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Version 0: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
The manuscript introduces a new technique for high-resolution biochemical imaging that does not require labeling. Utilizing
mid-infrared photoacoustic (MIR-PA) imaging, this approach achieves label-free imaging capabilities. A novel computational
algorithm is employed to enhance spatial resolution, lending considerable novelty and technical robustness to the
methodology. The experimental results are compelling, showcasing a significant improvement in resolution. This
advancement represents a breakthrough in technology with the potential for wide-reaching implications in various
biomedical applications. 

Regarding the technical specifics, I have several observations and requests for clarification: 

(1) The statistical data presented in Figure 2 should include the sample size for clarity. Similarly, in Figure 4c, it is necessary
to specify whether the uncertainties depicted are standard errors or variations, along with the associated sample sizes. 

(2) The manuscript currently provides the resolution of the MIR-PAM system. However, it would be beneficial to present
quantitative results demonstrating the extent of resolution enhancement achieved by the algorithm. 

(3) I infer that the method may be more applicable to thin samples due to the substantial attenuation of mid-infrared light in
thicker materials. It would be useful to define the maximum sample thickness for optimal imaging. Additionally, a discussion
on how performance diminishes with increased sample thickness would be valuable. 

(4) As mentioned by the authors, the efficacy of most numerical methods is contingent upon the signal-to-noise ratio (SNR)
of the initial data or images. Therefore, I recommend providing a quantitative analysis of how initial SNR levels impact the
effectiveness of image enhancement. 

(Remarks on code availability) 

Reviewer #2 

(Remarks to the Author) 
This work presents a notable contribution in the field of MIR photoacoustic microscopy (MIR-PAM) by introducing an
unsupervised, explainable deep-learning model termed XDL-MIR-PAM. This model not only enhances the resolution of
MIR-PAM but also enables virtual staining of the images acquired on unstained tissue samples. This technology holds
significant potential for various biological applications, particularly in virtual histology. 

One major advantage of XDL-MIR-PAM is that it achieves high resolution without the need for UV light localization, thus



mitigating the concerns about potential photodamage. Furthermore, its hardware configuration is relatively simple. To
validate the resolution improvement and virtual staining effect, its performance was compared against the gold standard of
confocal fluorescence microscopy (CFM). 

I only have a couple of concerns: 
1. It seems that the XDL model needs to be re-trained with CFM data whenever a new protein contrast is involved. It would
be helpful to understand the time-consuming nature of the training process and how this new training might impact the
performance of the XDL model on virtual staining of proteins for which the model is already trained. 

2. While XDL-MIR-PAM has demonstrated excellent performance in imaging and virtual staining of normal tissue samples, it
would be important to know how it performs when applied to diseased samples. Can it effectively identify abnormalities in
cellular structures? Does achieving this require additional training to enable abnormality identification? 

(Remarks on code availability) 

Reviewer #3 

(Remarks to the Author) 
My comments are attached in the PDF. 

(Remarks on code availability) 

Version 1: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
The manuscript presents a deep learning method for enhancing the resolution of MIR-PAM using a CycleGAN framework.
By leveraging label-free imaging capabilities, this approach can be applied to a wide range of biomedical applications. The
conclusions are well-supported by high-quality results, and the paper is excellently presented. 

A major advantage and novelty of this method is its use of only MIR light to achieve high-resolution, label-free imaging of
various absorbers. Compared with the UV-MIR-PA method, this deep-learning method is much easier to implement and thus
can be readily available for many labs. It represents a significant advancement in the field 

The training and validation of the deep learning model appear to be correct. The results reveal some common deep learning
issues, such as hallucinations and potential overfitting. Although not completely resolved, the authors have demonstrated
methods to mitigate these problems. In my opinion, these issues do not compromise the novelty and significance of the
method. Thus, I recommend accepting the paper in its current form. 

(Remarks on code availability) 

Reviewer #2 

(Remarks to the Author) 
The authors have addressed all my concerns. I recommend the publication of this work. 

(Remarks on code availability) 

Reviewer #3 

(Remarks to the Author) 
The authors have conducted additional experiments in different imaging settings (e.g., diseased samples) and enhanced the
pre-processing and data augmentation pipeline to show the reliable performance and generalizability of the XDL-UIDT. The
authors claim that incorporating saliency loss and utilizing the GradCAM technique enhances the explainability of their deep
learning model. The manuscript would benefit from additional discussion of how these methods contribute to the model's
interpretability. While the performance improvement using saliency loss is evident, the manuscript would benefit from a more
detailed exploration of the explainability aspect. Please address these points in Discussion. 

