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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

This research manuscript presents a comprehensive and ambitious effort to leverage AI algorithms for 

the design and virtual screening of novel ionizable lipids tailored for mRNA-LNP delivery. The study's 

approach and findings are quite innovative and potentially impactful in the field of mRNA delivery 

systems. However, there are several critical questions and aspects that could be further addressed or 

clarified: 

 

Page 10 and Fig. 3e) It's unfortunate that these results cannot be displayed due to the patent 

application. ”Briefly, the mRNA delivery efficiency of 14 ionizable lipids (structures not shown due to the 

IP concerns) were predicted and subsequently compared to experimental data (Fig. 3e)”. 

 

Fig. 3 and Fig. 5) For an accurate determination of mRNA delivery using different LNPs (LNPs containing 

various ionizable lipids), the amount of luciferase mRNA, or the luc. assay, should be determined per 

organ (extract the 6-7 major organs including liver, heart, lung, etc., and then carefully determine the 

amount of delivered mRNA per organ). 

 

Page 15 and Fig. 4D) Explain the criteria for choosing exactly these six lipids to synthesize out of the 21 

lipids that had predicted better mRNA delivery. Moreover, A better explanation of Fig. 4a is needed. 

 

Fig. 5) In Fig. 5b, it is not stated which statistical analyses are performed to compare mRNA delivery using 

LNPs containing the different lipids. The difference between MC3 and especially the novel lipids LQ091 

(also LQ089) is quite small. Therefore, it may be incorrect to describe on page 17 that ' Impressively, all 

new lipids generally outperformed MC3 in terms of mRNA delivery efficiency, among which LQ089 and 

LQ091 exhibited superior performance'. 

Moreover, regarding the results of Fig. 5, you also need to show the images of the mice that are analyzed 

for total luminescence using the spectrum imaging system. You can add them among the supplemental 

Figs. 

 

Long-term stability and safety of the predicted lipids: 

The study focuses on the efficacy of mRNA delivery, but how do these novel lipids manage in terms of 

long-term stability and safety? For example, by measuring the levels of inflammatory cytokines in the 

blood following the delivery of mRNA with various LNPs (LNPs containing different lipids), you can find 

out the most effective and safest lipid for mRNA delivery. 

Extended Fig. 3 and 4) Information on how the ranking system for the ionizable lipid heads and tails is 

missing. How the ranking is performed and how it can be generalized for all ionizable lipids on the 

market. 

 

In the discussion part, these issues should be addressed: 

 

1. Dataset limitations and generalizability: The study acknowledges the modest size and diversity of the 

dataset used. How might this limitation affect the generalizability of the AI models to a broader range of 



ionizable lipids? Would the models be equally effective in predicting the efficacy of structurally diverse 

lipids not represented in the training dataset? 

 

2. Mechanistic Insights: The manuscript highlights that AI modeling advanced the screening process but 

did not elucidate the mechanistic structure-activity relationships within ionizable lipids. Could additional 

computational methods or experimental designs be implemented to gain more insight into the structural 

features that contribute to the efficacy of the screened lipids? For example, it has been shown previously 

that mRNA molecules that are neutrally charged can pass over the endosomal membrane and thus end 

up in the cytosol for translation (PMID: 31551417). 

 

3. Potential bias in model training: Was there any potential bias in the training process of the AI models, 

especially considering the limitations of the dataset? 

 

4. Impact of lipid structure on specificity and versatility: How does the structure of these novel lipids 

influence their specificity for different types of mRNA, e.g. short and long mRNAs? Do they work equally 

efficiently (do endosomal escape equally well) for all types of mRNA to be translated? 

 

Addressing these questions would strengthen the study, providing a more robust framework for the 

application of AI in the rational design of ionizable lipids for mRNA delivery. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

Review: Artificial intelligence-driven rational design of ionizable lipids for mRNA delivery 

 

In this report, Wang et al. describe an AI materials discovery platform for screening ionizable lipids as 

mRNA delivery agents in lipid nanoparticles (LNPs). The authors (1) ingest literature structural data from 

mRNA LNP studies and patents to build and validate apparent pKa and mRNA delivery efficient models, 

(2) screen ~20 million virtual structures using the models to down-select 3 lipids to synthesize and test in 

mice, and (3) optimize the lipid head/tail features in another round of screening/validation with 666 

candidates before proceeding to generate 6 lipids for testing. The in vivo performance was evaluated 

with whole-body luminescence of the animal, which was compared to positive controls MC3 and SM-

102. The authors conclude by asserting that the novel lipids developed through this process outperform 

MC3 and SM-102 in mRNA delivery, thereby offering immense potential for further use to advance 

nonviral gene delivery as a whole. 

 

Overall, while this work clearly has taken considerable time and effort to develop, there are significant 

concerns that I have with the data collection and cleaning process, choice of AI algorithms used to 

evaluate datasets to make machine versus human decisions, and synthesis/testing of the lead lipid 

compounds. Each of these sections are described with points below for the authors to consider. 

Although the topics of AI and LNPs are clearly relevant to not only the scientific community but also the 

general public, there are serious scientific shortcomings in the current version of the manuscript that 

need to be corrected so that the conclusions and claims of the work are supported by the data. At this 



point, it is unconvincing that any of this can be reproduced or used to inform future LNP design. If 

structures cannot be shown “due to IP concerns,” then this work cannot be published in an academic 

journal. There are some general conclusions of what lipid features may be important for mRNA delivery, 

but I am left unclear of what structure-property relationships are actually realized, or how to actually 

apply this to translation of therapeutic effects for different genetic diseases. In terms of bioperformance, 

the end result of total body luminescence as a readout of mRNA delivery is also underwhelming, with no 

evidence of organ-specific delivery or long-term evaluation of toxicity. SM-102 was a lipid developed and 

optimized for addressing the COVID19 pandemic, so outcompeting it in a completely unrelated 

luminescence assay with a model mRNA is not that impactful. Unfortunately, this manuscript should not 

be published by either Nature Communications or other journal until these fundamental flaws are 

sufficiently addressed by the research team conducting this work. 

 

- The authors claim that the training data were “meticulously gathered from literature sources and 

patents” with some structures shown in Fig S-1. This is vague and unclear… were values manually copied 

over by humans? Or was data scraped using some automated tools? Fig S-1 only shows 6 structures with 

a caption that is inappropriate for scientific publication (“Some example ionizable lipids collected in the 

dataset. Some of them have commercial name”). The data and code availability statement by the 

authors suggest that they have no intention of adhering to the FAIR Principles that has been championed 

by those working in the AI space (see “The FAIR Guiding Principles for scientific data management and 

stewardship” by Wilkinson et al. 2016). 

- The quality of the data is critical—critical, to the efficacy of AI models in their predictions. If the 

foundational data is not made available to reviewers or to the readers, the value of the predictions (even 

if they produce reasonable R squared values) is not meaningful. There is no description of how the 

training data was curated—that is, how was it decided whether a lipid structure used for mRNA delivery 

was to be included or not in training the models? Or if the biological readout of delivery was consistent? 

It is well recognized that mixed datasets and quantification methodologies jeopardize their utility in 

machine learning, even leading to misleading conclusions. See Corral et al. “Quantifying nanoparticle 

delivery: challenges, tools, and advances” 2024 as a comprehensive example that argues doing this 

blindly is akin to comparing apples to oranges. 

- The authors describe a method to calculate the “apparent pKa” of lipids. What is the difference 

between this and the actual pKa of a molecule? Was any work done to evaluate how closely apparent 

pKa values are to actual analytical measurements done, e.g., titrations? 

- The first model uses only ECFP, so it is unclear why SHAP was used since it does not offer any additional 

information qualitatively or quantitatively to materials design. Each component of ECFP cannot be 

mapped directly to something on the molecule. 

- Furthermore, the regression model for the apparent pKa prediction uses this value as a proxy for 

classification, assuming efficiency will be good within a certain range set by the authors. By doing this, 

prediction of virtual molecules filters out candidates before efficiency and synthesizability are even 

considered. Doesn’t this bias the AI model? 

- The authors do not sufficiently describe the down-selection process for the first round of lipid 

synthesis. They state that synthesizability and diversity are important to consider, but no details are 

provided on how likely hits were whittled down to 3 for synthesis. 

- Was any structural similarly analysis done on the virtual lipids? It is unclear how the authors define 

“diversity.” 



- In the second round of virtual screening, the authors intentionally lock in the head group as a synthesis 

capability factor before down-selection. This reportedly shrank the pool of lipids considerably. The 

subsequent discussion of how each model performs is extremely confusing. Even upon rereading several 

times, I cannot explain how the selection process resulted to the final six compounds. 

- I find it challenging to believe that N/P or weight ratio of mRNA (processing conditions) has negligible 

effect on the biological readout of delivery for LNPs. Processing LNPs is crucial to their delivery efficacy, 

all else equal, especially for in vivo settings, serving as a competitive advantage for biotech and 

pharmaceutical companies that must be reported once they reach pre-clinical and clinical studies. Nearly 

any LNP review emphasizes this point. Right away, this puts the quality of the dataset used to train both 

models into question. If they are not available in the majority of the original sources, in my view they 

should not be used to train any AI model. 

