SUPPLEMENTARY INFORMATION

Genomic analysis of global *Plasmodium vivax* populations reveals insights into the evolution of drug resistance

Gabrielle C. Ngwana-Joseph¹, Jody E. Phelan¹, Emilia Manko¹, Jamille G. Dombrowski^{1,2}, Simone da Silva Santos³, Martha C. Suarez-Mutis³, Gabriel Vélez-Tobón⁴, Alberto Tobón Castaño⁴, Ricardo Luiz Dantas Machado⁵, Claudio R. F. Marinho², Debbie Nolder⁶, François Nosten^{7,8}, Colin J. Sutherland^{1,6}, Susana Campino^{1,*}, Taane G. Clark^{1,9*}

¹Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK

²Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil

³Oswaldo Cruz Foundation – Fiocruz – Rio de Janeiro, Brazil.

⁴Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Antioquia, Colombia

⁵Centro de Investigação de Microrganismos – CIM, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Brazil

⁶UK Health Security Agency, Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK

⁷Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK

⁸Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand

⁹Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK

*Joint Corresponding Authors:

Correspondence to Taane G. Clark or Susana Campino

Taane.Clark@lshtm.ac.uk / Susana.Campino@lshtm.ac.uk

Department of Infection Biology, Faculty of Infectious and Tropical Diseases

London School of Hygiene and Tropical Medicine, Keppel Street, London, UK

Fig S1. Chloroquine resistance status study design

Figure S2. Within-sample diversity (Fws).

Boxplots, coloured by subregional grouping, of the distribution of F_{ws} values in countries with more than 10 isolates. All boxplots contain boxes of the median and interquartile range (IQR), and whiskers extending to extreme datapoints less than 1.5 times the IQR. Outliers are represented as black dots.

Figure S3. Ancestry analysis of *P. vivax* isolates (*N* = 1078) at the country level.

Stacked bar chart representing the proportion of each ancestral population (K1-K10) within each country with >10 isolates.

Figure S4. Principal component analysis (PCA) of 1,534 *P. vivax* isolates based on 499,206 high-quality biallelic SNPs generated using a pairwise SNP distance matrix.

Each isolate is coloured by the maximum *K* value, where maximum *K* corresponds to the predominant ancestral population.

Figure S5. Relatedness between *P. vivax* isolates.

Distribution of pairwise identity-by-descent (IBD) fractions at a country level in countries with at least 10 isolates. All isolates except for Malaysian, Mexican, and Panamanian are represented in panel (a). The remaining panels represent pairwise IBD fractions in the highly related populations: (b) Malaysia, (c) Mexico, and (d) Panama.

Figure S6. Genome-wide distribution of pairwise identity-by-descent (IBD) fractions calculated across sliding windows of 10 kb at a country-level in *P. vivax* isolates.

Chromosomal boundaries are denoted by vertical grey dashed lines.

Figure S7. Genome-wide distribution of pairwise identity-by-descent (IBD) fractions at a country-level in *P. vivax* isolates.

Only populations with ≥ 10 monoclonal isolates are displayed. Boxes, coloured by subregional grouping, contain lines representing the median, lower quartile, and upper quartile. Whiskers extend to IBD values that are at a maximum of 1.5x the interquartile range. Outliers are represented as single points.

Figure S8. Genome-wide distribution of pairwise identity-by-descent (IBD) fractions at a country-level on chromosome 10 (positions 200,000 to 500,000) in *P. vivax* isolates.

Only populations with ≥ 10 monoclonal isolates are displayed. Boxes, coloured by subregional grouping, contain lines representing the median, lower quartile, and upper quartile. Whiskers extend to IBD values that are at a maximum of 1.5x the interquartile range. Outliers are represented as single points.

Figure S9. Genome-wide distribution of identity-by-descent (IBD) fractions calculated across sliding windows of 10 kb at a country-level on chromosome 10 (positions 200,000-500,000) in *P. vivax* isolates. Boundaries of regions of interest are denoted by vertical grey dashed lines.

Figure S10. Genome-wide distribution of identity-by-descent (IBD) fractions calculated across sliding windows of 10 kb at a country-level on chromosome 10 in *P. vivax* **isolates.** Boundaries of regions of interest (240-340kb) are denoted by vertical grey dashed lines, and genes within this region are represented as a locus zoom.

