1 **Supplementary Information**

2 **Topological transformation of microbial proteins into iron single-atom sites**

3 **for selective hydrogen peroxide electrosynthesis**

- 5 Jinsong Wu⁸, Xiaochun Tian¹, Yanxia Jiang⁵, Dingsheng Wang^{3⊠} and Feng Zhao^{1⊠}
- 6 ¹Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese
- 7 Academy of Sciences, Xiamen 361021, China
- 8 ²University of Chinese Academy of Sciences, Beijing 100049, China
- 9 ³Department of Chemistry, Tsinghua University, Beijing 100084, China
- 10 ⁴Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
- ⁵College of Chemistry and Chemical Engineering, Discipline of Intelligent Instrument and
- 12 Equipment, Xiamen University, Xiamen 361005, China
- ⁶State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
- 14 Wuhan University of Technology, Wuhan 430070, China
- ⁷Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese
- 16 Academy of Sciences, Shanghai 202104, China
- ⁸Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430070, China
- 18 *These authors contributed equally: Xiaofeng Xiao and Zechao Zhuang
- 19 $\text{e-mail: } fzhao(\hat{a})$ iue.ac.cn; wangdingsheng (\hat{a}) mail.tsinghua.edu.cn

- The **Supporting Information** contains 51 pages, 46 Supplementary figures, 5 tables, and 5
- Supplementary References.
-
- **Supplementary Figure 1 |** RRDE collection efficiency calibration.
- **Supplementary Figure 2 |** ORR electrochemical performances of various microbe-derived 26 carbon materials. **a**, polarization curves for ORR. **b**, Calculated H₂O₂ selectivity. **c**, electron
- transfer number.
- **Supplementary Figure 3 |** The content of the predominant metal elements in microorganisms (hollow) and the corresponding derived carbon materials (solid fill pattern) measured by ICP-MS.
- **Supplementary Figure 4 |** The STEM image and elemental distribution maps of *Escherichia coli*-derived carbon material.
- **Supplementary Figure 5 |** The STEM image and elemental distribution maps of *Shewanella oneidensis*-derived carbon material.
- **Supplementary Figure 6 |** The STEM image and elemental distribution maps of *Halomonas titanicae*-derived carbon material.
- **Supplementary Figure 7 |** The STEM image and elemental distribution maps of *Pseudomonas aeruginosa*-derived carbon material.
- **Supplementary Figure 8 |** The STEM image and elemental distribution maps of *Cupriavidus necator*-derived carbon material.
- **Supplementary Figure 9 |** The STEM image and elemental distribution maps of *Eubacterium limosum*-derived carbon material.
- **Supplementary Figure 10 |** The STEM image and elemental distribution maps of *Lactobacillus acidophilus*-derived carbon material.
- **Supplementary Figure 11 |** The STEM image and elemental distribution maps of *Bacillus thuringiensis*-derived carbon material.
- **Supplementary Figure 12 |** The STEM image and elemental distribution maps of *Bacillus subtilis*-derived carbon material.
- **Supplementary Figure 13 |** The AC-STEM images and elemental distribution maps of *Bacillus pumilus*-derived carbon material. **a,** Dark field image, **b,** High resolution HAADF-STEM image and **c,** Elemental distribution map.
- **Supplementary Figure 14 |** The STEM image and elemental distribution maps of *Saccharomyces cerevisiae*-derived carbon material.
- **Supplementary Figure 15 |** The morphology of *Bacillus pumilus* and *Bacillus pumilus*(Fe−).
- **Supplementary Figure 16 |** The content of metal elements in *Bacillus pumilus*, *Bacillus*
- *pumilus*(Fe−), *Bacillus pumilus*-derived carbon material and *Bacillus pumilus*(Fe−)-derived carbon material.
- **Supplementary Figure 17 |** The STEM and elemental distribution map of *Bacillus pumilus*(Fe−)-derived carbon material.
- **Supplementary Figure 18 |** XPS spectra of *Bacillus pumilus*-derived carbon material (top) and *Bacillus pumilus*(Fe−)-derived carbon material (down).
- **Supplementary Figure 19 |** ORR electrochemical performance of *Bacillus pumilus*-derived carbon material and *Bacillus pumilus*(Fe−)-derived carbon material.
- **Supplementary Figure 20 |** The STEM image and elemental distribution maps of *Bacillus pumilus*-derived carbon material obtained at 450°C.