- Why are the images of the total luminescence in mice not shown for Round 2? This needs to be in the 

Supporting Information at minimum. 

- Several of the references are missing volumes and page numbers. 

- Finally, in both the main manuscript and the supporting information, no materials characterization is 

provided on the synthesized lipids other than a protocol and a yield. This is unacceptable. Any scientist 

cannot claim to have made novel molecules for use in something as important as in vivo applications 

without definitively showing that compound is pure and actually follows literature synthesis procedures. 

Millions of hypothetical structures generated from machines are useless if they cannot be synthesized by 

material chemists in the lab. 

 

 

Reviewer #4 (Remarks to the Author): 

 

This is an interesting and timely study and could add new knowledge to the field and be of value to many 

researchers in the field. There are some comments the authors should address: 

1. Ionisable lipids for vaccines will be different for those for therapy, give the balance of immunogenicity. 

I think the authors should consider this in their discussion. 

2. The model looks at luciferase and hEPO, this then focuses on therapeutics rather than vaccines. 

Protein expression levels would not be the only factor in vaccine efficacy. 

3. Did the model consider the type and biological sex of the mice? This may impact on the results. 

4. There is a heavy emphasis on pKa, and this is well known that around 6 to 6.8 is the best range. Does 

the model consider structure of the lipids, and configuration within the LNPs. This is more important 

than the pKa. 

5. Figure 5. The area under the curve ploy is not particularly useful for a 3 point graph and when looking 

at it, I could not follow then I spotted the colour coding does not match. This should be corrected and 

the authors should consider again if AUC is the best way to look at this. 

6. Figure 5. The number of mice used is low and looks to be in a single study. Given the closeness of the 

data and the variability in mouse studies, the study should be replicated again. Even with low numbers 

(e.g. 2 mice per group). 

7. Was a ‘negative’ control tested e.g. a lipid that should only give low responses tried to validate the 

model. This should be added in to the replicate study. 

8. How do the authors consider the lack of data translation from mouse to NHPs to humans, this is a 

recognised problem. The authors should comment. 



9. I would question the validity of using both IV and IM data as these are very different data sets and IV is 

thought to rely on ApOE binding and then delivery to the liver whilst IM is thought to involve resident 

immune cells at the injection site or infiltrating immune cells to the injection site. 

10. The discussion should add more into how the reader can gain from this model so a wide audience 

can apply this learning. This would add more significance to the work and the paper. 



Reply to comments for Manuscript “Artificial intelligence-driven rational 

design of ionizable lipids for mRNA delivery” 

 

First, we would like to express our sincere thanks to the reviewers for the constructive 

comments and suggestions on our manuscript “Artificial intelligence-driven rational 

design of ionizable lipids for mRNA delivery” (Research Article, NCOMMS-23-

53992). We have addressed these comments with corresponding changes and answers. 

The point-by-point responses to the referees were listed below this letter. We earnestly 

appreciate editors/reviewers’ dedicated work and hope that the revisions address all 

concerns. We believe that we have improved the quality of the manuscript and we are 

submitting our revised version for publication in the journal “Nature Communications”. 

 

 

Reviewer #1 (Remarks to the Author): 

 

This research manuscript presents a comprehensive and ambitious effort to leverage AI 

algorithms for the design and virtual screening of novel ionizable lipids tailored for 

mRNA-LNP delivery. The study's approach and findings are quite innovative and 

potentially impactful in the field of mRNA delivery systems. However, there are several 

critical questions and aspects that could be further addressed or clarified: 

 

Page 10 and Fig. 3e) It's unfortunate that these results cannot be displayed due to the 

patent application. ”Briefly, the mRNA delivery efficiency of 14 ionizable lipids 

(structures not shown due to the IP concerns) were predicted and subsequently 

compared to experimental data (Fig. 3e)”. 

 

Answer: We sincerely thank you for your approval and helpful suggestions. Structures 

of the 14 ionizable lipids have been added to the supplementary materials as 

Supplementary Fig. 1. 

 

Fig. 3 and Fig. 5) For an accurate determination of mRNA delivery using different LNPs 

(LNPs containing various ionizable lipids), the amount of luciferase mRNA, or the luc. 

assay, should be determined per organ (extract the 6-7 major organs including liver, 

heart, lung, etc., and then carefully determine the amount of delivered mRNA per organ). 

 

Answer: We appreciate for your constructive advice. To determine mRNA delivery, the 

curve of luminescence over time and AUC thereof can monitor the expression of mRNA 

within a long period to describe the long-term performance of LNP, however, this 

method does miss the organ distribution of mRNA expression at the highest point. In 

our revised manuscript, we supplemented the organ distribution of luciferase expressed 

by LNP-loaded mRNA administered both intravenously and intramuscularly (Fig. 6 and 

7). Luciferase mRNA encapsulated by the new LNPs via intravenous injection was 



mainly expressed in the liver, while the intramuscularly injected one was mainly 

expressed at the injection site of leg. 

 

Page 15 and Fig. 4D) Explain the criteria for choosing exactly these six lipids to 

synthesize out of the 21 lipids that had predicted better mRNA delivery. Moreover, A 

better explanation of Fig. 4a is needed. 

 

Answer: Thanks for your reminder. We aimed to select lipids with more diversity in 

their tails, including those with two long branches, dendric branches, and cyclohexyl 

group. The AI model outputs the probability of a LNP being positive in mRNA delivery 

efficiency, and lipids with high probability were considered. The probabilities were 

listed in Supplementary Table 6. The 21 lipids are now supplemented in Supplementary 

Fig. 8. 

 

The following statement was added to the caption of Fig. 4a, “Data representation of 

Model 2 predicting mRNA delivery efficiency. Compared to the representation method 

of Model 1, the positive criterion was set as 2-fold the delivery efficiency of the standard 

MC3 LNP”. 

 

Fig. 5) In Fig. 5b, it is not stated which statistical analyses are performed to compare 

mRNA delivery using LNPs containing the different lipids. The difference between 

MC3 and especially the novel lipids LQ091 (also LQ089) is quite small. Therefore, it 

may be incorrect to describe on page 17 that ' Impressively, all new lipids generally 

outperformed MC3 in terms of mRNA delivery efficiency, among which LQ089 and 

LQ091 exhibited superior performance'. 

 

Answer: Thank you for your careful reminder. The Fig. 5 has been merged into Fig. 4. 

Statistical significance in our study was analyzed by one-way ANOVA (GraphPad 

Prism 9). We have added this information to the caption of Fig. 4 and other figures 

demanding.   

 

We have changed the sentence to “Impressively, all new lipids are well-performed in 

terms of mRNA delivery efficiency, among which LQ089, LQ091-LQ093 exhibited 

significantly higher efficacy than MC3”. 

 

Moreover, regarding the results of Fig. 5, you also need to show the images of the mice 

that are analyzed for total luminescence using the spectrum imaging system. You can 

add them among the supplemental Figs. 

 

Answer: Thanks for your reminding. The Fig. 5 has been merged into Fig. 4. The 

bioluminescence images supporting Fig. 4 were listed in Supplementary Fig. 6 of the 

revised version. 

 

Long-term stability and safety of the predicted lipids: 



The study focuses on the efficacy of mRNA delivery, but how do these novel lipids 

manage in terms of long-term stability and safety? For example, by measuring the levels 

of inflammatory cytokines in the blood following the delivery of mRNA with various 

LNPs (LNPs containing different lipids), you can find out the most effective and safest 

lipid for mRNA delivery. 

 

Answer: Thanks for your comments. As your suggestions, safety, effectiveness, and 

stable and controllable quality are three important attributes of medicines. For LNPs 

containing new ionizable lipids, the safety and long-term stability are as important as 

delivery efficiency. Following up your helpful suggestion, we supplemented long-term 

storage stability tests and acute toxicity tests on the LNPs formed of the newly 

generated lipids. The freezing-thawing stability of LNPs at -20℃ and -80℃, and the 

stability of LNPs stored at 4℃, -20℃ and -80℃ for 30 days, were evaluated for 

pharmaceutical properties and in vivo efficiency of mRNA expression (Fig. 8). The 

results showed that the leading lipids, LQ089 and LQ092, exhibited comparable 

pharmaceutical stability to MC3 and SM-102. Besides, we performed an acute toxicity 

test on the leading lipids. The LNPs containing new lipids showed good safety in mice 

at an acute dose of 5 mg/kg (mRNA) of which the lipid dose was about 75 mg/kg (Fig. 

9 and 10).  

 

Supplementary Fig. 3 and 4) Information on how the ranking system for the ionizable 

lipid heads and tails is missing. How the ranking is performed and how it can be 

generalized for all ionizable lipids on the market. 

 

Answer: Thanks for your comments. Supplementary Fig. 3 and 4 now are numbered as 

Supplementary Fig. 4 and 5. The tails and heads were ranked based on their “positive 

rate”. How the ranking system is performed has been added to the method section: 

 

“In virtual screening, the general performance of a candidate tail or head segment was 

judged by positive rate. A generated virtual ionizable lipid would be marked as positive 

if its predicted mRNA delivery efficiency was better than the standard MC3 LNP and 

apparent pKa was between 6.0 to 7.0. Since the lipids were generated by combining 

different head and tail segments, therefore, for each segment, the positive rate can be 

defined as:  

 (1) 

Segments with high positive rate means they are more compatible in ionizable lipids to 

increase the LNP performance.” 



