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The methods of Atkins & Nimmo (1973) and Fernley (1974) for fitting the integrated
Michaelis-Menten equation were compared by using the same sets of simulated experi-
mental data. The method of Fernley (1974) is to be preferred because it gives precise and
unbiased estimates of the Michaelis-Menten parameters over a wide range of substrate
concentrations. However, the estimates may not be symmetrically distributed, especially
at low substrate concentrations.

The Michaelis-Menten parameters of an enzyme-
catalysed reaction (Km and V) can be determined by
fitting the integrated form of the Michaelis-Menten
equation to the progress curve of the reaction
(Laidler, 1958; Lowe & Williams, 1965; Cornish-
Bowden, 1972). For the simplest type of reaction the
relevant equation is:

V.t=p-Kmln 1-(P) (1)

where so is the initial concentration of substrate, and
p is the concentration of product at time t (p = 0
when t = 0).

Recently two methods have been described for
fitting eqn. (1) to data. Atkins & Nimmo (1973)
calculated Km and V from a weighted least-squares

regression ofplt on tln (I -S) . Since the regression

is not strictly valid (both its variables being functions
of the error-containing quantity p) the method was
tested on simulated experimental data and found to
give unbiased estimates of the parameters only when
so was greater than Km.
The second method fits eqn. (1) directly to the data

by an iterative technique (Fernley, 1974), and has
two theoretical advantages. First, as it minimizes the
sum of squares of deviations (S.S.D.) of the dependent
variable (p), the final estimates ofthe parameters may
be unbiased (provided that the error inp is normally
distributed). Secondly, approximate standard errors
of these final estimates can be calculated. However,
non-linear regressions of this sort may fail either
because the S.S.D. oscillates and does not converge to
a stable minimum, or because the final estimates
depend on the starting values chosen for them.
At present there are no data to show which of these

two methods gives the 'better' estimates of Km and V.
(In this context the 'best' estimates are unbiased,
symmetrically distributed and precise. Since either
method may give answers with one or two but not all
three of these attributes, the decision as to which is
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'better' may to some extent be subjective.) We have
therefore attempted to compare the two methods, by
applying the iterative one to the same sets ofsimulated
data already analysed by the linear method. We have
also used extensions of both methods to analyse pro-

gress curves whose origins have to be determined
because they have in effect been displaced anunknown
distancepo perpendicular to the time axis [see Atkins
& Nimmo (1973) for a more detailed description of
the problem]. Essentially this means fitting the
equation:

V.t=(p-po)-K.In[1- ]Ppo)
so

(2)

where Po is a third parameter to be estimated.

Methods
The simulated data are described in Atkins &

Nimmo (1973). For each error-free curve Km = V= 1,
Po = 0 and so was either 0.5, 0.7, 1.0, 1.4 or 2.0. The
standard deviation of p was either 0.005 or 0.01.
Forty different experimental curves were simulated
at each substrate concentration and error level.
The data were first analysed assuming that po = 0.

In the iterative method predicted values ofp (pb) are
found by the Newton-Raphson procedure from eqn.
(1) with initial estimates ofKm and V. The initial esti-
mates are then adjusted by adding AK. and AV,
which are computed from the regression:

D ( so D
where

D= 1+ Km
(SO pf)

The whole process is repeated until AK, and AV
become trivial, and the standard errors of the final
estimates of Km and Vare equal to those of 1Km and
AV at this point.
The data were then re-analysed by assuming that

po was unknown. In this instancep5 is found from eqn.
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Table 1. Mean estimates ofKm and Vfor progress curves of unknown origin

Values are means + S.D. (n = 40).

Linear method Iterative method

s0 Km V Km V
0.5 0.60+0.13* 0.70±0.11* 1.11 ±0.40t 1.09±0.35t
0.7 0.84±0.17* 0.89±0.13* 1.03+0.25t 1.02±0.18t
1.0 0.94±0.14* 0.97±0.10 1.01+0.15 1.01±0.10t
1.4 1.02±0.09 1.01+0.06 1.03 ± 0.07* 1.02±0.04
2.0 1.00±0.06 1.00±0.03 1.01+0.04 1.00±0.02

* P<0.04 that there is no difference between median and theoretical value of 1.00 (Campbell, 1967).
t P<0.02 that the distribution is symmetrical (Snedecor & Cochran, 1967).

(2) with initial estimates ofpo as well as ofKm and V,
and the adjustment regression is:

AKmr (1-Po)l AV-t
(P-P) = ln [1- s ]+- +Apo=D lnsio D

where

D=1+ Km
[so-(p-po)]

In the linear method the weighted regression is com-
puted after po has been estimated from a third-order
polynomial fitted to the progress curve.

Results and discussion
Table 1 summarizes the values of the parameters

determined from the low-error progress curves when
po was assumed to be unknown; similar results were
obtained from the high-error curves and whenpo was
set to zero. The iterative method gave unbiased
answers at nearly all substrate concentrations,
whereas the linear one did not. On the other hand, at
the lower substrate concentrations the iterative
method's answers were asymmetrically distributed,
whereas the linear method's were symmetrically
distributed. The iterative method was the less precise
of the two at the lower substrate concentrations, but
the more precise at the higher ones. The standard
errors ofKm and Vcalculated by the iterative method
from the individual progress curves were on average
equal to the corresponding standard deviations in
Table 1 and therefore seem to be good approxima-
tions. But they must be interpreted with caution be-
cause the distributions of both Km and V may be
skewed.
The iterative method sometimes failed to converge

when the starting values of Km and V were outside
the range 0.5-2.0; it appeared to be more vulnerable

when they were too high than when they were too
low. On the other hand, when the method did con-
verge, the final estimates of the parameters were
independent of the starting values. Thus the point at
which the S.S.D. is a minimum seems to be unique.
Wehaveconcluded that the iterative method is to be

preferred, because it usually converges and gives
unbiased estimates. It is less satisfactory than the
linear method in that these estimates may not be
symmetrically distributed; this implies that their
confidence limits (derived from their standard errors)
may also be asymmetric. A similar situation exists
when K,, and Vare determined from initial velocities:
the iterative technique of Wilkinson (1961) gives
better answers (judged by all three criteria) than the
double-reciprocal linear plot (Colquhoun, 1971).
Such linear plots should be used only for deriving
starting values of the parameters and for showing
whether the hypothesis is consistent with the data.
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