Supplementary Data

Supplementary Table S1

А

Descriptive

	Ν	Missing	Mean	Median	Minimum	Maximum
Samples	63	0				
Age (years)	62	1	46.9	48	18	81
Time elapsed (days)	56	7	105	91.5	21	328

В			
	Lung	injury	
Sex	0	1	Total
Female	10	3	13
Male	23	27	50
Total	33	30	63

Samples description. Panel A shows the main features of the samples collected. The time elapsed is the interval between the date of the molecular test positivity and the date of sera collection. Panel B shows the samples reporting lung injury (coded as 0 = non-injury and 1 = injury) stratified by gender.

Model Fit Measures			<u>.</u>		-			
							Overall Mod	el Test
Model Devian	ce AIC	BIC	R ² McF	R ² CS	R ² N	χ^2	df	р
1 68.5	74.5	80.9	0.215	0.257	0.343	18.7	2	0.00009
Omnibus Likelihood F	Ratio Tests				_			
Predictor	χ^2	C	lf	р				
Membrane OD/cut-off	6.169		1	0.013	-			
SPIke_OD/cutoff	0.604		1	0.43691	_			
Model Coefficients - I	Lung injury						05% Confid	ence Interval
Predictor	Estimate	SE	Z	p) Oc	lds ratio	Lower	Upper
Intercept	-2.886	0.884	-3.26	6 0.00	109 (0.0558	0.00988	0.315
Membrane OD/cut-off	1.551	0.756	2.05	3 0.04	009 4	.7161	1.0727	20.734
SPIke_OD/cutoff	0.188	0.243	0.77	6 0.43	792 1	.2073	0.75003	1.943

Interaction, Membrane-Spike, main effect. The interaction between IgG anti-M antibodies and IgG anti-Spike antibodies, analysed by the logit function, resulted in a loss of statistical significance for the Spike protein and a lower odds ratio for the M protein.

						-	·
					Ove	erall Mod	lel Test
ce AIC	BIC	R ² McF	R ² CS	R ² N	χ^2	df	р
71.7	78.1	0.246	0.289	0.386	21.5	2	0.00002
o Tests							
χ²	df	р					
12	1	0.00053	_				
3.35	1	0.06707					
g injury							
					95%	6 Confid	ence Interval
Estimate	SE	Z	р	Odds rat	o L	ower	Upper
-3.414	0.958	-3.56	0.00037	0.0329	0.	00503	0.215
1.619	0.597	2.71	0.00666	5.0489	1.	56768	16.261
0.365	0.203	1.79	0.07312	1.4399	0.9	96642	2.145
	71.7 o Tests 12 3.35 g injury Estimate -3.414 1.619	71.7 78.1 α Tests 4 χ² df 12 1 3.35 1 g injury SE -3.414 0.958 1.619 0.597	71.7 78.1 0.246 o Tests χ^2 df p 12 1 0.00053 3.35 1 0.06707 g injury Estimate SE Z -3.414 0.958 -3.56 1.619 0.597 2.71	71.7 78.1 0.246 0.289 o Tests x² df p 12 1 0.00053 3.35 1 0.06707 g injury SE Z p -3.414 0.958 -3.56 0.00037 1.619 0.597 2.71 0.00666	71.7 78.1 0.246 0.289 0.386 o Tests x² df p 12 1 0.00053 3.35 1 0.06707 g injury SE Z p Odds rati -3.414 0.958 -3.56 0.00037 0.0329 1.619 0.597 2.71 0.00666 5.0489	71.7 78.1 0.246 0.289 0.386 21.5 o Tests x² df p 12 1 0.00053 12 1 0.00053 3.35 1 0.06707 g injury 959 Estimate SE Z p Odds ratio I -3.414 0.958 -3.56 0.00037 0.0329 0. 1.619 0.597 2.71 0.00666 5.0489 1.	71.7 78.1 0.246 0.289 0.386 21.5 2 o Tests x² df p 12 1 0.00053 3.35 1 0.06707 g injury 95% Confid SE Z p Odds ratio Lower -3.414 0.958 -3.56 0.00037 0.0329 0.00503 1.619 0.597 2.71 0.00666 5.0489 1.56768