The positive rate for a segment is calculated based on a large number of combinations 

between it with other various parts of lipids, thus the positive rate is a general indication 

of the segment quality. This ranking system is applied to lipid segments, not to whole 

ionizable lipids. For lipid molecule, we possibly use probability of being positive in 

mRNA delivery efficiency or ECFP score to quantify their qualities. 

 

In the discussion part, these issues should be addressed: 

 

1. Dataset limitations and generalizability: The study acknowledges the modest size and 

diversity of the dataset used. How might this limitation affect the generalizability of the 

AI models to a broader range of ionizable lipids? Would the models be equally effective 

in predicting the efficacy of structurally diverse lipids not represented in the training 

dataset? 

 

Answer: Thanks for your comments. AI models would perform better for molecules 

closer to those in the training dataset, exemplified as LQ085-087 and LQ089-094. In 

other two AI application studies, new designed lipids are still like the training data. We 

think strategy like pre-training model with large molecule database, representing 

molecules with more refined model, or mechanistically modeling like molecular 

dynamic (MD) simulation may help in alleviating this problem. This has been added to 

the discussion: 

 

“--- generalizing the model to a broader formulation design space is challenging, like 

novel lipid structures and different mRNA sequences. In this work, predictions on 

LQ089-094 are more accurate than those on LQ085-087, and the former are closer to 

the majority of lipids in the dataset. In other AI modeling work, the newly designed 

molecules are similar to their training data27,54. This limitation might be alleviated 

through data augmentation, introducing more diverse data, or adopting a pre-train and 

fine-tune model building workflow. Besides, mechanistic modeling is a promising way 

to break through the generalization limitation, such as molecular dynamic (MD) 

simulation. The simulated LNP and the interaction between RNA and lipids have been 

reported many times26,55–57, with no limitation to ionizable lipid structure.” 

 

2. Mechanistic Insights: The manuscript highlights that AI modeling advanced the 

screening process but did not elucidate the mechanistic structure-activity relationships 

within ionizable lipids. Could additional computational methods or experimental 

designs be implemented to gain more insight into the structural features that contribute 

to the efficacy of the screened lipids? For example, it has been shown previously that 

mRNA molecules that are neutrally charged can pass over the endosomal membrane 

and thus end up in the cytosol for translation (PMID: 31551417). 

 

Answer: Thanks for your comments. We added structure-activity relationship analysis 

as Supplementary Fig. 3 (correlation between ECFP score and mRNA delivery 

efficiency) and Fig. 5 (effect of change in tail structure on the performance of lipids). 



As mentioned above, we think MD simulation is a powerful tool to elucidate interaction 

between lipids and mRNA. RNA escape from endosomal membranes is still the 

interaction between lipids and nucleic acids by nature. MD can be used to construct any 

lipids and mRNA. Our lab is devoted to the research of molecular dynamics (MD) in 

the modeling of lipid nanoparticles (LNPs). We have established an LNP model that is 

close to the actual size (~60 nm), and the relevant manuscript is being edited and will 

be submitted in soon. Based on this model, we can continue to study the interaction 

between LNPs and endosomes. 

 

Besides, we think that contribution of ionizable lipids to the process like RNA escape 

from endosomal can be quantified and clearly described by physiologically-based 

pharmacokinetics (PBPK) and quantitative systems pharmacology (QSP) models. Both 

of them are based on ordinary differentiation equations and are mechanistic model. It 

takes the advantage of integrating various data measured in vivo and in vitro. Actually, 

we have developed a such model for RNA-LNP transportation in Hela cells. The rates 

of trafficking along the processes of endocytosis, endosomal maturation, excretion 

outside cells, release from endosomes were determined. The calculated rate of RNA 

released from endosomes therefore is pure result of interaction between LNP and 

endosomal membranes, excluding other confounding physiological factors. This model 

also predicted the fraction of RNA released into the cytoplasm as around 2 percent. This 

work has been accepted by Acta Pharmaceutica Sinica B, entitled as “Modeling on in 

vivo disposition and cellular transportation of RNA lipid nanoparticles via quantum 

mechanics/physiologically-based pharmacokinetic approaches”. 

 

In the last paragraph of discussion, we added: 

 

“--- other advanced modeling methods such as physiologically-based 

pharmacokinetics (PBPK) and quantitative systems pharmacology (QSP) models59–62 

are very useful. PBPK is specialized in inferring the fate of drugs across different 

species. This inference is based on the properties of the drug and the physiological 

conditions of the subject, and therefore such extrapolation is mechanistically based. 

QSP is also mechanistic, predicting dynamic changes in signal pathways, biomarkers, 

and even therapeutic effects. For a complex system such as immune response, QSP is 

promising to address it63,64. Further, the association of the two models can integrate 

various in vitro and in vivo data, being able to quantify rates of critical processes in 

nucleic acid delivery such as RNA escape from endosomes65” 

 

3. Potential bias in model training: Was there any potential bias in the training process 

of the AI models, especially considering the limitations of the dataset? 

 

Answer: Thank you for your comments. The small data size can indeed introduce bias 

in models by restricting the structural diversity of lipids. Additionally, the model has 

been trained exclusively with data from mice and intravenous administration. 

Consequently, these factors make the model biased to be more compatible with this 



certain situation but it could exhibit reduced predictive accuracy for different scenarios. 

 

4. Impact of lipid structure on specificity and versatility: How does the structure of 

these novel lipids influence their specificity for different types of mRNA, e.g. short and 

long mRNAs? Do they work equally efficiently (do endosomal escape equally well) for 

all types of mRNA to be translated? 

 

Answer: Thanks for your comments. Thank you for your advice. You are proposing a 

very interesting and forward-looking direction. Previous studies in mRNA delivery 

have paid little attention to the special requirements of different mRNA types for 

ionizable lipids. Recently, a study focused on the influence of lipid tail length on 

delivery efficiency of mRNA of varying length with C12-200 as a model lipid, and 

concluded that shorter tails of lipids might lead to higher transfection of LNPs 

encapsulating larger mRNAs, and that longer tails might be more efficient for smaller 

mRNA cargos (Mrksich, K. et al. J Biomedical Materials Res jbm.a.37705 (2024)).  

 

In our task, the coding sequence length of the luciferase mRNA is approximately 1600, 

while the length for hEPO is around 600. The mRNA wrapped in LNP is longer than 

the coding sequence by around 270 nt (https://www.apexbt.com/ez-captm-cy5-firefly-

luciferase-mrna-5-moutp.html#gfdescription, https://www.apexbt.com/ez-captm-epo-

mrna-psutp.html ). Few lipids in our dataset were tested in both mRNA. A general trend 

is that if a lipid shows better delivery efficiency for luciferase mRNA, it will also 

achieve better performance for hEPO. Besides, it seems that LNP loading hEPO mRNA 

is more likely to get better delivery efficiency than MC3. However, this is a possibly 

biased conclusion due to the sample size. The following content has been added to the 

discussion.  

 

“MD simulation should also facilitate the understanding of the lipid specificity to 

different mRNA sequences. In our work, data of luciferase and hEPO mRNA were 

merged, but only nearly 10 lipids were tested using both mRNA. The delivery 

efficiencies for the two mRNA show a consistent trend, but using hEPO seems to be 

more likely to obtain positive results.” 

 

Besides, as mentioned above, PBPK model can be used to judge the efficacy in critical 

process such as endosomal escape. In our accepted work, we compared the RNA release 

rate of MC3, L319, and C12-200. 

 

Addressing these questions would strengthen the study, providing a more robust 

framework for the application of AI in the rational design of ionizable lipids for mRNA 

delivery. 

 

Answer: Thanks again for your wonderful comments and helpful suggestions, which 

are of great significance to the improvement of our manuscript. 

 

https://www.apexbt.com/ez-captm-cy5-firefly-luciferase-mrna-5-moutp.html#gfdescription
https://www.apexbt.com/ez-captm-cy5-firefly-luciferase-mrna-5-moutp.html#gfdescription
https://www.apexbt.com/ez-captm-epo-mrna-psutp.html
https://www.apexbt.com/ez-captm-epo-mrna-psutp.html


Reviewer #2 (Remarks to the Author): 

 

Review: Artificial intelligence-driven rational design of ionizable lipids for mRNA 

delivery 

 

In this report, Wang et al. describe an AI materials discovery platform for screening 

ionizable lipids as mRNA delivery agents in lipid nanoparticles (LNPs). The authors (1) 

ingest literature structural data from mRNA LNP studies and patents to build and 

validate apparent pKa and mRNA delivery efficient models, (2) screen ~20 million 

virtual structures using the models to down-select 3 lipids to synthesize and test in mice, 

and (3) optimize the lipid head/tail features in another round of screening/validation 

with 666 candidates before proceeding to generate 6 lipids for testing. The in vivo 

performance was evaluated with whole-body luminescence of the animal, which was 

compared to positive controls MC3 and SM-102. The authors conclude by asserting 

that the novel lipids developed through this process outperform MC3 and SM-102 in 

mRNA delivery, thereby offering immense potential for further use to advance nonviral 

gene delivery as a whole. 

