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Supplementary Notes 

1. Reflectance contrast spectroscopy in an electron-doped regime 

We conduct the additional steady-state RC measurements with varying the Fermi energy 

in an electron-doped regime, 𝐸F,e up to 18 meV. In the electron-doped regime, two attractive 

polarons emerge at photon energy of 1.6851 eV and 1.6917 eV, as depicted in Supplementary 

Fig. 1a. This additional splitting of attractive polarons is not seen in the hope-doped regime. 

Supplementary Fig. 1b shows three resonances, corresponding to two attractive polarons and 

one repulsive polaron when 𝐸F,e is 6.7 meV. Because the spin-orbit coupling of conduction 

band (~38 meV) is much smaller than the valence band (~400 meV)1, we consider the low-

energy scattering states in which two opposite spin states of electrons are in the same valley 

(singlet polaron) and in the different valleys (triplet polaron). Such configurations are 

illustrated in Supplementary Fig. 1c. The energetically lower state corresponds to an intravalley 

singlet polaron, in which an exciton and the interacting Fermi sea are in the same valley, and 

the higher energy state is an intervalley triplet polaron, where an exciton and the Fermi sea are 

located in different valleys. In the case of the intravalley singlet polaron, the electron of an 

exciton and the Fermi sea are in different spin states due to the Pauli exclusion principle. As a 

result, the electron resides in the upper conduction band while the excess electrons are located 

in the lower conduction band within the same valley, forming a singlet polaron. For the 

intervalley polaron, the electron of an exciton and the excess electrons have different valley 

indices but occupy the same spin state, resulting in the formation of a triplet polaron2. For both 

cases, the optical selection rule dictates that the electrons of excitons are located in the higher 

conduction band, while the excess electrons reside in the lower conduction band. 

Indeed, a closer inspection of Supplementary Figs. 1a and 1b reveals that there is an 



additional fine structure splitting (~7 meV) whose origin can be understood by considering the 

exchange interaction. The exchange interaction necessitates a finite spatial distance between 

the Fermi sea and the hole of the exciton when they occupy the same spin state. As a result, the 

energy level of the triplet polaron is increased, leading to the higher resonance for the triplet 

polaron and the lower resonance for the singlet polaron. The energy difference for WSe2 is 

calculated to be approximately 6 meV3, which agrees well with our measured splitting of 7 

meV.  

Although the singlet and triplet splitting is interesting, there are the following reasons why 

we have focused on the experiments in the hole-doped regime in monolayer WSe2. First, the 

two branches of attractive polarons (in the electron-doped regime) are too closely spaced in the 

spectral domain, as mentioned in the above paragraph. Because of the small energy difference 

(about 7 meV) between the two attractive polaron resonances, there is a significant overlap 

between the two polaron spectra, making it difficult to clearly resolve the singlet and triplet 

polarons (see Supplementary Figs. 1d and 1e). Supplementary Fig. 1b presents the reflectance 

contrast at 𝐸F,e =  6.7 meV, while Supplementary Fig. 1f displays the corresponding the 

below-gap pump-induced reflectance contrast at the same 𝐸F,e . Because the overlap of the 

transient spectrum from the two attractive polaron resonances is significant, it is challenging 

to extract the shift of each attractive polaron energy accurately. In contrast, as schematically 

shown in Supplementary Fig. 1g, only one attractive polaron is formed in the hole-doped 

regime.  

Secondly, for the choice of the molybdenum-based materials, the energy difference 

between the upper and lower conduction band is much smaller, compared to the tungsten-based 

materials. For example, MoS2 shows a difference of only 3 meV and MoSe2 of 21 meV, whereas 

WS2 and WSe2 exhibit a difference of 27 meV and 38 meV, respectively1. Given these 



differences, the molybdenum-based materials might not reveal the distinct spectral 

characteristics of the Fermi polarons. Meanwhile, in the monolayer WSe2, the valence band 

exhibits a spin-orbit coupling (~500 meV) an order of magnitude larger than that of the 

conduction band. This significant difference in spin-orbit coupling is the primary reason we 

focus on the hole-doped regime. 