- **Supplementary Figure 21 |** The STEM image and elemental distribution maps of *Bacillus pumilus*-derived carbon material obtained at 500°C.
- **Supplementary Figure 22 |** The STEM image and elemental distribution maps of *Bacillus pumilus*-derived carbon material obtained at 700°C.
- **Supplementary Figure 23 |** The STEM image and elemental distribution maps of *Bacillus pumilus*-derived carbon material obtained at 900°C.
- **Supplementary Figure 24 |** The specific surface and pore distribution of *Bacillus pumilus-derived carbon materials* obtained at different temperatures.
- **Supplementary Figure 25 |** XPS spectra of *Bacillus pumilus-derived carbon materials* obtained at different tempretures.
- **Supplementary Figure 26 |** Fraction analysis from XPS spectra in *Bacillus pumilus-derived carbon materials* obtained at different tempretures.
- **Supplementary Figure 27 |** XRD patterns of *Bacillus pumilus-derived carbon materials* obtained at different tempretures.
- **Supplementary Figure 28 |** Fe K-edge EXAFS (point) and the curve fit (line) for FeN5−*x*O*^x*
- 81 and FeN₄ catalysts, shown in k³-weighted *k*-space after Fourier transform (Fourier transform magnitude component).
- **Supplementary Figure 29 |** Fe K-edge EXAFS (point) and the curve fit (line) for FeN5−*x*O*^x*
- 84 and FeN₄ catalysts, shown in k³-weighted *k*-space after Fourier transform (Fourier transform
- imaginary component).
- 86 **Supplementary Figure 30** | Wavelet transform for the k²-weighted Fe K-edge EXAFS signals of FeN5−*x*O*^x* and FeN⁴ catalysts.
- **Supplementary Figure 31 |** Schematic of proposed FeN5−*x*O*^x* and FeN⁴ sites.
- **Supplementary Figure 32 |** ORR intrinsic activity of FeN5−*x*O*^x* catalysts.
- **Supplementary Figure 33 |** ORR performance of FeN5−*x*O*^x* catalysts in neutral electrolyte.
- **Supplementary Figure 34 |** Peroxide reduction reaction for FeN5−*x*O*^x* catalysts**.**
- **Supplementary Figure 35 |** ORR performance of FeN5−*x*O*^x* catalysts.
- **Supplementary Figure 36 |** Electrochemical cell configurations for ORR testing.
- **Supplementary Figure 37 |** Polarization curve of FeN3O² catalyst on the gas-diffusion
- electrode in 1 M KOH.
- 96 **Supplementary Figure 38** | Colorimetric method quantified H₂O₂ concentration.
- **Supplementary Figure 39 |** The ORR currents catalyzed by FeN5−*x*O*^x* catalysts after potassium thiocyanate poisoning.
- **Supplementary Figure 40 |** Computed activity volcano plots of different reactive sites in 100 FeN₃O₂ motif catalyzing the 2e⁻ ORR.
- 101 **Supplementary Figure 41** | The local structure of FeN₃O₂.
- **Supplementary Figure 42 |** The local structure of FeN4O.
- **Supplementary Figure 43 |** The local structure of FeN⁴
- **Supplementary Figure 44 |** The local structure of O/C.
- **Supplementary Figure 45 |** The differential charge densities of **a,** FeN3O2, **b,** FeN4O, **c,** FeN⁴ and **d,** O/C motif.
- **Supplementary Figure 46 |** The differential charge densities of **a,** FeN3O2, **b,** FeN4O, **c,** FeN⁴ 108 and **d**, O/C motif after *OOH adsorption.
-
- **Supplementary Table 1 |** Microbial information and cultivated condition.
- **Supplementary Table 2 |** Estimates of evolutionary divergence between Sequences.
- **Supplementary Table 3 |** The BET surface area and pore distribution of *Bacillus pumilus-*
- *derived carbon materials* obtained at different tempretures.
- **Supplementary Table 4 |** The fitting parameters for Fe K-edge EXAFS of *Bacillus pumilus-*
- *derived carbon materials* obtained at different tempretures using FeN3O² model.
- **Supplementary Table 5 |** Free energy for O2, H2O and H2.
-
-

 Supplementary Figure 1 | RRDE collection efficiency calibration. a, LSV curves of bare rotating ring-disk electrode at different rotation speed. LSV tested in 0.1 M KOH supporting 122 electrolyte containing 10 mM K₃Fe(CN)₆, scan rate: 10 mV s⁻¹, and the potential of ring electrode: 1.55 V *vs*. RHE. **b,** Linear fitting of the diffusion limited current densities collected 124 by ring and disk electrodes. The experimental determined apparent collection efficiency (N) is 34.1% at rotation speed from 400–2025 rpm, and the theoretical vale of 37.0%.