 

Overall, while this work clearly has taken considerable time and effort to develop, there 

are significant concerns that I have with the data collection and cleaning process, choice 

of AI algorithms used to evaluate datasets to make machine versus human decisions, 

and synthesis/testing of the lead lipid compounds. Each of these sections are described 

with points below for the authors to consider. Although the topics of AI and LNPs are 

clearly relevant to not only the scientific community but also the general public, there 

are serious scientific shortcomings in the current version of the manuscript that need to 

be corrected so that the conclusions and claims of the work are supported by the data. 

At this point, it is unconvincing that any of this can be reproduced or used to inform 

future LNP design. If structures cannot be shown “due to IP concerns,” then this work 

cannot be published in an academic journal. There are some general conclusions of 

what lipid features may be important for mRNA delivery, but I am left unclear of what 

structure-property relationships are actually realized, or how to actually apply this to 

translation of therapeutic effects for different genetic diseases. In terms of 

bioperformance, the end result of total body luminescence as a readout of mRNA 

delivery is also underwhelming, with no evidence of organ-specific delivery or long-

term evaluation of toxicity. SM-102 was a lipid developed and optimized for addressing 

the COVID19 pandemic, so outcompeting it in a completely unrelated luminescence 

assay with a model mRNA is not that impactful. Unfortunately, this manuscript should 

not be published by either Nature Communications or other journal until these 

fundamental flaws are sufficiently addressed by the research team conducting this work. 

 

Answer: Thanks for your comments. These help a lot to improve our article. 

 

In the method section, we described how the data was cleaned to improve its intrinsic 

homogeneity. Specifically, it is: 



 

“---(1) removed data that was not measured in mice; (2) removed data where the LNP 

was not administrated intravenously; (3) removed data of mRNA expression level which 

was not measured as the luminescence signal or concentration of the luciferase or the 

human erythropoietin (hEPO) induced by mRNA delivery; (4) removed data of the 

luminescence signal of luciferase that was not measured for whole-body of subject 

animals or livers; (5) maintained the data where the mRNA expression levels of LNPs 

could be transformed as the fold-change based on a standard LNP formulation. The 

standard LNP formulation was composed of MC3 (the ionizable lipid), DSPC (the 

helper lipid), cholesterol, and PEG2000-DMG (the PEG lipid) at the molar ratio of 

50/10/38.5/1.5, which is commonly used as the control since it is the LNP formulation 

of the first approved siRNA drug[67]. The standard expression level of this formulation 

included: (1) luciferase concentration at 198 ng/g liver tissue at 4 h after administration 

of 0.3 mg/kg mRNA[38]; (2) luciferase luminescence flux at 2.57E+9 p/s in livers at 6 

h after administration of 0.5 mg/kg mRNA (for data from the institution of Moderna) 

[35]; (3) luciferase luminescence flux at 8.66E+8 p/s in the whole-body at 6 h after 

administration of 0.5 mg/kg mRNA (for data from the institution of Tufts 

University)[31]; (4) plasma hEPO concentration at 1570, 1830, 810 ng/mL at 3, 6, 24 

h respectively, after administration of 0.5 mg/kg mRNA[35]. The value of 

concentrations of expressed proteins was comparable among different institutions, 

while the value of luminescence flux was not since the measurement of the flux is the 

signal after amplification via the photomultiplier, which is dependent on the 

experimental instrument of the institute.” 

 

We have added the structures of the 14 lipids in the external validation related to “IP 

concerns” to the revised manuscript as Supplementary Fig. 1. 

 

We have enhanced the examination of the correlation between the efficiency of mRNA 

delivery and the ECFP code of ionizable lipids. Additionally, we offer a separate 

structure-activity analysis for a specific class of lipids that have hydroxy groups in their 

heads. We demonstrate the impact of factors such as chain length and linker position on 

the performance of the tails. Our aim is that these findings will advance the design of 

ionizable lipids. While the application to specific diseases is not within the purview of 

this research, our current goal is to improve the screening process of ionizable lipids, 

primarily using the most commonly reported mRNA. 

 

We have provided result of organ-specific delivery (Supplementary Fig. 9, 10, and 12) 

and toxicity (Fig. 9 and 10, Supplementary Fig. 13, 14, 15, and 16) data to the revised 

manuscript. 

 

Although SM-102 is used in COVID-19 vaccine, it truly exceeds MC3 in delivering 

hEPO and luciferase mRNA. Our goal is to obtain new lipids with high mRNA delivery 

efficiency, therefore, we tested whether our lipids outperform not only the baseline 

MC3 but also the superior SM-102. 



 

- The authors claim that the training data were “meticulously gathered from literature 

sources and patents” with some structures shown in Fig S-1. This is vague and 

unclear… were values manually copied over by humans? Or was data scraped using 

some automated tools? Fig S-1 only shows 6 structures with a caption that is 

inappropriate for scientific publication (“Some example ionizable lipids collected in the 

dataset. Some of them have commercial name”). The data and code availability 

statement by the authors suggest that they have no intention of adhering to the FAIR 

Principles that has been championed by those working in the AI space (see “The FAIR 

Guiding Principles for scientific data management and stewardship” by Wilkinson et al. 

2016). 

 

Answer: Thank you for your reminding. Structures of ionizable lipids were extracted 

from resources with InDraw AI chemical structure recognizer and transformed to 

SMILES string. Other data was extracted by manually copying and checked. These has 

been added to the method section. 

 

We have re-edited the Figure S1 as Supplementary Table 1 with a clearer format now. 

 

We have provided our training data and model file for review. We will make our models 

publicly available as our FormulationAI platform 

(https://formulationai.computpharm.org/.  Dong, J., et al. FormulationAI: a novel 

web-based platform for drug formulation design driven by artificial intelligence. 

Briefings in Bioinformatics 25, bbad419 (2024).) 

 

- The quality of the data is critical—critical, to the efficacy of AI models in their 

predictions. If the foundational data is not made available to reviewers or to the readers, 

the value of the predictions (even if they produce reasonable R squared values) is not 

meaningful. There is no description of how the training data was curated—that is, how 

was it decided whether a lipid structure used for mRNA delivery was to be included or 

not in training the models? Or if the biological readout of delivery was consistent? It is 

well recognized that mixed datasets and quantification methodologies jeopardize their 

utility in machine learning, even leading to misleading conclusions. See Corral et al. 

“Quantifying nanoparticle delivery: challenges, tools, and advances” 2024 as a 

comprehensive example that argues doing this blindly is akin to comparing apples to 

oranges. 

 

Answer: Thanks for your careful reminding. We have provided our training data and 

model file for review. We will make our models publicly available as our 

FormulationAI platform (https://formulationai.computpharm.org/.  Dong, J., et al. 

FormulationAI: a novel web-based platform for drug formulation design driven by 

artificial intelligence. Briefings in Bioinformatics 25, bbad419 (2024).) 

  

The article published by See Corral et al introduces three methods to represent the 

https://formulationai.computpharm.org/
https://formulationai.computpharm.org/


delivery efficiency of nanoparticle, named functional readouts, nanocarrier tracking, 

and cargo tracking. In our data, the mRNA delivery efficiency was measured through 

functional-readout method, since the signal is sourced from the proteins translated from 

the mRNA delivered. The two mRNA, luciferase and hEPO are mainly expressed in 

liver because it is the main target of current LNPs. Trends in expression of the two 

mRNA should be consistent since they share the same mechanism of mRNA release 

and translation. We especially care about the consistence in data and whether data is 

comparable between different studies. For hEPO, it is the expressed protein 

concentration in blood that was measured. This is a straightforward method measuring 

mRNA expression, therefore this readout is comparable. For luciferase, if it is protein 

concentration that was measured, it is also comparable; otherwise, if luminescence was 

measured, as mentioned in See Corral et al, it is influenced by many other factors, thus, 

only data with comparison to standard control LNP was maintained. In other words, 

luminescence measured from different institutions are not comparable. In the method 

section, we mentioned the data curation process in detail as:  

 

“For the analysis of nanomedicine from multiple data sources, ensuring internal 

consistency within the data is crucial[66]. For AI models predicting the in vivo mRNA 

delivery efficiency of LNPs, subsequent data processing work was conducted to improve 

its internal consistence and maintain as large data as possible: (1) removed data that 

was not measured in mice; (2) removed data where the LNP was not administrated 

intravenously; (3) removed data of mRNA expression level which was not measured as 

the luminescence signal or concentration of the luciferase or the human erythropoietin 

(hEPO) induced by mRNA delivery; (4) removed data of the luminescence signal of 

luciferase that was not measured for whole-body of subject animals or livers; (5) 

maintained the data where the mRNA expression levels of LNPs could be transformed 

as the fold-change based on a standard LNP formulation. The standard LNP 

formulation was composed of MC3 (the ionizable lipid), DSPC (the helper lipid), 

cholesterol, and PEG2000-DMG (the PEG lipid) at the molar ratio of 50/10/38.5/1.5, 

which is commonly used as the control since it is the LNP formulation of the first 

approved siRNA drug[67]. The standard expression level of this formulation included: 

(1) luciferase concentration at 198 ng/g liver tissue at 4 h after administration of 0.3 

mg/kg mRNA[38]; (2) luciferase luminescence flux at 2.57E+9 p/s in livers at 6 h after 

administration of 0.5 mg/kg mRNA (for data from the institution of Moderna) [35]; (3) 

luciferase luminescence flux at 8.66E+8 p/s in the whole-body at 6 h after 

administration of 0.5 mg/kg mRNA (for data from the institution of Tufts 

University)[31]; (4) plasma hEPO concentration at 1570, 1830, 810 ng/mL at 3, 6, 24 

h respectively, after administration of 0.5 mg/kg mRNA[35]. The value of 

concentrations of expressed proteins was comparable among different institutions, 

while the value of luminescence flux was not since the measurement of the flux is the 

signal after amplification via the photomultiplier, which is dependent on the 

experimental instrument of the institute.” 

