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Note S1. Bayesian estimation for source parameters 

Based on the probability model in the inverse problem, the Bayesian method quantify our 
state of knowledge by explicitly addressing uncertainties that arise from incomplete information or 
model inaccuracies during observations, which can attribute a posterior plausibility to each model 
within a set of constructed models1,2. The posterior probability distribution describes the 
plausibility of each member of this model ensemble, thereby providing the solution to our inverse 
problem3. In order to thoroughly search for possible source parameters, we used the Geodetic 
Bayesian Inversion Software (GBIS) to apply the nonlinear inversion based on the Bayesian 
estimation4. GBIS uses the Okada5 model in an elastic, homogeneous half-space to describe the 
rectangular dislocation source with a uniform slip represented by nine source parameters, which 
include: the length and width of the rectangular source, the depth of the lower edge, the dip angle 
with respect to the horizontal, the strike with respect to the north direction, the horizontal Cartesian 
coordinate of the midpoint of the lower edge, the strike slip along the strike direction, and the dip 
slip along the dip direction. For the nonlinear inversion, GBIS employs the Markov chain Monte 
Carlo (MCMC) method incorporating the Metropolis-Hastings algorithm6,7, with automatic step 
size selection to characterize the posterior probability distribution of the aforementioned source 
parameters. Given that the prior information on model parameters is often unpredictable, a non-
informative Jeffreys prior4,8,9 is used, setting the prior distribution of each model parameter to be 
independent and uniform over a finite range of possible values. Additionally, GBIS is capable of 
handling multiple independent geodetic datasets. In this study, we utilized the static GNSS 
displacements and interferometric synthetic aperture radar (InSAR) data for the Bayesian 
estimation, and the InSAR data were subsampled to reduce the computational complexity. 

To explore all possible fault orientations and kinematics, no constraints were imposed onto 
the fault strike (varying from 0° to 360°) and dip angles (varying from −90° to +90° with respect 
to the horizontal) and slip direction. The best-fit solution under the uniform slip mode is shown in 
Fig. S3 and Table S3. The optimal values of the source parameters correlate well with the peaks of 
the Bayesian estimation. Based on the 95% confidence interval derived from the nonlinear 
inversion, the GNSS and InSAR data can be explained by a rectangular fault with a length of 51.21–
51.80 km, a width of 44.86–45.86 km, striking at 25.27°–25.44° and steeply dipping at 72.68°–
72.94°. The fault slip is dominated by a dip-slip component of 1.31–1.33 m, combined by a minor 
left-lateral strike-slip component of 0.02–0.03 m. Assuming a shear modulus of 6.6 × 104 MPa at 
the average depth of the fault, the corresponding geodetic moment magnitude Mw is 7.47, slightly 
larger than those of the released moment tensor solutions (Table S1). Additionally, the fault is 
located to the NE of the epicenter determined by the U.S. Geological Survey-National Earthquake 
Information Center (USGS-NEIC), suggesting that the major energy release inferred from the 
geodetic data is only concentrated on a single side of the epicenter. 

