2 r_{1,4} r_{1,5}$
- $3 r_{1,2}$
- $4 r_{2,3}$
- 5 $\phi_{1,2,3}$
- $6 \quad 2\phi_{4,1,5} \phi_{4,1,2} \phi_{5,1,2}$
- 7 $\phi_{4,1,2} \phi_{5,1,2}$
- 8 $\tau_{4,1,2,3} + \tau_{5,1,2,3}$
- 9 $\gamma_{2,1,4,5}$

Table S417: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Si	0.00000000	0.00000000	0.09643776
2	Η	0.00000000	-2.40430265	-1.33854198
3	Н	0.00000000	2.40430265	-1.33854198

Table S418: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	CCSD(T)/	MP2/	MP2/	MP2/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVDZ	cc-pVDZ	cc-pVDZ
$ \begin{array}{c} \omega_1(a_1) \\ \omega_2(a_1) \\ \omega_3(b_2) \end{array} $	2189.75	2230.91	2189.75	2189.75	2224.25	2189.75	2189.75
	890.15	908.08	890.16	890.16	894.72	890.15	890.15
	2249.86	2289.00	2249.86	2249.86	2283.77	2249.86	2249.86

Table S419: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	2196.14	2189.73	2189.73
$\omega_2(a_1)$	894.56	890.20	890.20
$\omega_3(b_2)$	2266.32	2249.86	2249.86

Table S420: Symmetrized, unnormalized natural internal coordinates for triplet silylene.

 $\begin{array}{rrr} 1 & r_{1,2}+r_{1,3} \\ 2 & r_{1,2}-r_{1,3} \\ 3 & \phi_{2,1,3} \end{array}$

S360
Table S421: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Х	-1.97286216	-0.00000000	0.00000000
2	SI	-0.08313564	-0.00000000	0.00000000
3	Η	0.76927368	-1.33284055	-2.30854755
4	Η	0.76927368	2.66568110	0.00000000
5	Η	0.76927368	-1.33284055	2.30854755

Table S422: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	CCSD(T)/	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	CCSD(T)/
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	2217.25	2252.32	2217.25	2217.25	2247.99	2217.25	2217.25
$\omega_2(a_1)$	778.72	799.51	778.72	778.72	788.20	778.73	778.73
$\omega_{3\mathrm{a}}(e)$	2250.40	2287.37	2250.39	2250.39	2283.33	2250.40	2250.40
$\omega_{3\mathrm{b}}(e)$	2250.40	2287.32	2250.39	2250.39	2283.29	2250.40	2250.40
$\omega_{4\mathrm{a}}(e)$	943.18	958.95	943.19	943.19	947.17	943.18	943.18
$\omega_{4\mathrm{b}}(e)$	943.18	958.94	943.19	943.19	947.16	943.18	943.18

Table S423: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	2226.23	2217.23	2217.23
$\omega_2(a_1)$	761.93	778.78	778.78
$\omega_{3\mathrm{a}}(e)$	2267.86	2250.39	2250.39
$\omega_{3\mathrm{b}}(e)$	2267.34	2250.39	2250.39
$\omega_{4\mathrm{a}}(e)$	939.55	943.19	943.19
$\omega_{4\mathrm{b}}(e)$	939.12	943.19	943.19

Table S424: Symmetrized, unnormalized natural internal coordinates for silyl radical.

- $1 \quad r_{2,3} + r_{2,4} + r_{2,5}$
- $2 \quad 2r_{2,3} r_{2,4} r_{2,5}$
- $3 r_{2,4} r_{2,5}$
- $4 \quad 2\phi_{3,2,4} \phi_{3,2,5} \phi_{4,2,5}$
- 5 $\phi_{3,2,5} \phi_{4,2,5}$
- $6 \quad \gamma_{3,2,4,5} + \gamma_{4,2,5,3} + \gamma_{5,2,3,4}$

S4.107 phosphino radical

Table S425: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Р	0.00000000	0.00000000	0.11404634
2	Η	0.00000000	-1.92750368	-1.75250871
3	Н	0.00000000	1.92750368	-1.75250871