 Supplementary Figure 2 | ORR electrochemical performances of various microbe-derived 129 **carbon materials. a,** polarization curves for ORR. **b**, Calculated H₂O₂ selectivity. **c**, electron transfer number at 0–0.6 V *vs*. RHE. ORR polarization curve measured by a rotating ring-disk 131 electrode at 1600 rpm in O₂-saturated 0.1 M KOH. The absolute mass loading of catalyst on 132 electrode was 0.1 mg cm⁻². Numbers 1–11 represent *Escherichia coli*, *Shewanella oneidensis*, *Halomonas titanicae*, *Pseudomonas aeruginosa*, *Cupriavidus necator*, *Eubacterium limosum*, *Lactobacillus acidophilus*, *Bacillus thuringiensis*, *Bacillus subtilis*, *Bacillus pumilus* and *Saccharomyces cerevisiae*, respectively.

 microorganisms (hollow) **and the corresponding derived carbon materials** (solid fill pattern) **measured by ICP-MS. a,** Mg, **b,** Mn, **c,** Fe, **d,** Zn, **e,** Cu, **f)** Ni, and **g,** Co. Error bars represent the standard deviation for three separate measurements.

Supplementary Figure 4 | The STEM image and elemental distribution maps of

*Escherichia coli***-derived carbon material.**

 Supplementary Figure 5 | The STEM image and elemental distribution maps of *Shewanella oneidensis***-derived carbon material.**

Supplementary Figure 6 | The STEM image and elemental distribution maps of

*Halomonas titanicae***-derived carbon material.**

Supplementary Figure 7 | The STEM image and elemental distribution maps of

*Pseudomonas aeruginosa***-derived carbon material.**

HAADF		С	N		
		100 nm	100 nm	100 nm	
		P		Na	
100 nm		100 nm	100 nm	100 nm	
C		са	o	Mn	
100 nm	100 nm	100 nm	100 nm	100 nm	
Fe	Co		Cu		
100 nm	100 nm	100 nm	100 nm	100 nm	

 Supplementary Figure 8 | The STEM image and elemental distribution maps of *Cupriavidus necator***-derived carbon material.**

Supplementary Figure 9 | The STEM image and elemental distribution maps of

*Eubacterium limosum***-derived carbon material.**

 Supplementary Figure 10 | The STEM image and elemental distribution maps of *Lactobacillus acidophilus***-derived carbon material.**

Supplementary Figure 11 | The STEM image and elemental distribution maps of *Bacillus*

*thuringiensis***-derived carbon material.**

Supplementary Figure 12 | The STEM image and elemental distribution maps of *Bacillus*

*subtilis***-derived carbon material.**

- **Supplementary Figure 13 | The AC-STEM images and elemental distribution maps of** *Bacillus pumilus***-derived carbon material. a,** Dark field image, **b,** High resolution HAADF-
- STEM image and **c,** Elemental distribution map. Metal atoms are monodisperse as marked with
- yellow circles in high resolution HAADF-STEM image.

 Supplementary Figure 14 | The STEM image and elemental distribution maps of *Saccharomyces cerevisiae***-derived carbon material.**

 Supplementary Figure 15 | The morphology of *Bacillus pumilus* **and** *Bacillus pumilus***(Fe−).** *Bacillus pumilus* is often used as an industrial fermentative bacterium, being easy to culture with a short growth period. *Bacillus pumilus* will express a variety of iron- containing structures, for example, Siderophores, Fe-superoxide dismutase, Heme-containing enzymes/proteins. **a,** SEM images of vegetative *Bacillus pumilus* cells. **b-c**, TEM images of the biology slice taken from biopsy samples of osmium acid and lead acetate pre-treated *Bacillus pumilus*. **d**, SEM images of vegetative *Bacillus pumilus*(Fe−) cells. **e-f**, TEM images of the biology slice taken from biopsy samples of osmium acid and lead acetate pre-treated *Bacillus pumilus*(Fe−) cells.