Specific comments: 
Saliency Maps The authors state that "Saliency loss continuously tracks saliency masks for both image domains to address
unexpected errors that inevitably occur during the training process (Supplementary Fig. 2)." However, they do not elaborate



on the nature of these unexpected errors or how saliency loss specifically mitigates them. For example: 
What types of errors are being addressed? How does tracking saliency masks help in reducing these errors? How can
researchers or clinicians know there is an unexpected error by tracking the saliency masks? Do saliency masks help
uncover network biases or a consistent focus on irrelevant artifacts or structures? 
GradCAM Heatmaps Similarly, the authors mention using GradCAM to "further explain the inner behavior of the model
during the domain transformation from LR to HR (Supplementary Fig. 3)." However, the manuscript does not provide
sufficient details on what specific information the GradCAM heatmaps reveal. For example: 
Are the heatmaps highlighting key features like edges, textures, or anatomical structures that contribute to resolution
enhancement? Are certain cellular features consistently highlighted, indicating where the model focuses during the
transformation? 

(Remarks on code availability) 

Version 2: 

Reviewer comments: 

Reviewer #3 

(Remarks to the Author) 
All of my comments were addressed. I don't have further questions. 

(Remarks on code availability) 
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REVIEWER COMMENTS 

Reviewer #1 

The manuscript introduces a new technique for high-resolution biochemical imaging that does not require labeling. 

Utilizing mid-infrared photoacoustic (MIR-PA) imaging, this approach achieves label-free imaging capabilities. 

A novel computational algorithm is employed to enhance spatial resolution, lending considerable novelty and 

technical robustness to the methodology. The experimental results are compelling, showcasing a significant 

improvement in resolution. This advancement represents a breakthrough in technology with the potential for wide-

reaching implications in various biomedical applications. 

Regarding the technical specifics, I have several observations and requests for clarification: 

Reply: Thank you for your positive and constructive feedback on our manuscript.  

 

Comment 1: The statistical data presented in Figure 2 should include the sample size for clarity. Similarly, in 

Figure 4c, it is necessary to specify whether the uncertainties depicted are standard errors or variations, along 

with the associated sample sizes. 

Reply: We used 16 images each on day 1 and day 7 for label-free MIR-PAM imaging and the following 

quantitative analysis (Fig. 2). In addition, the quantification results presented in Fig. 4c indicated mean 

values and standard deviations in 98 test image tiles. We have revised the text on the main manuscript:  

[Line 104] 16 images were used each on days 1 and 7. 

[Line 168] We further quantified the performances of the VFSN by calculating the SSIM, peak signal-

to-noise ratio (PSNR), Pearson’s correlation coefficient (PCC), FID, and KID for 98 test image tiles 

(Fig. 4c). 

[Line 178] Mean (± standard deviation) values are presented. 

 

Comment 2: The manuscript currently provides the resolution of the MIR-PAM system. However, it would be 

beneficial to present quantitative results demonstrating the extent of resolution enhancement achieved by the 

algorithm. 

Reply: The IREN generates HR-MIR-PAM images mimicking CFM ones. For quantitative evaluation 

of the XDL-IREN, we compared line profiles of each corresponding image. The XDL-IREN-generated 

HR-MIR-PAM images capture detailed structures of HCF (1–2 μm) beyond the resolution of LR-MIR-

PAM (6–7 μm). We have added the related text in the Results section and Supplementary Fig.4. 

[Line 146] Notably, the XDL-IREN-generated HR-MIR-PAM images can capture detailed structures of 

HCF (1–2 μm) beyond the resolution of LR-MIR-PAM (6–7 μm) (Supplementary Fig. 4). 

 

Supplementary Fig. 4 | Verification for the HR-MIR-PAM. 



Comment 3: I infer that the method may be more applicable to thin samples due to the substantial attenuation of 

mid-infrared light in thicker materials. It would be useful to define the maximum sample thickness for optimal 

imaging. Additionally, a discussion on how performance diminishes with increased sample thickness would be 

valuable. 

Reply: We agree that MIR-PAM is more applicable to thin samples such as cells due to the high optical 

attenuation of MIR light. We measured imaging depth performance with a sloped surgical suture. 

Reaching a depth of about 60.7 μm, the PA signal amplitude decreased by 6 dB. The laser power 

irradiated to the sample was 0.2 mW at a wavelength of 6.0 μm. We have added the related text to the 

Results section and Supplementary Note 1. 

[Line 110] The developed MIR-PAM has a lateral resolution of about 6.6 μm with an imaging depth of 

about 60.7 μm (Supplementary Note 1 and Supplementary Fig. 1). 