Table S426: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/	Pure MP2/	CMA-0A MP2/	CMA-2A MP2/	Pure CCSD(T)/	CMA-0A CCSD(T)/	CMA-2A CCSD(T)/
	cc- $pVTZ$	cc-pVTZ	cc- $pVTZ$	cc-pVTZ	cc-pVDZ	cc-pVDZ	cc- $pVDZ$
$\omega_1(a_1)$	2389.74	2431.69	2389.74	2389.74	2455.76	2389.74	2389.74
$\omega_2(a_1)$	1128.13	1137.03	1128.13	1128.13	1149.78	1128.14	1128.14
$\omega_3(b_2)$	2397.35	2442.41	2397.35	2397.35	2465.37	2397.35	2397.35

Table S427: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a_1)$	2413.11	2389.74	2389.74
$\omega_2(a_1)$	1135.38	1128.14	1128.14
$\omega_3(b_2)$	2424.47	2397.35	2397.35

Table S428: Symmetrized, unnormalized natural internal coordinates for phosphino radical.

 $\begin{array}{rrr} 1 & r_{1,2}+r_{1,3} \\ 2 & r_{1,2}-r_{1,3} \\ 3 & \phi_{2,1,3} \end{array}$

S4.108 nitrogen dioxide

Table S429: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	0	0.00000000	-2.08779511	0.26863662
2	Ν	0.00000000	0.00000000	-0.61369664
3	Ο	0.00000000	2.08779511	0.26863662

Table S430: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/	Pure MP2/	CMA-0A MP2/	CMA-2A MP2/	Pure CCSD(T)/	CMA-0A CCSD(T)/	CMA-2A CCSD(T)/
	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVTZ	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	1350.21	1349.16	1349.80	1350.21	1399.79	1350.20	1350.20
$\omega_2(a_1)$	758.21	766.81	758.94	758.21	765.08	758.22	758.22
$\omega_3(b_2)$	1679.70	1888.26	1679.70	1679.70	1756.92	1679.70	1679.70

Table S431: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure B3LYP/ $6-31G(2df n)$	$CMA-0A \\B3LYP/ \\6-31G(2df n)$	CMA-2A B3LYP/ 6-31G(2df n)
$\omega_1(a_1)$ $\omega_2(a_1)$	1380.18 752.72	1350.18 758.27	1350.18 758.27
$\omega_3(b_2)$	1690.29	1679.70	1679.70

Table S432: Symmetrized, unnormalized natural internal coordinates for nitrogen dioxide.

 $\begin{array}{rrr} 1 & r_{1,2}+r_{2,3} \\ 2 & r_{1,2}-r_{2,3} \\ 3 & \phi_{1,2,3} \end{array}$

S4.109 amino radical

Table S433: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	Η	0.00000000	-1.51058428	1.06481029
2	Ν	0.00000000	0.00000000	-0.15327241
3	Н	0.00000000	1.51058428	1.06481029

Table S434: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Reference CCSD(T)/	Pure MP2/	CMA-0A MP2/	CMA-2A MP2/	Pure CCSD(T)/	CMA-0A CCSD(T)/	CMA-2A CCSD(T)/
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3364.81	3388.84	3364.81	3364.81	3470.47	3364.74	3364.74
$\omega_2(a_1)$	1557.74	1551.54	1557.75	1557.75	1579.09	1557.90	1557.90
$\omega_3(b_2)$	3457.67	3491.44	3457.67	3457.67	3578.97	3457.67	3457.67

Table S435: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)	CMA-0A B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)	CMA-2A B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)
$\omega_1(a_1)$	3391.59	3364.79	3364.79
$\omega_2(a_1)$	1557.21	1557.77	1557.77
$\omega_3(b_2)$	3482.98	3457.67	3457.67

Table S436: Symmetrized, unnormalized natural internal coordinates for amino radical.

