Supplemental Material for Density-dependent flow generation in active cytoskeletal fluids

Tomoka Kashiwabara,¹ Tatsuya Fukuyama,¹ and Yusuke T. Maeda^{1,*}

¹Department of Chemical Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan (Dated: October 28, 2024)

SUPPLEMENTAL FIGURE

FIG. S1. Blebbistatin-treated confined actomyosin solution within a droplet. (a) Microscopic time-lapse observation of confined actomyosin solution in a droplet. Left: $0 \mu mol/L$ blebbistatin (control), right: $100 \mu mol/L$ blebbistatin. The number in the upper right corner of each image is the elapsed time. Scale bar: $50 \mu m$. The figure on the right depicts the flow field of the transport of granular particles obtained using particle image velocimetry (PIV) analysis. Scale arrow is $0.25 \mu m s^{-1}$. (b) Radial velocity profile of actin flow, with radial distances measured every 11.8 μm , which corresponds to the grid size used in the PIV analysis. Blue: $0 \mu mol/L$ blebbistatin (control), red: $100 \mu mol/L$ blebbistatin. Two representative experimental data, control and blebbistatin treated, respectively, are plotted. (c) Tangential velocity profile of actin flow.

 $^{^{\}ast}$ maeda@cheme.kyoto-u.ac.jp

SUPPLEMENTARY MOVIES

Movie 1. Actin flow generation in the artificial cell containing the actomyosin cytoskeleton ($\phi=100\%$). Time-lapse image was acquired at every 10 second. Scale bar: 50 µm.

Movie 2. Density-dependence of actin flow generation in artificial cells containing diluted actomyosin cytoskeleton ($\phi = 0\%$, 40%, 60%, 80%). Time-lapse image was acquired at every 10 second. Scale bars: 50 µm.

Movie 3. Density-dependence of actin flow generation in bulk solutions containing diluted actomyosin cytoskeleton ($\phi = 0\%$, 40%, 60%, 80%). Time-lapse image was acquired at every 1 second. Scale bars: 50 µm.