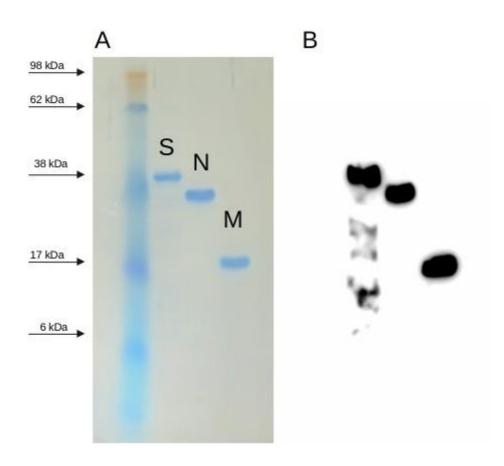
Interaction, Membrane-Nucleocapsid, main effect. As observed for the Spike protein, the interaction between IgG anti-M antibodies and IgG anti-Nucleocapsid antibodies, analysed by the logit function, resulted in a loss of statistical significance for the Nucleocapsid protein and a lower odds ratio for the M protein.

Target genes	Oligonucleotides 5'-3'	Bps position NC_045512	Restriction enzymes	Recombinant proteins
S1 forward	GATCGAT <u>GGATCC</u> TG GCACTTGACCCTCTCAG	22436-22454	BamHI	YP_009724390
S1 reverse	AGCTTC <u>AAGCTT</u> TAAAG AGTAGTGTCAGCAATGTCTC	23281-23262	HindIII	AA 292-573
N forward	GATCGAT <u>GGATCC</u> GAATGTCTGATAATGGACCCCAAA	28273-28295	BamHI	YP_009724397
N reverse	CGGATC <u>AAGCTT</u> TTA TCTAGCAGGAGAAGTTCCCCTA	287900-28879	HindIII	AA 1-209
M forward	GATCGAT <u>GGATCC</u> CCATGTGGTCATTCAATCCA	26846-26864	BamHI	YP_009724393
M reverse	AGCTTC <u>AAGCTT</u> TTACTGTACAAGCAAAGCAATAT	27191-27169	HindIII	AA 109-222

Primers used to produce the recombinant proteins. The table shows the three pairs of oligonucleotides used to amplify and clone the three coding sequences. The underlined sequences indicate the restriction sites used for cloning. The bases position of the resulting amplicons and the protein fragments produced with their respective accession numbers are also shown. S = Spike; N = Nucleocapsid; M = Membrane.

Contingency Table

		А	.B0		
Lung injury	А	AB	В	0	Total
0	12	3	4	4	23
1	5	0	3	13	21
Total	17	3	7	17	44
χ² Test					
	Value	d	f	р	
χ²	10.7	1	l	0.0133	-
Ν	63				-
Effect size					
	Val	ue			
Cramer's V	0.4	94			


Supplementary Table S5. Correlation between AB0 blood group and lung injury. Data on AB0 blood group were available for 44 subjects. The blood group distribution is shown stratified by lung injury (lung injury: 0 = absence; 1 = presence) together with the result of the $\chi 2$ association test and the effect size.

Contingency Tables

			<u>.</u>		
_	Lun				
Age 0-1	0	1	То	tal	
0	7	0	2	7	
1	26	29	5	55	
Total	33	29	6	2	
-) T 4					
χ² Test					
	Value	df	р		
χ ²	6.93	1	0.0084		
Fisher's exact test			0.012		
Ν	63				
Effect size					
	Value				
Cramer's V	0.334				

Supplementary Table S6. Correlation between age and lung injury. Subjects were classified into two subgroups by age (age <30 years = 0; age >30 years = 1), stratified by lung injury (lung injury: 0 = absence; 1 = presence) and analyzed using the $\chi 2$ association test.

Supplementary Figure S1

Production of recombinant proteins. In Panel A, the three recombinant proteins (Spike, Nucleocapsid, Membrane protein) separated by polyacrylamide gel electrophoresis (PAGE) and stained by Coomassie blue are shown. Panel B depicts a replicate of the same PAGE, where the proteins were subsequently blotted and detected by a monoclonal antibody targeting the polyhistidine tail of the fusion proteins. S = Spike; N = Nucleocapsid; M = membrane.