 $\begin{array}{rrr} 1 & r_{1,2}+r_{2,3} \\ 2 & r_{1,2}-r_{2,3} \\ 3 & \phi_{1,2,3} \end{array}$

Table S437: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-0.00547866	-1.35440696	0.00000000
2	С	-0.01937298	1.46550160	0.00000000
3	Η	1.92815108	-2.11168584	0.00000000
4	Η	-0.94432912	-2.11610453	1.67223598
5	Η	-0.94432912	-2.11610453	-1.67223598
6	Η	0.12820569	2.51055499	-1.74949553
7	Η	0.12820569	2.51055499	1.74949553

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\operatorname{CCSD}(T)/$	MP2/	MP2/	MP2/	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$	$\operatorname{CCSD}(T)/$
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc-pVDZ	cc-pVDZ	cc-pVDZ
$\omega_1(a^{'})$	3157.24	3175.87	3157.22	3157.22	3303.60	3157.22	3157.22
$\omega_{2}(a^{'})$	3064.92	3088.67	3064.22	3064.22	3212.51	3064.23	3064.23
$\omega_{3}(a^{'})$	2983.43	3005.26	2984.15	2984.15	3121.49	2984.06	2984.06
$\omega_{4}(a^{'})$	1493.37	1497.86	1493.27	1493.27	1511.21	1492.44	1492.44
$\omega_{5}(a^{'})$	1479.97	1485.11	1479.99	1479.99	1492.35	1480.37	1480.37
$\omega_{6}(a^{'})$	1403.42	1401.45	1403.49	1403.49	1421.63	1403.63	1403.63
$\omega_7(a^{'})$	1069.91	1072.27	1069.94	1069.94	1107.51	1070.48	1070.48
$\omega_{8}(a^{'})$	987.41	985.90	987.43	987.45	997.83	987.54	987.59
$\omega_{9}(a^{'})$	469.48	486.59	469.53	469.48	444.20	469.61	469.50
$\omega_{10}(a^{''})$	3260.35	3286.01	3260.35	3260.35	3417.56	3260.34	3260.34
$\omega_{11}(a^{''})$	3108.80	3135.14	3108.80	3108.80	3262.08	3108.77	3108.77
$\omega_{12}(a^{''})$	1492.29	1497.05	1492.27	1492.27	1502.59	1492.35	1492.35
$\omega_{13}(a^{''})$	1200.87	1202.11	1200.89	1200.91	1211.02	1200.89	1200.90
$\omega_{14}(a^{''})$	809.09	812.51	809.11	809.10	819.68	809.12	809.12
$\omega_{15}(a^{''})$	128.41	128.67	128.45	128.41	131.37	128.57	128.50

Table S438: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

Table S439: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$	$6\text{-}31\mathrm{G}(2d\!f,\!p)$
$\omega_1(a^{'})$	3171.44	3157.22	3157.22
$\omega_{2}(a^{'})$	3080.13	3064.75	3064.75
$\omega_{3}(a^{'})$	2998.42	2983.57	2983.57
$\omega_{4}(a^{'})$	1486.48	1490.60	1490.60
$\omega_{5}(a^{'})$	1470.19	1482.33	1482.33
$\omega_{6}(a^{'})$	1406.28	1403.50	1403.71
$\omega_7(a^{'})$	1057.73	1070.41	1070.15
$\omega_{8}(a^{'})$	988.33	987.53	987.54
$\omega_{9}(a^{'})$	475.00	469.51	469.48
$\omega_{10}(a^{''})$	3277.99	3260.34	3260.34
$\omega_{11}(a^{''})$	3124.37	3108.79	3108.80
$\omega_{12}(a^{''})$	1488.96	1492.24	1492.26
$\omega_{13}(a^{''})$	1200.57	1200.89	1200.89
$\omega_{14}(a^{''})$	810.15	809.15	809.15
$\omega_{15}(a^{''})$	117.82	128.71	128.41

Table S440: Symmetrized, unnormalized natural internal coordinates for ethyl radical.

- 1 $r_{1,2}$ $\mathbf{2}$ $r_{2,6} + r_{2,7}$ $3 r_{2,6} - r_{2,7}$ 4 $r_{1,4} + r_{1,5} + r_{1,3}$ 5 $-r_{1,4} - r_{1,5} + 2r_{1,3}$ $6 r_{1,4} - r_{1,5}$ 7 $2\phi_{6,2,7} - \phi_{6,2,1} - \phi_{7,2,1}$ 8 $\phi_{6,2,1} - \phi_{7,2,1}$ 9 $\phi_{2,1,3} + \phi_{2,1,4} + \phi_{2,1,5} - \phi_{4,1,5} - \phi_{4,1,3} - \phi_{5,1,3}$ $10 \quad 2\phi_{2,1,3} - \phi_{2,1,4} - \phi_{2,1,5}$ 11 $\phi_{2,1,4} - \phi_{2,1,5}$ 12 $2\phi_{4,1,5} - \phi_{4,1,3} - \phi_{5,1,3}$
- 13 $\phi_{4,1,3} \phi_{5,1,3}$
- 14 $\tau_{6,2,1,3} + \tau_{6,2,1,4} + \tau_{6,2,1,5} + \tau_{7,2,1,3} + \tau_{7,2,1,4} + \tau_{7,2,1,5}$
- 15 $\gamma_{1,2,6,7}$