 

Supplementary Fig. 1 | Imaging performance of MIR-PAM system. e, PA MAP images of a sloped surgical suture. f, 

Normalized PA signal amplitude along the central depth of the suture. 

 

Comment 4: As mentioned by the authors, the efficacy of most numerical methods is contingent upon the signal-

to-noise ratio (SNR) of the initial data or images. Therefore, I recommend providing a quantitative analysis of 

how initial SNR levels impact the effectiveness of image enhancement. 

Reply: Consistent preprocessing of input images is essential to ensure the stable performance of XDL-

UIDT. Noise levels within an image determine image quality (e.g., SNR and CNR) and information 

recognition accuracy, which affects the performance and efficiency of deep learning networks. To assess 

the effect of image quality in the XDL-UIDT, we performed a test by adding Gaussian noise to the 

original MIR-PAM image and applying it to the prebuilt XDL framework (Net 6). As the noise variance 

increases in input images, foreground/background recognition decreases, which causes problems in 

deep learning output images. Furthermore, we quantitatively confirmed that the deep learning 

performance degrades based on the FID and KID scores, which are significantly increased with respect 

to noise. We have added the text in the Discussion section and Supplementary Fig. 9. 

[Line 242] Furthermore, the XDL-based framework requires delicate pre-processing (e.g., 

normalization and noise filter) and sufficient data collection (Supplementary Fig. 9). 

 

Supplementary Fig. 9 | XDL-UIDT performance according to the noise variances.  



Reviewer #2 

This work presents a notable contribution in the field of MIR photoacoustic microscopy (MIR-PAM) by introducing 

an unsupervised, explainable deep-learning model termed XDL-MIR-PAM. This model not only enhances the 

resolution of MIR-PAM but also enables virtual staining of the images acquired on unstained tissue samples. This 

technology holds significant potential for various biological applications, particularly in virtual histology. 

One major advantage of XDL-MIR-PAM is that it achieves high resolution without the need for UV light 

localization, thus mitigating the concerns about potential photodamage. Furthermore, its hardware configuration 

is relatively simple. To validate the resolution improvement and virtual staining effect, its performance was 

compared against the gold standard of confocal fluorescence microscopy (CFM). 

I only have a couple of concerns: 

Reply: Thank you for your positive and helpful feedback on our manuscript.  

 

Comment 1: It seems that the XDL model needs to be re-trained with CFM data whenever a new protein contrast 

is involved. It would be helpful to understand the time-consuming nature of the training process and how this new 

training might impact the performance of the XDL model on virtual staining of proteins for which the model is 

already trained. 

Reply: We agree that whenever new protein contrasts are added the DL model should be retrained. The 

presented results have been trained using HCF images, which comprise two channels: cell nucleus and 

F-actin. However, several proteins (e.g. collagen and vimentin) are included in subcellular biomarkers, 

along with lipid droplets and mitochondria. To generate multiplexed image with various contrasts, multi-

channel CFM images need to be trained. Furthermore, supplemental label-free MIR-PAM images with 

functional (spectral) information as well as structural information may be required. Additional data for 

channel expansion and learning robustness are essential, which increase training time. However, 

because MIR-PAM is capable of high-selectivity cellular imaging, the proposed XDL framework will 

hold excellent performances, particularly in virtual fluorescence staining. We have revised the text in 

the discussion: 

[Line 252] Second, by embracing more FL channels with functional (spectral) information as well as 

structural information, HR multiplexed imaging for more diverse components can be achieved. Here, 

we have demonstrated a two-channel VFSN to distinguish HCF’s cell nuclei and F-actins. Co-culture 

with other cells or further understanding of detailed microenvironments would require additional 

contrast channels, and multi-channel VFSN would allow observation of subcellular compositions and 

dynamics without biochemical labeling44. 

 

Comment 2: While XDL-MIR-PAM has demonstrated excellent performance in imaging and virtual staining of 

normal tissue samples, it would be important to know how it performs when applied to diseased samples. Can it 

effectively identify abnormalities in cellular structures? Does achieving this require additional training to enable 

abnormality identification? 