 

We used this process trying our best to make the data uniform. For pKa model, no 



special curation process was applied. We utilized all collected pKa data. 

 

 

- The authors describe a method to calculate the “apparent pKa” of lipids. What is the 

difference between this and the actual pKa of a molecule? Was any work done to 

evaluate how closely apparent pKa values are to actual analytical measurements done, 

e.g., titrations? 

 

Answer: Thanks for your comments. The apparent pka is the pKa of a lipid nanoparticle, 

measured by TNS method. The actual pKa of a molecule is the pKa of ionizable lipid 

itself, which is usually calculated theoretically (Carrasco, M. J. et al. Ionization and 

structural properties of mRNA lipid nanoparticles influence expression in 

intramuscular and intravascular administration. Commun Biol 4, 1–15 (2021); Eygeris, 

Y., Gupta, M., Kim, J. & Sahay, G. Chemistry of Lipid Nanoparticles for RNA Delivery. 

Acc Chem Res 55, 2–12 (2022).). It is found that the actual pKa is 2-3 units higher than 

the apparent pKa when it is incorporated into LNP.  

 

Since the actual measurement such as titration method requires sample solved in water, 

it is not applicable to ionizable lipid molecules. A compromise approach is to prepare a 

water-soluble compound with the same theoretical pKa, and then measure the pKa in 

experiments. (Carrasco, M. J. et al. Ionization and structural properties of mRNA lipid 

nanoparticles influence expression in intramuscular and intravascular administration. 

Commun Biol 4, 1–15 (2021)). If use NMR to measure the chemical shift of proton near 

ionizable group in different pH, the resulted pKa is close to the theoretically calculated 

one. 

 

- The first model uses only ECFP, so it is unclear why SHAP was used since it does not 

offer any additional information qualitatively or quantitatively to materials design. Each 

component of ECFP cannot be mapped directly to something on the molecule. 

 

Answer: Thanks for your comments. The first model uses ionizable lipid ECFP and 

composition information of LNP. SHAP here was used to attribute the model prediction 

to the contribution of each feature, including all ECFP bits, to quantify the feature 

importance and effect. In different molecules, the same substructure leads to the same 

bit set as 1. For example, in the following two molecules, three substructures -CN(C)C-, 

-O-, and -CCC=C- correspond to the same number of bit (652, 695, and 731), which 

set the three bits in both two molecules as 1. This implies that ECFP explicitly include 

substructure information though some confliction in bit folding occasionally happens.  



 

 

Using SHAP values for ECFP, we could identify the direction and extent of contribution 

of each bit, which helped us to calculate the ECFP score for ionizable lipids. We found 

that the ECFP score was positively correlated to the mRNA delivery efficiency (r > 0.6). 

This was a surprise since the model had not accepted any quantified delivery efficiency 

data when training. Since the outcome is very convincing, we think the use of ECFP 

and SHAP is justified. This content was added to the revised manuscript in sections of 

result and method (Equation 5 and 6). 

 

- Furthermore, the regression model for the apparent pKa prediction uses this value as 

a proxy for classification, assuming efficiency will be good within a certain range set 

by the authors. By doing this, prediction of virtual molecules filters out candidates 

before efficiency and synthesizability are even considered. Doesn’t this bias the AI 

model? 

 

Answer: Thanks for your comments. The prediction of apparent pKa was independent 

of and in parallel with mRNA delivery efficiency. In this view, prediction of pKa does 

not bias the AI model. We set the criterion of “good” lipids as within a pKa range 

between 6-7, and with positive mRNA delivery efficiency just during the virtual 

screening stage, in which the AI model was fixed and not changed. 

 

We used two conditions to screen lipids because this can lower the risk of picking 



falsely positive candidates than just using single model. The pKa has been proven to 

significantly affect the delivery efficiency. Our pKa range was enlightened by the 

collected data. In fact, this pKa range is broader than others reported in articles (they 

have been cited in the discussion part), because we wanted to search good candidate 

from a larger space.  

 

- The authors do not sufficiently describe the down-selection process for the first round 

of lipid synthesis. They state that synthesizability and diversity are important to 

consider, but no details are provided on how likely hits were whittled down to 3 for 

synthesis. 

 

Answer: Thanks for your reminding. When AI model predicts mRNA delivery 

efficiency, it can output the probability of being positive in delivery efficiency, so we 

utilized this information and screened out lipids with high probability to be synthesized. 

This section was revised as: 

 

“The choice of lipid tails was influenced by our synthesis capabilities. Our tail library 

allowed the synthesis of 666 possible lipids for each head type. They were predicted for 

pKa and delivery efficiency, and the probability of being positive in delivery efficiency 

was output by the model. Consequently, lipids with desired pKa, high probability, and 

positive mRNA delivery efficiency were chosen for synthesis: LQ085, LQ086, and 

LQ087 (Fig. 2c). Their predicted pKa and positive probability are listed in 

Supplementary Table 4.” 

 

- Was any structural similarly analysis done on the virtual lipids? It is unclear how the 

authors define “diversity.” 

 

Answer: Thanks for your kind advice. We provide a visualization of similarity analysis 

for 40 lipids with the highest ECFP score in Supplementary Fig. 3. For each lipid 

molecule, we show its summarized similarity to all other lipids. The distinct 

substructures are colored in red while similar part in green. For example: 

 

 

 



 

 

We can see that nearly all cyclic structures are in red and therefore show diversity to 

other lipids. This is why we emphasize cyclic structures in our generated lipids, like 

LQ085, 086, 087, 089, and 091.  

 

 

- In the second round of virtual screening, the authors intentionally lock in the head 

group as a synthesis capability factor before down-selection. This reportedly shrank the 

pool of lipids considerably. The subsequent discussion of how each model performs is 

extremely confusing. Even upon rereading several times, I cannot explain how the 

selection process resulted to the final six compounds. 

 

Answer: Thanks for your comments. We built a Model 2 increasing the criteria of 

positive mRNA delivery to 2-fold to the original level, attempting to train a stricter 

model. The following section was largely rewritten: 

 

“Compared to Model 1, the performance of Model 2 was defective in validation using 

the collected data (Fig. 4b). This defective performance was also evidenced by the 

external validation, in which the number of wrong predictions increased from three to 

six (Fig. 4c). However, all the mistakes happened to be that truly positive lipids were 

falsely predicted as negative, while truly negative lipids were predicted correctly. In 

other words, Model 2 showed a stricter criterion when assessing mRNA delivery 

efficiency, which was also reflected by the increasing precision index if validated 

against the original data (Supplementary Table 5). Higher precision means fewer false 

positive predictions.  

Combining the ethanolamine head group and our tail library, 666 lipids were 

constructed, which included the molecules in the external validation set. Among the 666 

lipids, Model 1 predicted 94 positive lipids, from which Model 2 predicted 21 positive 

lipids (Supplementary Fig. 8), while the other 645 molecules were negative in delivery 

(Fig. 4c). Therefore, the 21 lipids were more likely to have better delivery efficiency and 

worth exploring. Like the first round, lipids with desired properties and diverse tail 

structures, such as two long branches, dendritic branches, and cyclohexyl groups, were 



preferred. Eventually, six of them (Fig. 4d) were selected for synthesis and evaluation. 

Their predicted pKa and probability of being positive in mRNA delivery efficiency were 

reported in Supplementary Table 6.” 

 

- I find it challenging to believe that N/P or weight ratio of mRNA (processing 

conditions) has negligible effect on the biological readout of delivery for LNPs. 

Processing LNPs is crucial to their delivery efficacy, all else equal, especially for in 

vivo settings, serving as a competitive advantage for biotech and pharmaceutical 

companies that must be reported once they reach pre-clinical and clinical studies. 

Nearly any LNP review emphasizes this point. Right away, this puts the quality of the 

dataset used to train both models into question. If they are not available in the majority 

of the original sources, in my view they should not be used to train any AI model. 