S4.111 tert-butyl radical

Table S441: CCSD(T)/cc-pVTZ Optimum Cartesian coordinates (bohr)

1	\mathbf{C}	-0.32334039	-0.00000205	0.00000000
2	С	0.06114007	-1.40087768	-2.42638089
3	С	0.06102027	2.80175965	0.00000000
4	С	0.06114007	-1.40087768	2.42638089
5	Η	2.08693792	-1.64409780	-2.84744106
6	Η	-0.76540572	-0.38822110	-4.02548203
7	Η	-0.76556895	-3.29200016	-2.34898777
8	Η	2.08679900	3.28810311	0.00000000
9	Η	-0.76564669	3.68025423	1.67650059
10	Η	-0.76564669	3.68025423	-1.67650059
11	Η	2.08693792	-1.64409780	2.84744106
12	Η	-0.76556895	-3.29200016	2.34898777
13	Н	-0.76540572	-0.38822110	4.02548203

	Reference	Pure	CMA-0A	CMA-2A	Pure	CMA-0A	CMA-2A
	$\mathrm{CCSD}(\mathrm{T})/$	MP2/	MP2/	MP2/	$\mathrm{CCSD}(\mathrm{T})/$	$\mathrm{CCSD}(\mathrm{T})/$	CCSD(T)/
	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVTZ$	cc- $pVDZ$	cc-pVDZ	cc-pVDZ
$\omega_1(a_1)$	3054.29	3074.49	3053.60	3053.60	3196.48	3053.54	3053.54
$\omega_2(a_1)$	2954.07	2973.89	2954.77	2954.77	3091.82	2954.77	2954.77
$\omega_3(a_1)$	1496.35	1498.88	1496.33	1496.33	1507.59	1496.27	1496.27
$\omega_4(a_1)$	1419.84	1412.99	1419.86	1419.86	1440.01	1419.95	1419.95
$\omega_5(a_1)$	1105.28	1098.54	1105.28	1105.28	1117.58	1105.35	1105.35
$\omega_6(a_1)$	767.88	765.54	767.91	767.91	796.17	768.03	768.03
$\omega_7(a_1)$	261.22	256.88	261.24	261.23	268.92	261.25	261.25
$\omega_8(a_2)$	3098.03	3124.14	3098.02	3098.02	3247.15	3097.98	3097.98
$\omega_9(a_2)$	1474.27	1475.98	1474.26	1474.26	1484.23	1474.33	1474.34
$\omega_{10}(a_2)$	964.11	963.08	964.13	964.13	976.62	964.13	964.14
$\omega_{11}(a_2)$	132.72	133.74	132.73	132.72	143.77	132.76	132.72
$\omega_{12a}(e)$	3102.34	3127.31	3102.34	3102.34	3251.41	3102.30	3102.30
$\omega_{12b}(e)$	3102.32	3127.25	3102.32	3102.32	3251.35	3102.29	3102.29
$\omega_{13a}(e)$	3052.84	3074.86	3052.20	3052.20	3195.34	3052.12	3052.12
$\omega_{13b}(e)$	3052.83	3074.85	3052.20	3052.20	3195.32	3052.12	3052.12
$\omega_{14a}(e)$	2947.91	2970.82	2948.56	2948.56	3084.69	2948.55	2948.55
$\omega_{14\mathrm{b}}(e)$	2947.90	2970.74	2948.55	2948.55	3084.61	2948.54	2948.54
$\omega_{15a}(e)$	1497.74	1500.48	1497.70	1497.70	1508.83	1497.21	1497.21
$\omega_{15b}(e)$	1497.72	1500.47	1497.70	1497.70	1508.82	1497.21	1497.21
$\omega_{16a}(e)$	1477.70	1479.53	1477.66	1477.66	1489.29	1477.62	1477.62
$\omega_{16b}(e)$	1477.68	1479.52	1477.66	1477.66	1489.28	1477.61	1477.61
$\omega_{17a}(e)$	1397.76	1390.34	1397.79	1397.79	1424.52	1396.71	1396.71
$\omega_{17b}(e)$	1397.75	1390.31	1397.79	1397.79	1424.50	1396.71	1396.71
$\omega_{18a}(e)$	1303.90	1299.35	1303.91	1303.91	1334.70	1305.22	1305.49
$\omega_{18b}(e)$	1303.88	1299.34	1303.90	1303.90	1334.69	1305.21	1305.48
$\omega_{19a}(e)$	1013.95	1013.43	1013.97	1013.97	1034.95	1014.67	1014.32
$\omega_{19\mathrm{b}}(e)$	1013.92	1013.43	1013.95	1013.95	1034.94	1014.65	1014.30
$\omega_{20a}(e)$	933.83	929.76	933.85	933.85	946.09	934.14	934.14
$\omega_{20\mathrm{b}}(e)$	933.80	929.75	933.82	933.82	946.09	934.11	934.11
$\omega_{21a}(e)$	367.07	366.69	367.06	367.06	378.49	367.04	367.09
$\omega_{21\mathrm{b}}(e)$	367.05	366.68	367.05	367.05	378.49	367.03	367.08
$\omega_{22a}(e)$	147.75	149.43	147.78	147.78	152.02	147.91	147.78
$\omega_{22b}(e)$	147.62	149.41	147.65	147.65	152.00	147.77	147.65