 Supplementary Figure 16 | The content of metal elements in *Bacillus pumilus***,** *Bacillus pumilus***(Fe−),** *Bacillus pumilus***-derived carbon material and** *Bacillus pumilus***(Fe−)- derived carbon material.** Error bars represent the standard deviation for three separate measurements.

 Supplementary Figure 17 | The STEM and elemental distribution map of *Bacillus pumilus***(Fe−)-derived carbon material.**

Supplementary Figure 18 | XPS spectra of *Bacillus pumilus***-derived carbon material** (top)

 and *Bacillus pumilus***(Fe−)-derived carbon material** (down)**. a,** C 1s spectra, **b,** N 1s spectra, and **c,** O 1s spectra.

Supplementary Figure 19 | ORR electrochemical performance of *Bacillus pumilus***-**

derived carbon material and *Bacillus pumilus***(Fe−)-derived carbon material. a**, ORR

214 polarization curve. **b**, Calculated ORR electron transfer number and H_2O_2 selectivity.

Supplementary Figure 20 | The STEM image and elemental distribution maps of *Bacillus*

*pumilus***-derived carbon material obtained at 450°C.**

Supplementary Figure 21 | The STEM image and elemental distribution maps of *Bacillus*

*pumilus***-derived carbon material obtained at 500°C.**

Supplementary Figure 22 | The STEM image and elemental distribution maps of *Bacillus*

*pumilus***-derived carbon material obtained at 700°C.**

Supplementary Figure 23 | The STEM image and elemental distribution maps of *Bacillus*

*pumilus***-derived carbon material obtained at 900°C.**

 Supplementary Figure 24 | The specific surface and pore distribution of *Bacillus pumilus***- derived carbon materials obtained at different temperatures**. **a**, **c**, **e**, **g**, and **i**, Nitrogen adsorption-desorption isotherms (labeled as solid and hollow) and **b**, **d**, **f**, **h**, and **j,** the corresponding pore size distribution.

 Supplementary Figure 25 | XPS spectra of *Bacillus pumilus***-derived carbon materials obtained at different tempretures. a,** C 1s spectra, **b,** N 1s spectra, and **c,** O 1s spectra.

 Supplementary Figure 26 | Fraction analysis from XPS spectra of *Bacillus pumilus***- derived carbon materials obtained at different tempretures. a,** C fraction**, b,** N fraction and **c,** O fraction.

Supplementary Figure 27 | XRD patterns of *Bacillus pumilus***-derived carbon materials**

obtained at different tempretures.

 Supplementary Figure 28 | Fe K-edge EXAFS (point) and the curve fit (line) for FeN5−*x***O***^x* **and FeN⁴ catalysts, shown in k³ -weighted** *k***-space after Fourier transform (Fourier transform magnitude component).**

254
255 **Supplementary Figure 29 | Fe K-edge EXAFS (point) and the curve fit (line) for FeN5−***x***O***^x* **and FeN⁴ catalysts, shown in k³ -weighted** *k***-space after Fourier transform (Fourier transform imaginary component).**

Supplementary Figure 30 | Wavelet transform for the k² -weighted Fe K-edge EXAFS signals of FeN5−*x***O***^x* **and FeN⁴ catalysts.**

Supplementary Figure 31 | Schematic of proposed FeN5−*x***O***^x* **and FeN⁴ sites. a,** FeNO4, **b,**

FeN2O3, **c,** FeN3O2, **d,** FeN4O, and **e,** FeN4.

 Supplementary Figure 32 | ORR intrinsic activity of FeN5−*x***O***^x* **catalysts.** The ORR peak of 269 FeN_{5−*x*}O_x catalysts was observed in the cyclic voltammetry in O₂-saturated 0.1 M KOH at 0 270 rpm. And the cyclic voltammetry curves were record at a scan rate of 50 mV s⁻¹. The

- measurements data were corrected for the double layer current using nitrogen saturation
- background.
-

Supplementary Figure 33 | ORR performance of FeN5−*x***O***^x* **catalysts in neutral electrolyte.**

a, ORR polarization curve measured by a rotating ring-disk electrode at 1600 rpm in O2-

277 saturated 0.1 M PBS (p H=7.2 \pm 0.1). **b**, Calculated ORR electron transfer number and H₂O₂

selectivity of FeN5−*x*O*^x* catalysts at 0–0.6 V *vs*. RHE.