Reply: Under several pathological circumstances, including fibrosis and cancer, cells undergo 

morphological changes such as enlargement, stretching, and epithelial to mesenchymal transition. The 

fibroblasts in this study show significant morphological differences from the normal state after TGF-β 

treatment, which is a key driver of fibrosis. In fibrotic conditions, TGF-β promotes fibroblast 

proliferation, leading to their transition into myofibroblasts, morphologically enlarged and irregular 

(e.g., star or web-shaped), with the upregulation of type I collagen and α-SMA. We have applied the 

proposed framework to the disease model and successfully identified the abnormality. We confirmed 

that cells proliferated rapidly upon TGF-β treatment, and the cell body size increased due to the 

transformation of quiescent fibroblasts into myofibroblasts. We have added the results in Supplementary 

Fig. 7 and revised text in the Methods and Discussion: 



 

Supplementary Fig. 7 | XDL-MIR-PAM imaging of fibrotic HCFs.  

 

[Line 290] To activate cardiac fibroblasts into myofibroblasts, 20 ng/ml TGF-β1 (7754-BH-100, R&D 

systems) was treated to HCFs 24 hours after cell seeding. The TGF-β1-containing medium was changed 

every other day. 

[Line 230] In terms of generalization, we applied the prebuilt framework to the disease model 

(Supplementary Fig. 7). In fibrotic conditions, quiescent fibroblasts can be transited to myofibroblasts 

with the upregulation of type I collagen and alpha-smooth muscle39. The activation by the transforming 

growth factor-beta (TGF-β) induces cell proliferation40. We observed a significant increase in cell 

number (2.1-fold: 0.17 to 0.36 ea) and fibroblast area (4.8-fold: 270 to 1301 μm2) using XDL-MIR-

PAM. Moreover, we also confirmed that the nucleus size increased (1.4-fold: 172.5 to 235.1 μm2). The 

results of XDL-MIR-PAM in disease models are qualitatively and quantitatively similar to the CFM 

ones, and these morphological changes are consistent with the previous studies41. 

[Line 256] Moreover, cells undergo morphological and physiological changes in pathological 

situations45. In various disease situations, comprehensive identification of abnormality can be achieved 

by further training with complemental information46. Understanding pathophysiological phenomena 

(e.g., cellular behaviors and morphological changes) through DL-assisted assessment can be helpful for 

practical biological research.  



Reviewer #3 

This manuscript presents a deep learning-based method for transforming low-resolution MIR-PAM images into 

high resolution while providing virtual staining. Confocal fluorescence microscopy was used as ground truth for 

both training and validation. A CycleGAN framework was adopted as the main network architecture. Overall, the 

paper demonstrates clarity in presentation and well-structured content. However, the major claim regarding the 

utilization of explainable deep learning lacks robust support within the proposed methodology. The saliency loss 

was used during training process as an additional constraint to facilitate network performance, which diverges 

from conventional XAI/XDL practices. In addition, the proposed method suffered from potential overfitting and 

clear hallucinations. Critically, the manuscript lacks assessment regarding the generalizability of the proposed 

DL network, representing a significant gap in its validation process. 

Reply: Thank you for your important and valuable comments on our manuscript.  

 

Specific comments: 

Comment 1: It is questionable whether the presented paper actually used the concept of explainable AI. The main 

difference between the explainable network (XDL) and the regular network (DL) is the addition of the saliency 

loss. Saliency maps in explainable AI are typically used post hoc training to explain which parts of the input were 

most influential to a neural network’s decision. This includes backpropagation-based or perturbations-based 

methods to visualize features (i.e. using saliency maps or heatmaps) relevant to the network’s prediction. Unlike 

what was being done in this paper, saliency maps are not used during the training process but are applied to the 

trained models to interpret their prediction. In contrast, the approach in the paper integrates the saliency concept 

into the loss function itself. The added saliency loss is based on the difference between the input image and the 

transformed image, after applying a segmentation operator parameterized by thresholds. This is simply an added 

consistency loss to ensure that these masks are consistent across both domains to preserve image content. This is 

not how saliency is used as an explanation tool for AI, which typically does not directly influence model training 

but rather aims to provide interpretability after the model has been trained. Therefore, the major claim of using 

“explainable deep learning” is not substantiated by the proposed method in this paper. 

Reply: Sorry for the confusion. In addition to interpreting the predictions by adopting explainability via 

saliency masks in the training model, we also sought to improve the performance of UIDT, a 

transformation between different imaging modalities, by adding them directly to the loss function. 