Figure S11. Protein structure predictions of PvMRP1 (PVP01_0203000) and PfMRP1 (PF3D7_0112200) amino acid mutations. Amino acid positions altered by SNPs are highlighted in blue for *P. vivax*, and red for *P. falciparum*. Aligned protein structures of PvMRP1 (with mutations present in Indonesian isolates) and PfMRP1 (with mutations known to be resistance-conferring) are shown in panels **a-d**, and where they lie in the: **(a)** ABC Transmembrane Domain 1, **(b)** AAA+ ATPase Domain 1, **(c)** ABC Transmembrane Domain 2, **(d)** and AAA+ ATPase Domain 2. A PvMRP1 and PfMRP1 sequence alignment is shown in **(e)**, with residues highlighted in grey symbolising those with 100% sequence identity.

a		5				P P P 218			b				78	AL 8					908
c				De CAR			2		d										
е		100 8			me T.				N		No.			We a				Eo v I	150
	PVMRP1/1-1822 PvMRP1/1-1726	106	NVYY	NNLV	WTI	FKTF	KVR	IIS		FNV	LQT	T L F	IIAV	GGS	IDK	YML	ILE	GETI	158
	PfMRP1/1-1822 PvMRP1/1-1726	159 F 157 F	SFPA	5 F L K D A F L N N	FKV	FSGL	YVV	GLL		FLF	DS		FY FH FY YY	EFL	VNM	K V S E S	LMY	FLYK	211 209
	PfMRP1/1-1822 PvMRP1/1-1726	212 210	NLCS			PDAF	YNT	YRK	FSSLNT	QTE	I D I	E I SI ME	RDF- RKSC	L S I N S V	GKN	A S S P S -	s s s C	G I K N MT K I	263 257
	PfMRP1/1-1822 PvMRP1/1-1726	423 416	(IRL) (VRL)		GV F G I F		SSC SAC			F F I	Y L I	K D R R E K		EEI	K F T N F S	S I II S I II	MP L MP L	YVYK FVYK	475 468
	PfMRP1/1-1822 PvMRP1/1-1726	741 712	NIRSM	AILFC AILFC	NEY	N P L I N S G I	YKY		QSE			S T I S S F I	EHGE	MK Y		DHN	L S K L S K	GQKV GQKV	793 764
	PfMRP1/1-1822 PvMRP1/1-1726	847 \ 817 (P F N E / P F D C	DHV		M D D R G K	NN F S D F	YLY SLY			FTS		ISK	K I F N I F	S N L Y N L	FCK	E D N I E E N K	899 869
	PfMRP1/1-1822 PvMRP1/1-1726	900 9 870 9	FKD	NCSFI CSFV	I SMI V SMI	NK ST NENT	LDN	FLI	E D I ND L	LDN	VQ1	Y E V I Y K V I			K T L	KYR	G N I G S V	S EYM S DYV	952 922
	PfMRP1/1−1822 PvMRP1/1−1726	1006 M 944 -	ESV	/ S F E I K F E L		NKEY		M K K C G S	K N Y - Q I	К К Е К	HMN	NKNI	N K D N G S S K	N N N R N N	NNN TR S	S N K A G S	DDH DE-	N N 	1058 983
	PfMRP1/1−1822 PvMRP1/1−1726	1371 T 1279 V	YHLC	OVYEH GIYER	YVE	NFRI	SYF	F K W L K W		IWA	SLI	I I K			T Y I S Y F	I MHI I MHI	P H L P H I	Y A S G F F N K	1423 1331
	PfMRP1/1-1822 PvMRP1/1-1726	1424 1332 M	ICKLY	KEKN	IY V R IY E K		LGY		FSA	RLC				YTH	VEK	EMC	C VQ C VQ	R L E E R L E E	1476 1384
	PfMRP1/1−1822 PvMRP1/1−1726	1634 1538		S F V F Y S F V F H	NWN	I R T I V R T I	I DP	YNN	N F T C	DEI	VH/ VN/	A L K A F D		NLO	KND	LYK	Y M H Y I H	KQ DM QQ R E	1686 1590

Figure S12. Transmembrane structure prediction of PvMRP1, showing transmembrane helices in navy numbered I-XII, and AAA+ ATPase domains in orange numbered I-II. Numbers within the transmembrane helices indicate the residue number that starts and ends the transmembrane helix. Numbers within the AAA+ ATPase domains indicate the residue number that starts and ends the transporter domain.

Figure S13. Manhattan plot of F_{sT} values between Indonesian Papua isolates from: (a) 2008-2009 vs. 2016-2017 and (b) Pre-2014 vs. Post-2014.

The red line symbolises F_{sT} values above the 99th percentile. SNPs within *pvmrp1* (L1365F and D1570F) are highlighted in red.

Figure S14. Median joining haplotype network constructed using upstream *pvmdr1* gene (Chromosome 10, Positions 243480-319423) sequences from 104 Indonesian Papua isolates.

Each node represents a haplotype, with each segment in the node representing isolates from a given regional grouping. Nodes are sized in proportion to the number of samples represented by that haplotype. The number of SNP differences between haplotypes is represented by the number of ticks between the nodes.