 

Answer: Thanks for your careful reminding. N/P ratio is truly an important formulation 

factor influencing the LNP performance. We did not include this parameter because 

many patents provided the ratio as ranges instead of clear values. However, based on 

these ranges, we can estimate their N/P ratio. For example, N/P ratio of lipids in 

Supplementary Table 1 are shown below: 

  

ID of lipid Chemical structure of the ionizable lipid Formulation of the LNP Ref. 

MC3 

 

Lipid: DSPC: Chol: 

DMG-PEG (mol%) 

=50:10:38.5:1.5, N/P=6. 

[1-8] 

Amino 

Lipid 13 

(LP01) 

 

 

Lipid: DSPC: Chol: 

PEG-c-DMA (mol%) 

=54.6:10.9:32.8:1.6, 

lipid: mRNA (wt/wt) 

=12:1, N/P=6.5. 

[1] 

Compound 

of formula 

(IV)  

Lipid: DOPE: Chol: 

DMG-PEG (mol%) = 

40:20:38.5:1.5, 

N/P=5.67. 

[2] 

Compound 

25 (SM-

102) 

  

Lipid: DSPC: Chol: 

DMG-PEG (mol%) 

=50:10:38.5:1.5, 

N/P=5.67, lipid: mRNA 

(wt/wt) ≈20:1. 

[3,4

] 



Compound 

9 

 

 

Lipid: DSPC: Chol: 

PEG-DMA (mol%) 

=50:10:38.5:1.5, lipid: 

mRNA (wt/wt) =10:1-

30:1, N/P= N/P=2.1-

6.2. 

[5] 

Compound 

2 

 

 

 

Lipid: DSPC: Chol: 

PEG-DMA (mol%) 

=50:10:38.5:1.5. lipid: 

mRNA (wt/wt) =10:1-

30:1, N/P=2.9-8.6 

[6] 

Compound 

5 

 

 

Lipid: DSPC: Chol: 

PEG-DMA (mol%) 

=50:10:38.5:1.5. lipid: 

mRNA (wt/wt) =10:1-

30:1. N/P= N/P=4.5-

13.6 

[7] 

Compound 

3 (ALC-

0315) 

 

Lipid: DSPC: Chol: 

PEG-DMA (mol%) 

=50:10:38.5:1.5, total 

lipid: mRNA (wt/wt) 

=10:1-30:1, N/P=2.3-

6.8. 

[8] 

OF-02 
 

 

Lipid: DOPE: Chol: 

C14-PEG (mol%) = 

35:16:46.5:2.5, lipid: 

mRNA (wt/wt) =10:1, 

N/P=4.9. 

[9] 

306Oi10 
 

 

Lipid: DOPE: Chol: 

C14-PEG (mol%) = 

35:16:46.5:2.5, lipid: 

mRNA (wt/wt) =10:1, 

N/P=9.6. 

[10] 

306-O12B  

 

Lipid: Chol: DOPC: 

DMG-PEG (mol%) 

=50:38.5:10:1.5, lipid: 

mRNA (wt/wt) =7.5:1, 

N/P=4.9. 

[11] 

 



Most lipids in our dataset were derived from MC3 or SM-102, and the formulation ratio 

of the lipids in LNP was approximately 50:10:38.5:1.5, with N/P ratio of about 6 or 

lipid/mRNA weight ratio of about 20. Other types of ionizable lipids also have N/P 

ratios around 6.  

 

Several studies compared the mRNA delivery efficiency with different N/P ratios. The 

result is shown such as Fig. 7e in Carrasco, M. J. et al. Commun Biol 4, 1–15 (2021) 

and Fig. 2b and 2c in Kauffman, K. J. et al. Nano Lett 15, 7300–7306 (2015). We can 

find that the effect of N/P ratio or lipid/RNA weight ratio is within one magnitude. 

 

But, as our data shown in Supplementary Fig. 2, the efficiency of LNPs is spanning 

across several magnitudes. Therefore, lipid structure does much more difference to 

mRNA delivery. The lipid structure can be evaluated as the ECFP score that is found to 

be linearly correlated to mRNA delivery efficiency (r = 0.6819). This indicates that our 

model identifies the main influencing factors in LNP despite of the missing information 

of N/P ratio. Note that, our model did not receive specific delivery efficacy values, it 

was trained based on classification labels. Thus, this evolved knowledge is the result of 

machine learning instead of information leaking. 

 

To summarize, the N/P ratios in our collected LNPs is concentrated to around 6. We did 

not represent this variable because we did not want to introduce unnecessary manual 

adjustment. The trained model has been validated against quantified delivery efficiency, 

which is beyond its expectation. This AI model should be convincing and reliable.  

 

- Why are the images of the total luminescence in mice not shown for Round 2? This 

needs to be in the Supporting Information at minimum. 

 

Answer: Thank you for reminding us. The images of the bioluminescence in mice in 

the second round of screening were supplemented in Supplementary Fig. 6 of the 

revised version. 

 

- Several of the references are missing volumes and page numbers. 

 

Answer: Thanks for your comments. The volumes and page numbers of cited articles 

have been added to the references. 

 

- Finally, in both the main manuscript and the supporting information, no materials 

characterization is provided on the synthesized lipids other than a protocol and a yield. 

This is unacceptable. Any scientist cannot claim to have made novel molecules for use 

in something as important as in vivo applications without definitively showing that 

compound is pure and actually follows literature synthesis procedures. Millions of 

hypothetical structures generated from machines are useless if they cannot be 

synthesized by material chemists in the lab. 

 



Answer: Thanks a lot for your kindly reminding. The NMR result of 9 ionizable lipids 

were added to the supporting information along with their synthesis routes. 

 

Reviewer #4 (Remarks to the Author): 

 

This is an interesting and timely study and could add new knowledge to the field and 

be of value to many researchers in the field. There are some comments the authors 

should address: 

1. Ionisable lipids for vaccines will be different for those for therapy, give the balance 

of immunogenicity. I think the authors should consider this in their discussion. 

 

Answer: Thanks for your comments. You have raised a very important opinion. 

Immunogenicity is truly an important factor for mRNA therapy. In protein supplement 

therapy, the immunogenicity is desired to be low, but in vaccines, moderate 

immunogenicity is hoped to enlarge the immune response. Currently, our AI model 

ensures that the screened lipids have relatively high expression level for in vivo 

applications, therefore it does not consider the immunogenicity. It is a good attempt to 

train a model for this goal in the future.  

 

Additionally, we think other computational modeling tool such as physiologically-

based pharmacokinetic (PBPK) and quantitative system pharmacology (QSP) model is 

helpful to simulate the complex signal pathway such as immunogenicity of LNP. The 

two model are based on ordinary differentiation equation and are mechanistic model. 

This has been added to the discussion of the manuscript. 

 

“Lastly, the goal of this work is to construct lipids with generally high mRNA delivery 

ability, not specific for any organ, disease, or therapy. Therefore, only data of luciferase 

and hEPO mRNA delivery in mice were collected, as this is a basic screening method. 

However, models tailored according to therapeutic objectives or types of diseases are 

more appealing. For example, maximizing protein expression level is the priority in 

mRNA therapy supplementing missed proteins, but in mRNA vaccines against viruses, 

immunogenicity of the formulation needs additional consideration58. Developing 

models predicting immunogenicity is important for mRNA delivery. Likewise, another 

iteration direction of the model will be to screen out lipids with high-level expression 

of mRNA in organs other than the liver to meet the needs of a variety of diseases. 

Additionally, prediction in primates and even humans for specific diseases is profound 

for clinical translation. AI modeling methodology is still possible to handle these tasks 

only if data supports. However, other advanced modeling methods such as 

physiologically-based pharmacokinetics (PBPK) and quantitative systems 

pharmacology (QSP) models59–62 are very useful. PBPK is specialized in inferring the 

fate of drugs across different species. This inference is based on the properties of the 

drug and the physiological conditions of the subject, and therefore such extrapolation 

is mechanistically based. QSP is also mechanistic, predicting dynamic changes in 

signal pathways, biomarkers, and even therapeutic effects. For a complex system such 



as immune response, QSP is promising to address it63,64. Further, the association of the 

two models can integrate various in vitro and in vivo data, being able to quantify rates 

of critical processes in nucleic acid delivery such as RNA escape from endosomes65.” 

 

2. The model looks at luciferase and hEPO, this then focuses on therapeutics rather than 

vaccines. Protein expression levels would not be the only factor in vaccine efficacy. 

 

Answer: Thanks for your comments. As mentioned above, immunogenicity is as 

important as mRNA expression in the application scenario of mRNA vaccines. A certain 

high efficiency of mRNA delivery is the prerequisite for LNPs to be applied in vivo, 

particularly in applications other than vaccines. We think that AI models would be better 

tailored for different diseases and therapies, but this might be limited by data size. 

Therefore, we think mechanistic model such as PBPK and QSP is helpful in simulating 

immune response pathway. This method can integrate various in vitro immune effect 

data and in vivo drug exposure data to make prediction. Protein expression predicted 

by AI models and immune effect from mechanistic model construct a valuable 

estimation of mRNA vaccines. 

 

3. Did the model consider the type and biological sex of the mice? This may impact on 

the results. 