𝑆𝐿(𝐺𝐴) = 𝐿1 ((𝑠𝑖𝑔𝑚𝑜𝑖𝑑((𝑎 − 𝑇𝐴) ∗ 100)) , (𝑠𝑖𝑔𝑚𝑜𝑖𝑑((𝐺𝐴(𝑎) − 𝑇𝐵) ∗ 100))) , (4) 

𝑆𝐿(𝐺𝐵) = 𝐿1 ((𝑠𝑖𝑔𝑚𝑜𝑖𝑑((𝑏 − 𝑇𝐵) ∗ 100)) , (𝑠𝑖𝑔𝑚𝑜𝑖𝑑((𝐺𝐵(𝑏) − 𝑇𝐴) ∗ 100))) , (5) 

𝐿𝑆𝐿(𝐺𝐴, 𝐺𝐵) = 𝑆𝐿(𝐺𝐴) + 𝑆𝐿(𝐺𝐵). (6) 

We checked the saliency masks according to the training epochs (Supplementary Fig. 2). Saliency loss 

continuously tracks saliency masks for both image domains to address unexpected errors that inevitably 

occur during the deep learning training process. In both networks, the saliency mask visualizes the 

consistency of the overall structure, which should always be maintained regardless of quality differences 

or staining.  

Additionally, we included Grad-CAM heatmaps that highlight the class-affecting features to enhance 

explainability (Supplementary Fig. 3). It explains the behavior in each layer of the transformer in the 

XDL-based generator. Here, we can see that as the layer gets deeper, the blurred attention of the model 

is gradually transformed into attention that is sharp and structure-sensitive enough to generate a high-

resolution image. 

We have added these lines in the revised manuscript: 

[Line 127] Saliency loss continuously tracks saliency masks for both image domains to address 

unexpected errors that inevitably occur during the training process (Supplementary Fig. 2). In addition, 

GradCAM38 technique is used to further explain the inner behavior of the model during the domain 

transformation from LR to HR (Supplementary Fig. 3). GradCAM heatmaps show the model’s attention 

in each transformer layer of the XDL-based generator. 



 

Supplementary Fig. 2 | XDL-generated images and salience masks in a. IREN and b. VFSN according to the epochs. 

 

 

 

Supplementary Fig. 3 | GradCAM heat map in each transformer layer of the XDL-based generator. 

 

  



Comment 2: Some sort of variations and perturbations to the training model need to be considered and included 

in the study. For example, using different samples with different cellular structures and different imaging settings. 

This is especially important for the inference stage to test generalizability of the proposed DL network. All testing 

datasets used in this study are very similar to the training data, which may be prone to overfitting and does not 

represent real world applications. 

Reply: Thanks for your comment. We have applied data augmentation in the training process to prevent 

overfitting in deep learning. One common method for enhancing a model's performance is data 

augmentation. It consists of a collection of techniques designed to artificially increase the quantity and 

variations of data samples included in the dataset. This is carried out because deep learning models 

perform best when there are more data samples available for training. To produce a more complete set 

of training examples, these transformations make specific changes to the original data. The main goal 

is to replicate the range of data that the model will see in real life, which will enhance its generalization 

capacity. Additionally, we have applied a 4-fold cross-validation technique where three WSI images 

were employed as the training set and one WSI image was used as the validation and test set in each 

fold. So, we hope that data augmentation and cross-validation techniques enhance the models' 

robustness and generalization ability. 

As a result of generalization, we conducted additional experiments on different image settings (image 

contrast and SNR) and samples (disease model and living cell growth). Please refer to responses to 

Reviewer #1’s comment #4, Reviewer #2’s comment #2, and comment #4 below, respectively. 

We have added these lines in the revised manuscript: 

[Line 243] The core idea behind data augmentation is to add more samples or information to the training 

dataset, increasing the invariance and robustness of DL models. Here, we used horizontal and vertical 

flipping, tile overlapping, and rotation as augmentation techniques. We employed four-fold cross-

validation to solve the overfitting problem where three WSI images are employed as a training set and 

one WSI image is used as a validation set in each fold. The FID & KID scores for each fold are shown 

in Supplementary Table 1. 

Fold 1 2 3 4 Mean 

FID (↓) 100.43 106.81 100.87 105.45 103.39 

KID (↓) 1.73 2.28 1.64 2.21 1.96 

 

Comment 3: Fig. 3: the ground truth image is unpaired, it’d be nice to have a set of data with paired ground truth 

to show that XDL indeed provides better performance (e.g., less nucleus split, more detailed F-actin structures as 

pointed out by Fig. 3d). 

Reply: We completely agree with your viewpoint in this regard. When a paired dataset is used, the XDL 

network can perform better. We confirmed good performance using paired CFM images in the VSFN. 

However, in the IREN, exact paired datasets between different modalities cannot be obtained due to 

hardware limitations. Physically, MIR-PAM and CFM detect and visualize HCF with different 

sensitivity due to their unique characteristics (e.g. imaging contrast and DOF). Public data pairs do not 

even exist as the MIR-PAM system is newly developed. Additionally, in practice, after acquiring label-

free MIR-PAM images with cultured cells, CFM images were obtained via a chemical process (i.e. 

permeabilization, washing, and immunostaining), which may slightly change the morphology. To 

overcome this uncertainty, we aim for unsupervised inter-domain transformation and employ the 

evaluating metrics of FID and KID scores that validate transformation methods using unpaired data [a–

c].  