Table S442: Reference [CCSD(T)/cc-pVTZ] CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies for Level B = MP2/cc-pVTZ and CCSD(T)/cc-pVDZ.

	Pure	CMA-0A	CMA-2A
	B3LYP/	B3LYP/	B3LYP/
	$6-31\mathrm{G}(2df,p)$	$6-31\mathrm{G}(2df,p)$	$6-31\mathrm{G}(2df,p)$
$\omega_1(a_1)$	3068.73	3054.14	3054.14
$\omega_2(a_1)$	2969.10	2954.20	2954.20
$\omega_3(a_1)$	1494.67	1496.19	1496.19
$\omega_4(a_1)$	1428.47	1419.95	1419.95
$\omega_5(a_1)$	1112.95	1105.36	1105.37
$\omega_6(a_1)$	762.60	767.97	767.98
$\omega_7(a_1)$	280.34	261.32	261.25
$\omega_8(a_2)$	3111.07	3098.02	3098.02
$\omega_9(a_2)$	1472.33	1474.23	1474.23
$\omega_{10}(a_2)$	972.55	964.18	964.18
$\omega_{11}(a_2)$	141.71	132.84	132.81
$\omega_{12a}(e)$	3118.47	3102.31	3102.31
$\omega_{12\mathrm{b}}(e)$	3114.28	3102.28	3102.28
$\omega_{13a}(e)$	3062.42	3052.77	3052.77
$\omega_{13\mathrm{b}}(e)$	3060.89	3052.62	3052.62
$\omega_{14a}(e)$	2964.69	2948.09	2948.09
$\omega_{14\mathrm{b}}(e)$	2954.20	2947.93	2947.93
$\omega_{15a}(e)$	1499.34	1497.31	1497.31
$\omega_{15\mathrm{b}}(e)$	1493.82	1497.29	1497.29
$\omega_{16a}(e)$	1477.36	1477.96	1477.96
$\omega_{16b}(e)$	1475.66	1477.70	1477.70
$\omega_{17a}(e)$	1403.87	1396.68	1397.63
$\omega_{17\mathrm{b}}(e)$	1398.27	1396.35	1396.68
$\omega_{18a}(e)$	1296.71	1305.06	1304.90
$\omega_{18b}(e)$	1295.84	1304.87	1303.67
$\omega_{19a}(e)$	1013.36	1014.79	1014.79
$\omega_{19b}(e)$	1012.05	1014.76	1014.76
$\omega_{20a}(e)$	942.78	934.01	934.02
$\omega_{20\mathrm{b}}(e)$	937.09	933.86	933.86
$\omega_{21a}(e)$	376.29	367.11	367.11
$\omega_{21b}(e)$	374.55	367.05	367.11
$\omega_{22a}(e)$	152.80	148.13	147.78
$\omega_{22b}(e)$	131.09	147.80	147.73

Table S443: CMA-0A and CMA-2A ($\xi = 0.02$) harmonic frequencies targeting CCSD(T)/cc-pVTZ for Level B = B3LYP/6-31G(2df,p).