Note S2. Backprojection Imaging Analysis 

The backprojection imaging method is a powerful tool that can reveal the spatiotemporal 
migration of rupture radiators using high-frequency teleseismic P waves with minimal assumptions. 
It is therefore extensively used to delineate the features of the rupture complexity, such as rupture 
velocity, direction, extent, and duration10-13. The multiple signal classification (MUSIC) array 
processing technique, which has been successfully applied in the backprojection imaging14,15, can 
distinguish closely spaced simultaneous radiators, thus providing better resolution compared with 
conventional approaches. To effectively reconstruct the spatiotemporal evolution of high-
frequency radiators for the 2024 Hualien earthquake, we employed the MUSIC backprojection 
method to analyze the waveform traces from three regional seismic arrays with epicentral distances 
ranging from 30° to 90° to enhance the resolution, including 101 traces from the Alaska array, 235 
traces from the Europe array, and 48 traces from the Australia array (Fig. S8). Before the 
backprojection imaging, the waveforms were band-pass filtered between 0.5 and 2.0 Hz and aligned 
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relative to a reference trace through cross-correlation. Given the limited depth resolution of the 
backprojection imaging, the grid search for high-frequency radiators was exclusively conducted on 
a two-dimensional horizontal plane at a fixed depth. This plane is centered on the epicenter of 
23.835°N, 121.598°E, at a depth of 40.0 km determined by the USGS-NEIC, and further divided 
into grids with an interval of 0.01° along both latitude and longitude. Combining the expected 
differential slowness of each potential subevent on the gridded horizontal plane, the P-wave trains 
of 10 s long from the first P-wave arrival were stacked at every second during 30 s. This procedure 
determines the most probable location of the high-frequency radiator by identifying the extreme 
value of the coherent energy release after the waveform stacking. 