 Supplementary Figure 34 | Peroxide reduction reaction for FeN5−*x***O***^x* **catalysts.** Reduce 282 current measured by a rotating ring-disk electrode at 1600 rpm in N₂-saturated 0.1 M KOH 283 ($pH=13.0 \pm 0.1$) containing 3.5 mM H₂O₂.

 Supplementary Figure 35 | ORR performance of FeN5−*x***O***^x* **catalysts. a,** ORR polarization curve measured by a rotating ring-disk electrode at 1600 rpm in O2-saturated 0.1 M KOH 288 (*p*H=13.0 ± 0.1). The absolute mass loading of FeN_{5−*x*}O_{*x*} catalysts on electrode was 0.4 mg 289 cm⁻². **b**, Calculated ORR electron transfer number and **c**, H₂O₂ selectivity of FeN_{5−*x*}O_{*x*} catalysts at 0–0.6 V *vs*. RHE.

 Supplementary Figure 36 | Electrochemical cell configurations for ORR testing. a, Custom three-electrode cell for rotating ring-disk electrode measurements. **b,** Flow Cell Setup. **c,** The disassembly diagram of the flow cell components. (1) Nickel foam, (2) Anion exchange membrane, (3) Ag|AgCl electrode, (4) Gas diffusion electrode.

 Supplementary Figure 37 | Polarization curve of FeN3O² catalyst on the gas-diffusion 301 **electrode in 1 M KOH** (p H=13.0 \pm 0.1)**.**

Supplementary Figure 38 | Colorimetric method quantified H2O² concentration. To ensure

306 the accuracy of measured H_2O_2 concentration, the sample was diluted to an absorbance intensity between 0.5 to 2.00.

 Supplementary Figure 39 | The ORR currents catalyzed by FeN5−*x***O***^x* **catalysts after potassium thiocyanate poisoning.** ORR currents measured by a rotating ring-disk electrode 311 at 1600rpm in O₂-saturated 0.1 M KOH (p H=13.0 \pm 0.1) contained (dashed line) and without(solid line) 10 mM KSCN.

 Supplementary Figure 40 | Computed activity volcano plots of different reactive sites in FeN₃O₂ motif catalyzing the 2e⁻ ORR. a, The speculated reactive site of C1. b, The speculated reactive site of C2. **c,** The speculated reactive site of C3. The speculated reactive site in FeN3O² was annotated with arrow. **d,** The corresponding volcano points of different 319 reactive sites in $FeN₃O₂$ motif catalyzing the $2e^-$ ORR.

Supplementary Figure 41 | The local structure of FeN3O2. The catalytic site of FeN3O² was

indicated by the yellow circle. **a,** Left view. **b,** Top view. **c,** Elevation view.

Supplementary Figure 42 | The local structure of FeN4O. The catalytic site of FeN4O was

indicated by the yellow circle. **a,** Left view. **b,** Top view. **c,** Elevation view.

 Supplementary Figure 43 | The local structure of FeN4. The catalytic site of FeN⁴ was indicated by the yellow circle. **a,** Left view. **b,** Top view.

 Supplementary Figure 44 | The local structure of O/C. The catalytic site of O/C was indicated by the yellow circle. **a,** Left view. **b,** Top view.

Supplementary Figure 45 | The differential charge densities of a, FeN3O2, b, FeN4O, c,

 FeN4, and d, O/C motif. The corresponding color values next to atoms represent their valence electron number.

 Supplementary Figure 46 | The differential charge densities of a, FeN3O2, b, FeN4O, c, FeN4, and d, O/C motif after OOH adsorption. The corresponding color values next to atoms represent their valence electron number.