  



2. Spectra analysis of attractive and repulsive polarons in a hole-doped regime 

We conduct the optical spectroscopy in a reflection geometry on an additional gate-tunable 

WSe2 monolayer device with changing the hole density 𝑛h. An optical microscopy image of 

another device is shown in Supplementary Fig. 2a. Supplementary Figs. 2b and 2c show the 

reflectance contrast (RC) measured with varying 𝐸F,h from 0 meV to -28.6 meV. The repulsive 

polaron branch exhibits a blue shift towards a higher photon energy and experiences a 

significant increase of linewidth as 𝐸F,h increases. In contrast, the attractive polaron resonance 

shows a slight red shift towards a lower photon energy with a relatively small broadening of 

the linewidth.  

For more details on the linewidth broadening, Supplementary Fig. 2d indicates a 

significant increase in the linewidth of the repulsive polarons from 10.6 meV to 55.4 meV with 

increasing 𝐸F,h  toward more hole doping, while the linewidth of the attractive polarons 

exhibits a minor increase from 7.1 meV to 12.5 meV. The large change in the linewidth of the 

repulsive polarons resembles the homogeneously broadened linewidth, as observed in prior 

reports4,5. Recent measurements using four-wave-mixing spectroscopy have reported the 

details on the kinetics of the linewidth broadening, denoted as 2γ, where γ represents the 

decoherence rate. This rate is inversely proportional to the dephasing time (T), defined as 
γ

ħ
=

1

T
6. The increased linewidth of the repulsive polarons necessitates an additional 𝐸F,h-dependent 

damping term, related to the non-radiative transitions from the repulsive polarons to the 

attractive polarons. When the excess holes in the Fermi sea and the exciton are in the different 

valleys, the excitons are polaronically dressed without the Pauli blocking effects. With 

increasing 𝐸F,h, the decay rate significantly increases. Such an additional broadening (𝛾add) in 

the repulsive polarons can be calculated using the Fermi’s golden rule as 𝛾add ≈
3𝜋𝑀2

4

𝐸F
2∆𝐸x

∆𝐸T
2

7, 

where ∆𝐸X is the binding energy of excitons, the dimensionless constant 𝑀 is the overlap 



between polaronic dressing of the initial state and the final state of the repulsive polarons, and 

∆𝐸T is the binding energy of trions.  

The resonance shifts of the repulsive and attractive polarons exhibit distinct features with 

varying 𝐸F,h . The increase in the carrier density induces several effects, such as bandgap 

renormalization, Pauli blocking, and carrier-induced screening. Supplementary Fig. 2e shows 

that the resonance peak energy of the repulsive polarons (black squares) is blueshifted, while 

that of the attractive polarons (red circles) is redshifted. These effects also lead to the enhanced 

(reduced) oscillator strength in the attractive (repulsive) polarons. In calculating the oscillator 

strength of Fermi polarons, we conduct an integration of the amplitude over the region around 

the attractive and the repulsive polaron resonance in the RC spectra8. The repulsive polarons, 

which are considered to be the unbound quasiparticles of excitons with surrounding Fermi sea, 

experience the Pauli blocking effect and the Coulomb screening between the electrons and the 

holes in the excitons. The increased Pauli blocking effects result in a reduction in the exciton 

binding energy. The itinerant holes induce the attenuation of the electric fields, which causes a 

decrease in the attractive Coulomb interaction. The screening of the attractive interactions 

between the electrons and the holes lowers the exciton binding energy. The reduced exciton 

binding energy results in the blueshift and the reduction of the oscillator strength of the 

repulsive polarons (black squares)9,10.  

For the attractive polarons (red circles in Supplementary Fig. 2e), the resonance is 

redshifted. It is a prominent characteristic of the attractive polaron formation that distinguishes 

it from trions. If one assumes a trion model, the trion binding energy should decrease with 

increasing carrier density due to the Pauli blocking effects and the Coulomb screening. 