 

Answer: Thank you for your reminding. Before this study, we had already established 

a stable platform for in vivo evaluation of ionizable lipids. Herein, we have again 

verified the stability and reliability of the method as shown in Supplementary Fig. 7. 

The results showed that there was no difference in luciferase mRNA expression 

between male and female mice. 

 

4. There is a heavy emphasis on pKa, and this is well known that around 6 to 6.8 is the 

best range. Does the model consider structure of the lipids, and configuration within 

the LNPs. This is more important than the pKa. 

 

Answer: Thanks for your comments. Yes, we consider the structure of lipids and the 

composition in LNP. This is shown in the method section as below: 

 

“In this study, the ionizable lipid structure was represented by ECFP converted via the 

RDKit package in Python[55]. The ECFP radius was set to 9, and the number of bits 

was set to 1024. Each ionizable lipid had a unique ECFP sequence. The involved three 

helper phospholipids, DSPC, DOPE, and DOPC were represented by two ‘0-1’ 

category variables (‘DS’ or ‘DO’, ‘PC’ or ‘PE’). The PEG-lipids were represented by 

single multiple-category variable. Only one type of cholesterol lipid was included in 

our data, so it was not represented. Molar ratios of the four types of lipids in LNP were 

represented as numeric variables between 0 and 1.” 

 

The three-dimensional structure or shape of LNP was not considered in the model. 



Shape or structure of LNP is significantly affected by lipids used and their molar 

composition. Since our model included the lipid structure, the shape factor should be 

implicitly considered by the model.  

 

5. Figure 5. The area under the curve ploy is not particularly useful for a 3 point graph 

and when looking at it, I could not follow then I spotted the colour coding does not 

match. This should be corrected and the authors should consider again if AUC is the 

best way to look at this. 

 

Answer: We appreciate for your suggestion. Figure 5 has been merged into Fig. 4. In 

the revised manuscript, we validated the method for evaluating the lipids 

(Supplementary Fig. 7). We plotted the bioluminescence-time curve over eight time 

points (1, 2, 4, 6, 8, 10, 24, and 48h). Then, AUC was calculated by 3-point method (4, 

24, 48h) and 8-point methods, resulting in no difference between the two methods. For 

the determination of mRNA delivery, the curve of luminescence over time and AUC 

thereof can monitor the expression of mRNA within a long period to describe the long-

term performance of LNP. Since AUC analysis miss the organ distribution of mRNA 

expression at the highest point, we supplemented the organ distribution of luciferase 

expressed by the LNP-loaded mRNA administered, both intravenously and 

intramuscularly (Fig. 6 and 7) to comprehensively present the performance of lipids 

 

6. Figure 5. The number of mice used is low and looks to be in a single study. Given 

the closeness of the data and the variability in mouse studies, the study should be 

replicated again. Even with low numbers (e.g. 2 mice per group). 

 

Answer: Thank you for your reminder. We have replicated the in vivo mRNA 

expression of intravenous administration and increased the number of mice to six, three 

females and three males (Fig. 6). The order of the intensities between different lipids 

matched with the AUC method of three mice.  

 

7. Was a ‘negative’ control tested e.g. a lipid that should only give low responses tried 

to validate the model. This should be added in to the replicate study. 

 

Answer: Actually, the LQ085 is a negative lipid tested in the first round of screening 

(Fig. 3) and it was included in the replicate study (Fig. 6 and 7). 

 

8. How do the authors consider the lack of data translation from mouse to NHPs to 

humans, this is a recognised problem. The authors should comment. 

 

Answer: Thanks for your comments. AI models face challenges in extrapolation across 

species, but other computational tools such as PBPK model are suitable for this task. 

PBPK predicts drug exposure based on both formulation properties and physiological 

parameters, such as organ volumes and organ blood flows, etc. If formulation properties 

can be determined in vitro or calculated by fitting to mouse data, they can be associated 



with NHP or human physiological data to make prediction. For example, PBPK is 

helpful to inform the design of first-in-human study (Miller NA, Reddy MB, Heikkinen 

AT, Lukacova V, Parrott N. Physiologically Based Pharmacokinetic Modelling for 

First-In-Human Predictions: An Updated Model Building Strategy Illustrated with 

Challenging Industry Case Studies. Clin Pharmacokinet. 2019 Jun;58(6):727-746.). 

The following content has been added to the discussion: 

 

“Additionally, prediction in primates and even humans for specific diseases is profound 

for clinical translation. AI modeling methodology is still possible to handle these tasks 

only if data supports. However, other advanced modeling methods such as 

physiologically-based pharmacokinetics (PBPK) and quantitative systems 

pharmacology (QSP) models59–62 are very useful. PBPK is specialized in inferring the 

fate of drugs across different species. This inference is based on the properties of the 

drug and the physiological conditions of the subject, and therefore such extrapolation 

is mechanistically based. QSP is also mechanistic, predicting dynamic changes in 

signal pathways, biomarkers, and even therapeutic effects. For a complex system such 

as immune response, QSP is promising to address it63,64. Further, the association of the 

two models can integrate various in vitro and in vivo data, being able to quantify rates 

of critical processes in nucleic acid delivery such as RNA escape from endosomes65.” 

 

9. I would question the validity of using both IV and IM data as these are very different 

data sets and IV is thought to rely on ApOE binding and then delivery to the liver whilst 

IM is thought to involve resident immune cells at the injection site or infiltrating 

immune cells to the injection site. 

 

Answer: Thanks for your kind advice. We reevaluated our data and found the IM 

samples make up a minimal proportion of the whole data set (10 out of 397). Keeping 

them may increase data heterogeneity without significant benefit. Thus, we have 

reevaluated our model based on only IV data and reported the new performance in the 

revised manuscript. Compared to the previous performance, the influence is minimal.  

 

IV and IM are both important routes, we conducted the mRNA expression test via IV 

and IM (Fig. 6 and 7) to learn more about our lipids. 

 

10. The discussion should add more into how the reader can gain from this model so a 

wide audience can apply this learning. This would add more significance to the work 

and the paper. 

 

Answer: Thanks for your comments. Besides the AI models and the selected lipids, we 

emphasize three points for broader applicability. First, the defined ECFP score is 

positively correlated with mRNA delivery efficiency. This shows that our model 

develops a refined quantitative relationship based on rough qualitative data, proving the 

validity of model building method. This content has been added to discussion as: 

 



“Although the AI model was trained solely on data samples labeled with categories of 

mRNA delivery efficiency, it unexpectedly developed the ability to quantify this 

efficiency, which is a fortunate discovery. The efficiency is positively correlated with 

the newly defined ECFP score. Some lipids containing squaramide were reported to 

show remarkable delivery efficiency15, and they were also given high ECFP scores 

(Supplementary Fig. 3). The score is derived from lipid ECFP bits and their 

corresponding SHAP values. The SHAP algorithm, providing quantified assessments of 

feature contributions, has proven to be highly effective in explaining the outputs of AI 

models43,51. From this view, the model we have developed is interpretable in terms of its 

structure-activity relationship.” 

 

Second, in the second screening model, we combined two models to evaluate lipid 

performance. Model 1 performed better in general prediction accuracy but is less 

efficient in selecting candidates. Model 2 was trained with a classifying criterion 

doubling the original one. It was less performed in general but showed high precision, 

filtering out falsely positive prediction effectively. Proper combination and leveraging 

the advantages of different models led to 6 positive lipids successfully, and this strategy 

is valuable for other AI applications. This was added to the discussion section as: 

 

“The second round of virtual screening focused on lipids containing the ethanol amine 

head and trained a stricter model (Model 2) to facilitate the screening. The evaluation 

process was actually an association of Model 1 and Model 2. Model 1 performed better 

in general prediction accuracy but still predicted too many lipids with positive mRNA 

delivery efficiency. Model 2 was performed less well in general but showed high 

precision, making it effective in filtering out false positive predictions. This round of 

screening yielded six ionizable lipids, LQ089-094, all of which were equal to or 

superior to MC3, proving the validity of the screening strategy. Properly combining and 

leveraging the advantages of different models is important for AI applications. 

” 

 

Third, we performed a comprehensive structure-activity relationship analysis for a 

specific type of ionizable lipids. The result is straightforward, showing how small 

structural changes affect performance of lipids. This experience can guide the design of 

lipids. But this method is not flawless, because it can only be used to evaluate molecules 

with specific structural patterns. The diversity of structures is so high-dimensional that 

it is unrealistic to present intuitively and comprehensively the structure-activity 

relationship. This content in discussion is like: 

 

“Lipids with head groups containing hydroxyl are commonly tested but show varied 

performance. The structure-activity relationship in this type of lipid has not been 

described in detail. However, with a well-trained AI model, this relationship can be 

comprehensively explored (Fig. 5). It can be observed that although the lipids, after 

ECFP transformation, produce high-dimensional and discontinuous features, 

gradually changing the structure of the lipids, such as gradually extending the length 



of the carbon chain and shifting the position of the linker, results in a continuous trend 

in the AI model's predictive performance. To obtain well-performing lipids, all chain 

segments in tails should have harmonious length. The linker position should be 

compatible with the whole tail length, and the length threshold is dependent on the 

linker type. Ionizable lipids like SM-102, ALC-031517, and our selected LQ092, LQ093, 

and LQ094 all belong to the area with a relatively high positive rate. The structure-

activity relationship represented in this way is easy to be understand and applicable to 

guide molecule design. However, this method can only show the relationship in a 

narrow region of the molecule design space.” 