[a] Chen, et al. “Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image 

Translation”, DOI: 10.1109/CVPR42600.2020.00819 

[b] Paavilainen, et al. “Bridging the gap between paired and unpaired medical image translation” 

MICCAI Workshop on Deep Generative Models. DOI: 10.1007/978-3-030-88210-5_4 

[c] Kim, et al. “Learning to discover cross-domain relations with generative adversarial networks” 

Proceedings of the 34th International Conference on Machine Learning. PMLR 70:1857-1865, 2017.  

  



Comment 4: Supplemental Fig. 3: these LR-MIR-PAM images have much lower quality than those appeared in 

the main text and from these LR-MIR-PAM images, the nucleus and the F-actin are barely visible, yet the network 

generated detailed HR images with virtual staining. This result indicates overfitting. A more diverse training and 

testing datasets with different imaging conditions are necessary to validate the proposed method. 

Reply: Supplementary Fig 8 shows XDL-MIR-PAM images obtained using living cells. For the 

performance of XDL-UIDT, both fixed and living cell image sets are included in the training dataset. In 

particular, images of days 1 and 7 were trained, and images of days 1, 4, and 7 were tested. Although 

raw MIR-PAM images in living HCF have lower contrast than in fixed HCF, XDL-MIR-PAM has been 

demonstrated with delicate pre-processing and data augmentation. The detailed description is presented 

in the Discussion section and Supplementary Note 2. 

[Line 236] In addition, the superiority of XDL-MIR-PAM was demonstrated by visualizing living cells 

(Supplementary Note 2 and Supplementary Fig. 8). 

 

Supplementary Fig. 8 | XDL-MIR-PAM imaging of living HCFs.  



Comment 5: Hallucination was still prominent in the best result presented (framework 2, net 6), see examples 

below following the white arrows and circles (captured from Fig. 5). Therefore, the claim that “Framework 2 (Net 

6) successfully avoids these hallucinations and artifacts, and produces sharp VS images, with a good match to the 

ground truth” is not fully supported by the results presented. In addition, because of the hallucination, a later 

statement, “Notably, in the fibroblast area, a slightly higher result implies more structures were detected by the 

XDL-MIR-PAM than in the optically sectioned CFM images, because the MIR-PAM has a greater depth-of-field 

(DOF)”, is also not substantiated unless multiple CFM images acquired at different depths can be used to validate 

that the higher number of structures detected by XDL-MIR-PAM were indeed real. 

Reply: Sorry for the confusing statements. In the main text, we have tuned the fluorescence intensity 

not to be saturated for all channels of CFM. When adjusting the brightness (1.3x) of the CFM image, 

the information (i.e. nucleus and F-actin) was revealed that was out of focus (Supplementary Fig. 6, 

marked with white arrows and circles). These elements are recognized in the original MIR-PAM images 

and also visualized in XDL-MIR-PAM. we can infer that XDL-UIDT performs well on MIR-PAM, 

which has a longer DOF than CFM.  

In addition, by adopting XDL-UIDT, we reduced the hallucinations that appear in traditional DL-

assisted virtual staining and presented the evidence through image comparison (Figs. 4b and 5b). We 

used label-free cultured cells, which may contain errors such as cell debris or contamination. LR-MIR-

PAM detected condensed F-actin with high PA signal amplitudes, and it was virtually stained according 

to the probability of nuclei. On the other hand, pipelined XDL-UIDT improved sensitivity to identifying 

cell nuclei and F-actins. Compared to existing DL-based methods, it was implemented much closer to 

the ground truth. Unfortunately, the VS-HR-MIR-PAM (Net 6) image still has a few misinterpreted 

features (marked with asterisks). However, we expect to address these errors with additional steps. DL-

based cell segmentation network can be integrated into the framework, which will enhance the 

performance and accuracy of XDL-UIDT. 

According to the reply above, we have revised the text as follows: 

[Line 203] Notably, in the fibroblast area, slightly higher result values of XDL-MIR-PAM imply that 

more structures were visualized with higher contrast compared to optically sectioned CFM images, 

because the MIR-PAM has a greater depth-of-field (DOF) (Supplementary Fig. 6). 

[Line 259] Third, XDL-UIDT performance and accuracy will be further improved with additional steps. 