Compared to the utilization of a single seismic array, the backprojection imaging combining 
three arrays allows us to better examine the spatiotemporal migration of high-frequency radiators. 
Based on the common features reflected in the imaging results of the three arrays, we find that more 
high-frequency radiators are concentrated around the epicenter or to its north, indicating that more 
seismic energy is predominantly released to the north of the epicenter, while the few radiators to 
the south side are probably attributed to the residual southward rupture or the swimming effect 
related to the array azimuth (Fig. S8). Therefore, the 2024 Hualien earthquake is more likely to be 
a unilateral rupture that mainly extends toward the north, which is close to the Bayesian estimation. 
To better identify the rupture propagating velocity, we projected the high-frequency radiators 
derived from the backprojection of three arrays onto the optimal fault strike of 25.4° estimated by 
the Bayesian inference. As shown in Fig. S9, more high-frequency radiators are projected to the 
north of the epicenter, and their more convergent distribution also facilitates the identification of 
the rupture propagation, reflecting an average rupture velocity between 2.0 and 3.0 km/s. In the 
joint finite-fault inversion combining seismic and geodetic observations, we conducted a systematic 
grid search to obtain the optimal rupture velocity. The results of the backprojection with multiple 
arrays also provides an effective reference for selecting the rupture velocity. The rupture velocity 
was ultimately selected to be 2.5 km/s for the joint finite-fault inversion, which also matches well 
with the rupture process reflected by the backprojected high-frequency radiators from multiple 
arrays. 
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Fig. S1. (a–c) DInSAR LOS unwrapped displacements and (d–f) wrapped interferograms in the 
ascending orbit of the LT-1 satellite and in the ascending and descending orbits of the Sentinel-1 
satellite. The maps were generated by the Generic Mapping Tools 6.3.0 (GMT 6.3.0, 
https://www.generic-mapping-tools.org). 
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Fig. S2. (a) Distribution of the strong-motion stations with station names used in the joint finite-
fault inversion. The ground projection of our preferred finite-fault model for the 2024 Hualien 
earthquake are shown within the black frame in the map view, with the solid line indicating the top 
edge. (b) Distribution of the teleseismic stations used in the joint finite-fault inversion. The yellow 
star represents the epicenter. The maps were generated by the Generic Mapping Tools 6.3.0 (GMT 
6.3.0, https://www.generic-mapping-tools.org). 
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Fig. S3. Marginal posterior probability distributions of the source parameters derived from the 
Bayesian estimation. Red lines represent the best-fit values of parameters. Scatter plots are 
contoured according to frequency, with cold colors for low frequency and warm colors for high 
frequency. 
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Fig. S4. Unwrapped LOS displacements and wrapped interferograms of the observed, modeled and 
residual in the ascending orbit of the LT-1 satellite derived from the Bayesian estimation. 
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Fig. S5. Unwrapped LOS displacements and wrapped interferograms of the observed, modeled and 
residual in the ascending orbit of the Sentinel-1 satellite derived from the Bayesian estimation. 
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Fig. S6. Unwrapped LOS displacements and wrapped interferograms of the observed, modeled and 
residual in the descending orbit of the Sentinel-1 satellite derived from the Bayesian estimation. 
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Fig. S7. Comparison between the observed and synthetic GNSS displacements obtained from the 
Bayesian estimation. 
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Fig. S8. (a) Distribution of the seismic stations (colored triangles) of the Alaska, Europe and 
Australia arrays used in the backprojection imaging analysis. (b–d) Spatiotemporal migration of 
the high-frequency radiators derived from the backprojection imaging using (b) the Alaska array, 
(c) the Europe array, and (d) the Australia array. The maps were generated by the Generic Mapping 
Tools 6.3.0 (GMT 6.3.0, https://www.generic-mapping-tools.org). 
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Fig. S9. Distance of the backprojected high-frequency radiators away from the epicenter versus the 
rupture time. Reference rupture velocities of 1 km/s, 2 km/s and 3km/s are indicated by the dashed 
gray lines. The rupture velocity of 2.5 km/s, which is preferred for the joint finite-fault inversion, 
is indicated by the blue sheet. 
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Fig. S10. Trade-off curves between the fault dip and the normalized misfits of the InSAR and static 
GNSS displacements in the finite-fault inversion trials using the geodetic data. 
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Fig. S11. (a) Slip distribution of the planar fault model with the fault dip of 72.8° derived from the 
finite-fault inversion using the teleseismic P waves. (b) Comparison between the observed 
teleseismic P waves (displacement) and the synthetic waveforms obtained from the finite-fault 
inversion. The maximum amplitudes of the observed (black font) and synthetic waveforms (red 
font) are shown to the right of each waveform, in micrometers. The azimuth and epicentral distance 
in degrees are shown at the beginning of each record with the azimuth on top. 
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Fig. S12. (a) Slip distribution of the planar fault model with the fault dip of 54.0° derived from the 
finite-fault inversion using the teleseismic P waves. (b) Comparison between the observed 
teleseismic P waves (displacement) and the synthetic waveforms obtained from the finite-fault 
inversion. The maximum amplitudes of the observed (black font) and synthetic waveforms (red 
font) are shown to the right of each waveform, in micrometers. The azimuth and epicentral distance 
in degrees are shown at the beginning of each record with the azimuth on top. 
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Fig. S13. (a) Trade-off curves between the normalized misfits of strong-motion and teleseismic 
waveforms and the rupture velocity. Each curve corresponds to a candidate of the testing rise times 
of time-window. (b) Trade-off curves between the normalized misfits of strong-motion and 
teleseismic waveforms and the rise time of time-window. Each curve corresponds to a candidate of 
the testing rupture velocities. (c) Trade-off curve between the model roughness and the normalized 
misfit tested with different smoothing factors for the joint finite-fault inversion. The smoothing 
factors from 0.00005 to 0.01 with a step of 0.00005 are tested. The red solid circle indicates that 
the preferred value of the smoothing factor is 0.0012. 
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Fig. S14. Source rupture process represented by the slip rate evolution of our preferred fault model. 
The contour interval is 0.2 m/s, and the yellow star indicates the epicenter. The gray dashed line 
represents the rupture front corresponding to a rupture velocity of 2.5 km/s. 
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Fig. S15. The aftershock distribution projected into the fault plane of the 2024 Hualien earthquake, 
which are indicated by black circles. The aftershocks of the seismic swarm on 22 April 2024 are 
excluded. The slip distribution with slip contours in white is depicted as the background color. 
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Fig. S16. Distributions of (a) the mean slip, (b) the standard deviation and (c) the coefficient of 
variation in the Jackknife testing. 
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Fig. S17. Unwrapped LOS displacements of the observed, modeled and residual in the ascending 
orbit of the LT-1 satellite and in the ascending and descending orbits of the Sentinel-1 satellite 
derived from the joint finite-fault inversion. The maps were generated by the Generic Mapping 
Tools 6.3.0 (GMT 6.3.0, https://www.generic-mapping-tools.org). 
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Fig. S18. Comparison between the observed (a) horizontal and (b) vertical components of the static 
GNSS displacements (black arrow) and the synthetic ones (red arrows) obtained from the joint 
finite-fault inversion. The maps were generated by the Generic Mapping Tools 6.3.0 (GMT 6.3.0, 
https://www.generic-mapping-tools.org). 
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Fig. S19. Comparison between the observed strong-motion seismograms (velocity) and the 
synthetic waveforms obtained from the joint finite-fault inversion. The maximum amplitudes of 
the observed (black font) and synthetic waveforms (red font) are shown to the left or right of each 
waveform, in centimeters per second. 
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Fig. S20. (b) Comparison between the observed teleseismic P waves (displacement) and the 
synthetic waveforms obtained from the joint finite-fault inversion. The maximum amplitudes of 
the observed (black font) and synthetic waveforms (red font) are shown to the right of each 
waveform, in micrometers. The azimuth and epicentral distance in degrees are shown at the 
beginning of each record with the azimuth on top. 
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Fig. S21. Time series of the seismicity from the mainshock on 2 April 2 2024 to 22 April 2024, in 
which earthquakes are colored by time. The event catalog is collected from the Taiwan 
Seismological and Geophysical Data Management System (GDMS). And the moment tensors of 
some events are collected from the Broadband Array in Taiwan for Seismology (BATS) solutions. 
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Fig. S22. Regional field of the cumulative CFS changes induced by the representative historical 
major earthquakes since 2013, including the 2024 Hualien earthquake. For the 2024 event, the slip 
uncertainties at the 95% confidence level indicated by the Jackknife test were taken into account. 
The standard deviation of 1.96 times was (a) subtracted from and (b) added to the mean slip 
distribution, respectively. The maps were generated by the Generic Mapping Tools 6.3.0 (GMT 
6.3.0, https://www.generic-mapping-tools.org). 
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Table S1. Moment tensor solutions of the 2024 Hualien earthquake. 