					4		6		8	9	10
	Escherichia coli		0.0202	0.0269	0.0246	0.0304	0.0402 0.0402		0.0371	0.0369	0.0394
	Shewanella oneidensis	0.1635		0.0259	0.0248	0.0278	0.0398	0.0389	0.0355	0.0365	0.0388
3.	Halomonas titanicae	0.2606	0.2407		0.0254	0.0296	0.0394	0.0374	0.0356	0.0361	0.0375
	4. Pseudomonas aeruginosa	0.2225	0.2343	0.2212		0.0277	0.0380	0.0377	0.0365	0.0357	0.0377
5.	Cupriavidus necator	0.3350	0.2970	0.2894	0.2759		0.0397	0.0377	0.0360	0.0351	0.0377
6.	Eubacterium limosum	0.4700	0.4608	0.4445	0.4439	0.4690		0.0330	0.0304	0.0300	0.0317
7.	Lactobacillus acidophilus	0.4798	0.4513	0.4133	0.4535 0.4524		0.3712		0.0271	0.0274	0.0292
8.	Bacillus thuringiensis	0.4310	0.4156	0.3911	0.4274	0.4395	0.3139	0.2470		0.0168	0.0191
9.	Bacillus subtilis	0.4502	0.4351	0.3990	0.4253	0.4259	0.3005	0.2481	0.1098		0.0130
	10. Bacillus pumilus	0.4555	0.4427	0.4027	0.4179	0.4265	0.3212	0.2683	0.1320	0.0631	
	11. Saccharomyces cerevisiae	1.4445	1.3765	1.3994		1.4012 1.3391	1.2942	1.4067	1.3615	1.3911	1.3810

Supplementary Table 2 | Estimates of evolutionary divergence between sequences

The number of amino acid substitutions per site from between sequences were shown below the diagonal.. Standard error estimate(s) were shown above the diagonal. Analyses were conducted using the Poisson correction model⁴. This analysis involved 11 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All ambiguous positions were removed for each sequence pair (pairwise deletion option). There were a total of 503 positions in the final dataset. Evolutionary analyses were conducted in MEGA11⁵.

Supplementary Table 3 | The BET surface area and pore distribution of *Bacillus pumilus-derived carbon materials* **obtained at different tempretures.**

The total volume of mesopores and macropores is calculated as single point adsorption total pore volume of pores minus b

Sample	Path	CN	$Reff(\AA)$	R(A)	$\sigma^2(\AA^2)$	E_0 (eV)	R Factor
Without pyrolysis	Fe-N	2.3 ± 2.5	1.93	1.89	0.000	-3.22 ± 9.97	0.032
	Fe-O	4.2 ± 3.0	2.09	2.01	0.001		
450° C	Fe-N	1.2 ± 2.2	1.93	1.88	0.000	-2.95 ± 12.31	0.009
	Fe-O	4.0 ± 3.1	2.09	2.01	0.003		
500° C	Fe-N	2.0 ± 1.6	1.93	1.90	0.000	-0.81 ± 5.72	0.002
	Fe-O	3.2 ± 2.3	2.09	2.03	0.001		
	Fe-N	3.0 ± 3.8	1.93	1.96	0.001		0.126
600° C	Fe-O	1.9 ± 2.4	2.09	2.00	0.003	-4.80 ± 10.05	
700° C	Fe-N	3.4 ± 6.4	1.93	1.98	0.002		
	Fe-O	1.4 ± 5.0	2.09	2.06	0.005	-0.53 ± 4.15	0.001
900° C	Fe-N	4.4 ± 0.4	1.93	2.01	0.006	2.72 ± 1.97	0.032

Supplementary Table 4 | The fitting parameters for Fe K-edge EXAFS of *Bacillus pumilus-derived carbon materials* **obtained at different tempretures using FeN3O² model.**

 ΔE_0 was refined as a global fit parameter, returning a value of (−3 ± 1) eV. Data ranges: 2.5 ≤ k ≤ 10.5 Å⁻¹, 1 ≤ R ≤ 2Å. The distances for Fe– N and Fe–O were from the FEFF file of structure in Supplementary Figure 28.

Supplementary Table 5 | Free energy for O2, H2O and H2.

In this work, free energy for O_2 , H_2O and H_2 used as computed traditionally.

Supplementary References

- 1. Sezonov, G., Joseleau-Petit, D. & D'Ari, R. *Escherichia coli* physiology in Luria-Bertani broth. *J. Bacteriol.* **189**, 8746–8749 (2007).
- 2. De Man, J.C., Rogosa, M. & Sharpe, M.E. A medium for the cultivation of lactobacilli. *J. Appl. Bacteriol.* **23**, 130–135 (1960).
- 3. Handtke, S. et al. *Bacillus pumilus* reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress. *PLoS One* **9**, e85625 (2014).
- 4. Zuckerkandl, E. & Pauling, L. in Evolving genes and proteins (eds. Bryson, V. & Vogel, H.J.) 97–166 (Academic Press, 1965).
- 5. Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. *Mol. Biol. Evol.* **38**, 3022–3027 (2021).