DL-based networks (e.g. cell segmentation and classification) can be integrated into the framework. 

Interconnected DL framework enhances feature recognition, which aids in addressing artifact issues47. 

 

Supplementary Fig. 6 | Magnified images of XDL-UDIT. 



REVIEWER COMMENTS 

Reviewer #1 

The manuscript presents a deep learning method for enhancing the resolution of MIR-PAM using a CycleGAN 

framework. By leveraging label-free imaging capabilities, this approach can be applied to a wide range of 

biomedical applications. The conclusions are well-supported by high-quality results, and the paper is excellently 

presented. 

A major advantage and novelty of this method is its use of only MIR light to achieve high-resolution, label-free 

imaging of various absorbers. Compared with the UV-MIR-PA method, this deep-learning method is much easier 

to implement and thus can be readily available for many labs. It represents a significant advancement in the field 

The training and validation of the deep learning model appear to be correct. The results reveal some common 

deep learning issues, such as hallucinations and potential overfitting. Although not completely resolved, the 

authors have demonstrated methods to mitigate these problems. In my opinion, these issues do not compromise 

the novelty and significance of the method. Thus, I recommend accepting the paper in its current form. 

Reply: We sincerely appreciate your constructive feedback on our manuscript. Your suggestions have 

greatly strengthened our work.  

  



Reviewer #2 

The authors have addressed all my concerns. I recommend the publication of this work. 

Reply: We sincerely appreciate your helpful comments for improving our manuscript.  

  



Reviewer #3 

The authors have conducted additional experiments in different imaging settings (e.g., diseased samples) and 

enhanced the pre-processing and data augmentation pipeline to show the reliable performance and 

generalizability of the XDL-UIDT. The authors claim that incorporating saliency loss and utilizing the GradCAM 

technique enhances the explainability of their deep learning model. The manuscript would benefit from additional 

discussion of how these methods contribute to the model's interpretability. While the performance improvement 

using saliency loss is evident, the manuscript would benefit from a more detailed exploration of the explainability 

aspect. Please address these points in Discussion. 

Reply: Thank you for your important and valuable feedback.  

Specific comments: 

Comment 1: Saliency Maps The authors state that "Saliency loss continuously tracks saliency masks for both 

image domains to address unexpected errors that inevitably occur during the training process (Supplementary 

Fig. 2)." However, they do not elaborate on the nature of these unexpected errors or how saliency loss specifically 

mitigates them. For example: What types of errors are being addressed? How does tracking saliency masks help 

in reducing these errors? How can researchers or clinicians know there is an unexpected error by tracking the 

saliency masks? Do saliency masks help uncover network biases or a consistent focus on irrelevant artifacts or 

structures? 

Reply: Thank you for your helpful comments. The integration of saliency loss addresses key issues 

during the transformation, such as the misalignment of important features, the model's focus on 

irrelevant regions (e.g., noise or artifacts), and the amplification of unwanted details. By tracking 

saliency masks, we ensure the model consistently highlights relevant areas, preserving critical structures 

and preventing focus on irrelevant information. Incorporating saliency loss allows the transformation to 

preserve important information in input domain images and properly map them to the output 

counterparts. If the saliency masks show that the model focuses on irrelevant areas, such as background 

regions, noise, or artifacts, instead of the key features of interest, this indicates an error in the model’s 

learning process, which can be corrected after a few iterations to improve focus. A sudden shift in the 

attention pattern, where important regions are ignored or attention is directed to non-informative areas, 

can signal that the model is not functioning as expected. Such patterns provide a clear indication that 

the model needs adjustment, retraining, or refinement in its attention mechanism to improve its focus 

and overall accuracy. Saliency masks provide a visual guide, revealing whether the model focuses on 

essential features or irrelevant artifacts. This continuous tracking and monitoring can result in higher-

quality and more interpretable UDIT. We have revised the text in the Discussion:  

[Line 224] Saliency loss helps address errors such as the misalignment of key features between the 

domains and the risk of focusing on irrelevant areas (e.g., background noise and artifacts) during the 

transformation. By monitoring the attention patterns, we can ensure that the model maintains attention 

on critical regions, and identify potential problems where the model focuses incorrectly during training. 

If the attention is on insignificant regions from the beginning, corrections can be made after a few 

iterations to shift the model’s focus toward more relevant features. This insight enables us to adjust 

hyperparameters, retrain the model, and refine the dataset to improve performance and generalizability. 

These steps enhance the accuracy and interpretability of the UDIT. 