Source Mw 
Centroid 

depth 
(km) 

Nodal plane #1 Nodal plane #2 

Strike 
(°) 

Dip 
(°) 

Rake 
(°) 

Strike 
(°) 

Dip 
(°) 

Rake 
(°) 

USGS-NEIC 7.37 35.5 19 54 73 227 40 112 

GCMT 7.40 33.7 17 57 70 230 38 117 

BATS 7.30 35.0 16 51 79 213 40 103 

Table S2. LT-1 and Sentinel-1 SAR acquisitions used in this study. 

Satellite Track number 
Preseismic acquisition 

date 
Postseismic 

acquisition date 

LT-1 Ascending 2024/03/30 2024/04/03 

Sentinel-1 Ascending 69 2024/03/27 2024/04/08 

Sentinel-1 Descending 105 2024/03/29 2024/04/10 

Table S3. Priors and results of the Bayesian estimation for the 2024 Hualien Earthquake. 

 
Length 

(m) 
Width 

(m) 
Depth 

(m) 
Dip 
(°) 

Strike 
(°) 

X center 
(m) 

Y center 
(m) 

Strike 
slipa 
(m) 

Dip 
slipb 
(m) 

Lower 10000 10000 1000 −90.0 0.0 −50000 −50000 -5.0 -5.0 

Upper 100000 100000 100000 90.0 360.0 50000 50000 5.0 5.0 

Optimal 51522 45418 51743 72.80 25.36 15390 23459 −0.022 1.314 

2.5% 51213 44859 51275 72.68 25.27 15189 23321 −0.028 1.305 

97.5% 51798 45856 52135 72.94 25.44 15562 23611 −0.017 1.326 
aStrike slip is positive if right-lateral and negative if left-lateral. bDip slip is positive for thrust 
faulting and negative for normal faulting. 
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