 



REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

I am satisfied with the responses, modifications, and new experiments that the authors have included in 

the latest version of the manuscript. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have resubmitted their manuscript on "Artificial intelligence-driven rational design of 

ionizable lipids for mRNA delivery". Substantial major revisions were provided from all reviewers' 

feedback, and the revised manuscript is significantly improved from the original submission. 

 

This work is an ambitious attempt to leverage AI to design lipids for mRNA delivery in vivo. The changes 

to the manuscript address most of the points brought up, but the results still show the fundamental 

limitations of this approach in informing future LNP design. I am severely concerned that insufficient 

chemical and materials characterization of the nanoparticles before bioadministration will limit 

repeatability of the results, which show typical LNP accumulation to the liver regardless of structural 

changes in lipid design. The use of AI to design virtual lipids as a product is not novel for Nature 

Communications. 

 

A more recent work by Dong et al. "Multicomponent Synthesis of Imidazole-Based Ionizable Lipids for 

Highly Efficient and Spleen-Selective Messenger RNA Delivery" provides a good example of rigorous 

characterization and understanding that is connected to in vivo RNA delivery with AI as a feature, not the 

main product of the manuscript. 

 

Reviewer #2 (Remarks on code availability): 

 

The authors do not provide any of the training data used for the AI models. This does not comply with 

Nature's policy of code availability and support the FAIR Guiding Principles for scientific data 

management and stewardship (https://www.nature.com/articles/sdata201618) 

 

 

Reviewer #4 (Remarks to the Author): 

 

The authors have nicely addressed all the comments raised. No further suggestions from me. 

 



Reply to comments for Manuscript “Artificial intelligence-driven rational 

design of ionizable lipids for mRNA delivery” 

 

First, we would like to express our sincere thanks again to the reviewers for the 

constructive comments and suggestions on our manuscript “Artificial intelligence-

driven rational design of ionizable lipids for mRNA delivery” (Research Article, 

NCOMMS-23-53992). We have addressed these comments with corresponding 

changes and answers. The point-by-point responses to the referees were listed below 

this letter. We earnestly appreciate reviewers’ dedicated work and hope that the 

revisions address all concerns. We believe that we have improved the quality of the 

manuscript and we are submitting our revised version for publication in the journal 

“Nature Communications”. 

 

Reviewer #1 (Remarks to the Author): 

 

I am satisfied with the responses, modifications, and new experiments that the authors 

have included in the latest version of the manuscript. 

 

Answer: Thanks for your kind comment. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have resubmitted their manuscript on "Artificial intelligence-driven 

rational design of ionizable lipids for mRNA delivery". Substantial major revisions 

were provided from all reviewers' feedback, and the revised manuscript is significantly 

improved from the original submission. 

 

This work is an ambitious attempt to leverage AI to design lipids for mRNA delivery in 

vivo. The changes to the manuscript address most of the points brought up, but the 

results still show the fundamental limitations of this approach in informing future LNP 

design. I am severely concerned that insufficient chemical and materials 

characterization of the nanoparticles before bioadministration will limit repeatability of 

the results, which show typical LNP accumulation to the liver regardless of structural 

changes in lipid design. The use of AI to design virtual lipids as a product is not novel 

for Nature Communications. 

 

A more recent work by Dong et al. "Multicomponent Synthesis of Imidazole-Based 

Ionizable Lipids for Highly Efficient and Spleen-Selective Messenger RNA Delivery" 

provides a good example of rigorous characterization and understanding that is 

connected to in vivo RNA delivery with AI as a feature, not the main product of the 

manuscript. 



 

Answer: Thanks for your kind comment. For chemical and materials characterization, 

we first used chromatography to purify synthesized ionizable lipids and then use NMR 

to verify their chemical structures. All 1H NMR, 13C NMR, and MS spectra of 

synthesized lipids were provided in the revised supplementary information. We 

measured particle size, zeta potential, entrapping efficiency, and apparent pKa of 

mRNA-LNP after their preparation. For LNP stability, we tested their in vivo 

performance after storage at a wide range of temperature for up to 30 days. In terms of 

safety, we measured the weight change of subject mouse and their main organs after 

dosage administration; blood samples were detected for inflammation (white blood 

cells), liver impairment (ALT), and kidney impairment (creatinine); and toxicity in 

organ was inspected using H&E staining. All characterization proofs for the newly 

designed ionizable lipids were as comprehensive as possible, aligning with the article 

you recommended (Dong et al.) for the characterization of lipid nanoparticles. The 

recommended study has also been cited in our revised manuscript. 

 

To make sure of the repeatability of the result, firstly, we repeated the validation 

experiment of the newly formulated LNPs, which were administrated through 

intravenous and intramuscular routes in enlarged number of animals (Fig. 6, 7 and 

Supplementary Fig. 10-13). Secondly, we have conducted quality control and detailed 

characterization (particle size, PDI, and entrapping efficiency) for each batch of LNPs 

before animal testing. They are presented in Supplementary Table 4 and 6 for the first 

batch and Supplementary Fig. 9 for the second batch. Finally, both the formulation 

characterizations and the long-term stability tests (Figure 8) demonstrate that the LNPs 

maintain stable properties, and the process is consistent and repeatable, fully satisfying 

the criteria for in vivo administration.  

 

As for hepatic accumulation, we have to stress that organ preference is not the concern 

of the presented work. Liver is the target organ for most existing ionizable lipids and 

current formulation screening heavily relies on expression of delivered mRNA in livers. 

Our designed new lipids mainly target the liver because they agree with the lipids used 

for training model. 

 

The AI method introduced in this study is specifically designed to screen ionizable 

lipids that induce a generally high level of mRNA expression, which is fundamental for 

in vivo applications. A super-large ionizable lipid library, comprising nearly 20 million 

candidates, was evaluated. Following two rounds of AI-driven generation and screening, 

7 out of 9 newly designed lipids demonstrated positive delivery efficiency compared to 

MC3. This outcome provides compelling evidence of the accuracy and practicality of 

our AI models. Thus, our research underscores the novelty and immense potential of AI 

modeling in the development of mRNA-LNPs.  

 

We completed our study in mid-2023 and submitted the manuscript to Nature 

Communications on November 8, 2023. Dong et al.'s study, titled 'Multicomponent 



Synthesis of Imidazole-Based Ionizable Lipids for Highly Efficient and Spleen-Selective 

Messenger RNA Delivery,' was submitted on Janunary 10, 2024 and published on 

May 22, 2024. Despite this study serves as an excellent example of LNP 

characterization, it is unlike our work. Dong et al.’s study utilized an internal chemical 

library to produce ionizable lipids and conducted a total in vivo screening without 

employing AI for performance prediction, molecule design, or LNP characterization 

and screening.  

 

 

Reviewer #2 (Remarks on code availability): 

 

The authors do not provide any of the training data used for the AI models. This does 

not comply with Nature's policy of code availability and support the FAIR Guiding 

Principles for scientific data management and stewardship 

(https://www.nature.com/articles/sdata201618) 

 

Answer: Thanks for your comment. In the first-round response, we have shared the 

training data and models via Supplement Data for the purpose of review. Now the files 

can be downloaded from https://figshare.com/s/ad928807e1b4795b9b5e. Furthermore, 

we plan to build the AI-LNP module in our FormulationAI platform for freely public 

access (https://formulationai.computpharm.org/,  Dong, J., et al. FormulationAI: a 

novel web-based platform for drug formulation design driven by artificial intelligence. 

Briefings in Bioinformatics 25, bbad419 (2024)). 

 

The data and code availability have been changed to as: 

 

“Data availability  

The data that support the findings of this study are available on request from the 

corresponding author D.O.  

Code availability  

The code that support the findings of this study are available on request from the 

corresponding author D.O.” 

 

 

Reviewer #4 (Remarks to the Author): 

 

The authors have nicely addressed all the comments raised. No further suggestions from 

me. 

 

Answer: Thanks for your kind comment. 

 

https://www.nature.com/articles/sdata201618
https://figshare.com/s/ad928807e1b4795b9b5e
https://formulationai.computpharm.org/


REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

I am satisfied with the authors' responses to reviewer #2's questions and comments. 



Reply to comments for Manuscript “Artificial intelligence-driven rational 

design of ionizable lipids for mRNA delivery” 

 

First, we would like to express our sincere thanks again to the reviewers for the 

constructive comments and suggestions on our manuscript “Artificial intelligence-

driven rational design of ionizable lipids for mRNA delivery” (Research Article, 

NCOMMS-23-53992B). We have addressed these comments with corresponding 

changes and answers. The point-by-point responses to the referees were listed below 

this letter. We earnestly appreciate reviewers’ dedicated work and hope that the 

revisions address all concerns. 

 

Reviewer #1 (Remarks to the Author): 

 

I am satisfied with the authors' responses to reviewer #2's questions and comments. 

Answer: Thanks for your kind comment. 
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