Table S444: Symmetrized, unnormalized natural internal coordinates for tert-butyl radical.

```
1
                  r_{1,2} + r_{1,3} + r_{1,4}
                  2r_{1,2} - r_{1,3} - r_{1,4}
2
3
                 r_{1,3} - r_{1,4}
4
                 r_{2,5} + r_{2,6} + r_{2,7} + r_{3,8} + r_{3,9} + r_{3,10} + r_{4,11} + r_{4,12} + r_{4,13}
5
                  2r_{2,5} + 2r_{2,6} + 2r_{2,7} - r_{3,8} - r_{3,9} - r_{3,10} - r_{4,11} - r_{4,12} - r_{4,13}
6
                 r_{3,8} + r_{3,9} + r_{3,10} - r_{4,11} - r_{4,12} - r_{4,13}
7
                  2r_{2,5} - r_{2,6} - r_{2,7} + 2r_{3,8} - r_{3,9} - r_{3,10} + 2r_{4,11} - r_{4,12} - r_{4,13}
8
                4r_{2,5} - 2r_{2,6} - 2r_{2,7} - 2r_{3,8} + r_{3,9} + r_{3,10} - 2r_{4,11} + r_{4,12} + r_{4,13}
9
                  2r_{3,8} - r_{3,9} - r_{3,10} - 2r_{4,11} + r_{4,12} + r_{4,13}
10 r_{2,6} - r_{2,7} + r_{3,9} - r_{3,10} + r_{4,12} - r_{4,13}
11 2r_{2,6} - 2r_{2,7} - r_{3,9} + r_{3,10} - r_{4,12} + r_{4,13}
12 r_{3,9} - r_{3,10} - r_{4,12} + r_{4,13}
13 2\phi_{3,1,4} - \phi_{2,1,3} - \phi_{2,1,4}
14 \phi_{2,1,3} - \phi_{2,1,4}
15 \phi_{1,2,5} + \phi_{1,2,6} + \phi_{1,2,7} - \phi_{6,2,7} - \phi_{5,2,6} - \phi_{5,2,7} + \phi_{1,3,8} + \phi_{1,3,9} + \phi_{1,3,10} - \phi_{9,3,10}
                    -\phi_{8,3,9} - \phi_{8,3,10} + \phi_{1,4,11} + \phi_{1,4,12} + \phi_{1,4,13} - \phi_{12,4,13} - \phi_{11,4,12} - \phi_{11,4,13}
16 \quad 2\phi_{1,2,5} + 2\phi_{1,2,6} + 2\phi_{1,2,7} - 2\phi_{6,2,7} - 2\phi_{5,2,6} - 2\phi_{5,2,7} - \phi_{1,3,8} - \phi_{1,3,9} - \phi_{1,3,10} + \phi_{9,3,10} + \phi_{1,3,10} + 
                    +\phi_{8,3,9}+\phi_{8,3,10}-\phi_{1,4,11}-\phi_{1,4,12}-\phi_{1,4,13}+\phi_{12,4,13}+\phi_{11,4,12}+\phi_{11,4,13}
17 \phi_{1,3,8} + \phi_{1,3,9} + \phi_{1,3,10} - \phi_{9,3,10} - \phi_{8,3,9} - \phi_{8,3,10} - \phi_{1,4,11} - \phi_{1,4,12} - \phi_{1,4,13} + \phi_{12,4,13}
                   +\phi_{11,4,12} + \phi_{11,4,13}
18 2\phi_{1,2,5} - \phi_{1,2,6} - \phi_{1,2,7} + 2\phi_{1,3,8} - \phi_{1,3,9} - \phi_{1,3,10} + 2\phi_{1,4,11} - \phi_{1,4,12} - \phi_{1,4,13}