 

Comment 2: GradCAM Heatmaps Similarly, the authors mention using GradCAM to "further explain the inner 

behavior of the model during the domain transformation from LR to HR (Supplementary Fig. 3)." However, the 

manuscript does not provide sufficient details on what specific information the GradCAM heatmaps reveal. For 

example: Are the heatmaps highlighting key features like edges, textures, or anatomical structures that contribute 

to resolution enhancement? Are certain cellular features consistently highlighted, indicating where the model 

focuses during the transformation? 

Reply: Sorry for the insufficient statement. GradCAM heatmaps show the inner behavior during the 

training process. As shown in Supplementary Fig. 3, morphological and textural features in HCF that 

contribute to the transformation are visualized. As the layer progresses, the key feature becomes 

apparent. In particular, the cell nucleus is consistently highlighted and structurally distinguished from 

F-actin. We have added the text in the revised manuscript: 



[Line 132] GradCAM captures the morphological and textural features in HCF that contribute to the 

transformation, and the key features become apparent as the layer progresses. Notably, the cell nucleus 

is consistently highlighted and structurally distinguished from F-actin. 



This manuscript presents a deep learning-based method for transforming low-resolution MIR-PAM 
images into high resolution while providing virtual staining. Confocal fluorescence microscopy was 
used as ground truth for both training and validation. A CycleGAN framework was adopted as the 
main network architecture. Overall, the paper demonstrates clarity in presentation and well-
structured content. However, the major claim regarding the utilization of explainable deep learning 
lacks robust support within the proposed methodology. The saliency loss was used during training 
process as an additional constraint to facilitate network performance, which diverges from 
conventional XAI/XDL practices. In addition, the proposed method suNered from potential overfitting 
and clear hallucinations. Critically, the manuscript lacks assessment regarding the generalizability of 
the proposed DL network, representing a significant gap in its validation process.  

Specific comments:  

1. It is questionable whether the presented paper actually used the concept of explainable AI. The 
main diNerence between the explainable network (XDL) and the regular network (DL) is the 
addition of the saliency loss. Saliency maps in explainable AI are typically used post hoc training 
to explain which parts of the input were most influential to a neural network’s decision. This 
includes backpropagation-based or perturbations-based methods to visualize features (i.e. using 
saliency maps or heatmaps) relevant to the network’s prediction. Unlike what was being done in 
this paper, saliency maps are not used during the training process but are applied to the trained 
models to interpret their prediction. In contrast, the approach in the paper integrates the saliency 
concept into the loss function itself. The added saliency loss is based on the diNerence between 
the input image and the transformed image, after applying a segmentation operator parameterized 
by thresholds. This is simply an added consistency loss to ensure that these masks are consistent 
across both domains to preserve image content. This is not how saliency is used as an 
explanation tool for AI, which typically does not directly influence model training but rather aims 
to provide interpretability after the model has been trained. Therefore, the major claim of using 
“explainable deep learning” is not substantiated by the proposed method in this paper.   

2. Some sort of variations and perturbation to the training model needs to be considered and 
included in the study. For example, using diNerent samples with diNerent cellular structures and 
diNerent imaging settings. This is especially important for the inference stage to test 
generalizability of the proposed DL network. All testing datasets used in this study are very similar 
to the training data, which may be prone to overfitting and does not represent real world 
applications.  

3. Fig. 3: the ground truth image is unpaired, it’d be nice to have a set of data with paired ground truth 
to show that XDL indeed provides better performance (e.g., less nucleus split, more detailed F-
actin structures as pointed out by Fig. 3d). 

4. Supplemental Fig. 3: these LR-MIR-PAM images have much lower quality than those appeared in 
the main text and from these LR-MIR-PAM images, the nucleus and the F-actin are barely visible, 
yet the network generated detailed HR images with virtual staining. This result indicates 
overfitting. A more diverse training and testing datasets with diNerent imaging conditions are 
necessary to validate the proposed method.  



5. Hallucination was still prominent in the best result presented (framework 2, net 6), see examples 
below following the white arrows and circles (captured from Fig. 5). Therefore, the claim that 
“Framework 2 (Net 6) successfully avoids these hallucinations and artifacts, and produces sharp 
VS images, with a good match to the ground truth” is not fully supported by the results presented. 
In addition, because of the hallucination, a later statement, “Notably, in the fibroblast area, a 
slightly higher result implies more structures were detected by the XDL-MIR-PAM than in the 
optically sectioned CFM images, because the MIR-PAM has a greater depth-of-field (DOF)”, is also 
not substantiated unless multiple CFM images acquired at diNerent depths can be used to 
validate that the higher number of structures detected by XDL-MIR-PAM were indeed real.  
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