Meanwhile, the exciton-polaron theory suggests that the attractive interactions between the 

excitons and the itinerant Fermi sea are enhanced when more free carriers are introduced11. An 

increase in attractive interactions leads to a stronger binding energy of the attractive polarons, 



which resulting in the redshift of the attractive polarons and the enhanced oscillator strength 

(red circles).  

  



3. Ultrafast pump-probe spectroscopy under 3.1 eV pump excitation  

The energy shift of Fermi polarons arises spontaneously due to off-resonant pump 

excitation, and the temporal transients are characterized by the short-lived signals. To 

demonstrate that our data in the main section do not arise from any real carriers from the above 

gap (e.g. two-photon absorption or band-to-band carrier excitation), we perform the absorption 

pump-probe spectroscopy with two distinct pump energy; one below the optical band-gap and 

one above electronic band-gap (see Supplementary Fig. 3a and 3b, respectively). We adjust 

𝐸F,h at three specific points. All spectra are obtained using pump and probe pulses with the 

same circular polarization. The pump-pulse energy in Supplementary Fig. 3a is 1.55 eV, while 

it is 3.1 eV in Supplementary Fig. 3b.  

The attractive polarons emerge regardless of the pump energy, as shown in Supplementary 

Fig. 3b. The main difference is in the temporal dynamics. The above-gap excitation leads to 

the generation of highly energetic carriers, which then proceed to relax by multiple relaxation 

pathways. The relaxation times of the attractive polarons are measured to be 2.68 ps and 2.51 

ps at 𝐸F,h of -12.7 meV and -27.9 meV, respectively. The relaxation time becomes short with 

increasing the carrier density. These observations can be explained by considering the 

interactions between the attractive polarons and the free carriers. Upon initial injection of holes, 

the carriers promote the production of the attractive polarons, and enhance the attractive 

polaron absorption. However, with increasing the carrier density, free carriers scatter with the 

attractive polarons, resulting in the reduced relaxation times12. For the repulsive polarons, we 

have measured 3.57 ps and 1.07 ps at 𝐸F,h of 0 meV and -12.7 meV. The relaxation time also 

decreases because of the same reasons of the attractive polarons.   

The two-dimensional plot depicted in Supplementary Fig. 3a exhibit clear differences 

compared to the signals shown in Supplementary Fig. 3b. The signals shown in Supplementary 



Fig. 3a quickly diminish for the pump-probe time delay over 300 fs, whereas the signals for 

the Fermi polarons last for 1.07~3.57 ps. Additionally, there is no change in energy levels of 

the resonances in Supplementary Fig. 3b. These results demonstrate that the resonance shifts 

of the Fermi polarons discussed in the main section are distinct from those with the above-gap 

excitation. 

 

  



4. Discussions on the fit functions 

We have used different oscillator models to describe the reflectance contrast spectrum and 

the pump-induced changes in the reflectance contrast. For the “steady-state” reflectance 

contrast measurements, we employ a Lorentzian oscillator model. However, when fitting the 

pump-probe spectroscopy results, we utilize a Gaussian oscillator. The reason behind this 

choice is based on the distinct characteristics of Lorentzian and Gaussian oscillators. 

Lorentzian oscillators are typically used to describe homogeneous broadening, which is due to 

intrinsic properties such as radiative lifetimes or collision effects. On the other hand, Gaussian 

oscillators are better suited for inhomogeneous broadening, where the width includes effects 

of either spatial or spectral variations. In our “steady-state” reflection contrast measurements, 

we use a stable continuous-wave (c.w.) laser. Under these conditions, fitting with the 

Lorentzian oscillator model is more appropriate. However, under the off-resonant pump 

excitation, we have measured the ensemble averages of both spatial and spectral species, 

making a Gaussian oscillator more suitable. Gaussian fits are less sensitive to noise compared 

to Lorentzian fits because Gaussian profiles have smoother tails on the spectral wings. This 

makes the fitting process more robust in the presence of noise.  