19 4\phi_{1,2,5} - 2\phi_{1,2,6} - 2\phi_{1,2,7} - 2\phi_{1,3,8} + \phi_{1,3,9} + \phi_{1,3,10} - 2\phi_{1,4,11} + \phi_{1,4,12} + \phi_{1,4,13}
20 2\phi_{1,3,8} - \phi_{1,3,9} - \phi_{1,3,10} - 2\phi_{1,4,11} + \phi_{1,4,12} + \phi_{1,4,13}
21 \phi_{1,2,6} - \phi_{1,2,7} + \phi_{1,3,9} - \phi_{1,3,10} + \phi_{1,4,12} - \phi_{1,4,13}
22 2\phi_{1,2,6} - 2\phi_{1,2,7} - \phi_{1,3,9} + \phi_{1,3,10} - \phi_{1,4,12} + \phi_{1,4,13}
23 \phi_{1,3,9} - \phi_{1,3,10} - \phi_{1,4,12} + \phi_{1,4,13}
24
                 2\phi_{6,2,7} - \phi_{5,2,6} - \phi_{5,2,7} + 2\phi_{9,3,10} - \phi_{8,3,9} - \phi_{8,3,10} + 2\phi_{12,4,13} - \phi_{11,4,12} - \phi_{11,4,13}
25 4\phi_{6,2,7} - 2\phi_{5,2,6} - 2\phi_{5,2,7} - 2\phi_{9,3,10} + \phi_{8,3,9} + \phi_{8,3,10} - 2\phi_{12,4,13} + \phi_{11,4,12} + \phi_{11,4,13}
26 2\phi_{9,3,10} - \phi_{8,3,9} - \phi_{8,3,10} - 2\phi_{12,4,13} + \phi_{11,4,12} + \phi_{11,4,13}
27 \phi_{5,2,6} - \phi_{5,2,7} + \phi_{8,3,9} - \phi_{8,3,10} + \phi_{11,4,12} - \phi_{11,4,13}
28 2\phi_{5,2,6} - 2\phi_{5,2,7} - \phi_{8,3,9} + \phi_{8,3,10} - \phi_{11,4,12} + \phi_{11,4,13}
29 \phi_{8,3,9} - \phi_{8,3,10} - \phi_{11,4,12} + \phi_{11,4,13}
30 \quad \tau_{5,2,1,3} + \tau_{5,2,1,4} + \tau_{6,2,1,3} + \tau_{6,2,1,4} + \tau_{7,2,1,3} + \tau_{7,2,1,4} + \tau_{8,3,1,2} + \tau_{8,3,1,4} + \tau_{9,3,1,2} + \tau_{9,3,1,4}
                    +\tau_{10,3,1,2}+\tau_{10,3,1,4}+\tau_{11,4,1,2}+\tau_{11,4,1,3}+\tau_{12,4,1,2}+\tau_{12,4,1,3}+\tau_{13,4,1,2}+\tau_{13,4,1,3}
31 \quad 2\tau_{5,2,1,3} + 2\tau_{5,2,1,4} + 2\tau_{6,2,1,3} + 2\tau_{6,2,1,4} + 2\tau_{7,2,1,3} + 2\tau_{7,2,1,4} - \tau_{8,3,1,2} - \tau_{8,3,1,4} - \tau_{9,3,1,2} - \tau_{9,3,1,4} + 2\tau_{1,2,1,4} + 2\tau_
                    -\tau_{10,3,1,2}-\tau_{10,3,1,4}-\tau_{11,4,1,2}-\tau_{11,4,1,3}-\tau_{12,4,1,2}-\tau_{12,4,1,3}-\tau_{13,4,1,2}-\tau_{13,4,1,3}
32 \quad \tau_{8,3,1,2} + \tau_{8,3,1,4} + \tau_{9,3,1,2} + \tau_{9,3,1,4} + \tau_{10,3,1,2} + \tau_{10,3,1,4} - \tau_{11,4,1,2} - \tau_{11,4,1,3} - \tau_{12,4,1,2} - \tau_{12,4,1,3}
                    -	au_{13,4,1,2} - 	au_{13,4,1,3}
```

 $33 \quad \gamma_{2,1,3,4} + \gamma_{3,1,4,2} + \gamma_{4,1,2,3}$