For the “isolated” exciton resonance shift, the resonance shifts including the Stark shift 

may be fitted using either the integral of the change of absorption from the experimental data13 

or by taking the derivative of the absorption spectra14. Assuming a Gaussian lineshape of the 

absorption spectrum, the corresponding energy shift ∆𝐸 can be mathematically represented 

as α(ω, ∆𝐸) = A exp (−
(𝜔−∆𝐸)2

2𝑐2 ), where A represents the absorption peak and c indicates the 

full width of half maximum divided by 2√2 𝑙𝑛2. The value of ∆α(ω, ∆𝐸), obtained through 

the pump-probe experimental data, can be calculated as −
𝜕𝛼

𝜕𝜔
∆𝐸. Hence, many literatures have 



used the derivatives of the absorption spectra to analyze the resonance shift. Because 

−
𝜕𝛼

𝜕𝜔
∆𝐸 is 

𝜔

𝑐2
𝛼(𝜔)∆𝐸, one may calculate the transient energy shift of a single resonance by 

integrating the area under ∆α(ω, ∆𝐸), which is represented as ∫ ∆𝛼(𝜔, ∆𝐸)𝑑𝜔 = 𝐴∆𝐸
∞

0
. One 

assumption of these approaches is that the involved resonance is “isolated” from the 

environment, with no consideration of the Fermi sea.   

Whereas these techniques are applicable for determining the Stark shift of a single 

oscillator, but they are not useful for estimating the resonance shifts if two or more oscillators 

are present. In fact, integrating the experimental data or taking the derivative of the absorption 

spectra pose a mathematical restriction that the measured ∆𝑅/𝑅0 should exhibit a symmetric 

lineshape. Due to the small energy difference between the attractive and the repulsive 

resonances, a significant spectral overlap occurs in our case. Of course, Fig. 2c in the main text 

shows the experimental results of the symmetric lineshape when 𝐸F,h is 0 meV. Meanwhile, 

the experimental data at 𝐸F,h of -12.4 meV (Fig. 2d in the main text) indicates asymmetric 

lineshapes for both the attractive and repulsive polaron resonance. Consequently, we fit the 

measured ∆𝑅/𝑅0 spectrum with using a Gaussian shifting method to extract the resonance 

shifts from the experimental data. The change in absorbance can be calculated with using the 

following Gaussian function15-17, 

∆α(ω) = 𝐴A exp (−
(𝜔 − 𝐸A)2

2𝑐A
2 ) − 𝐴A exp (−

(𝜔 − 𝐸A − ∆𝐸A)2

2𝑐A
2 ) 

                  +𝐴R exp (−
(𝜔 − 𝐸R)2

2𝑐R
2 ) − 𝐴R exp (−

(𝜔 − 𝐸R − ∆𝐸𝑅)2

2𝑐R
2 ),              (S1) 

where 𝐴A , 𝐸A,  𝑐A , ∆𝐸R , 𝐴R , 𝐸R , 𝑐R  and ∆𝐸R  refer to the absorption amplitude of the 

attractive polarons, the resonance energy of the attractive polarons, the full width of half 



maximum divided by 2√2 𝑙𝑛2  of the attractive polarons, the energy shift of the attractive 

polarons, the absorption amplitude of the repulsive polarons, the resonance energy of the 

repulsive polarons, the full width of half maximum divided by  2√2 𝑙𝑛2  of the repulsive 

polarons and the energy shift of the repulsive polarons, respectively.  

  



5. Pump-detuning dependence  

Supplementary Figs. 4a, 4b and 4c show that the shift of Fermi polarons varies with the 

pump detuning. As the pump detuning decreases, the shift of the polarons increases. Such an 

inverse dependence on the pump detuning is well established and explained by the conventional 

dressed atom-photon pictures. However, we have realized that our data do not correspond to 

such models, indicating the need for a more elaborate model Hamiltonian. In Note 6, we have 

presented detailed discrepancies between the dressed atom-photon models and our measured 

data.   

In contrast to non-interacting excitonic Stark effects, our case involves both the repulsive 

and attractive polarons, which arise from the interactions between the excitons and the 

surrounding Fermi sea. As discussed in the main text, the shift of the repulsive polarons follows 

the properties of excitons both in the steady state and under the off-resonant pump excitation. 

Consequently, the shift in the repulsive polarons would scale inversely with the pump-energy 

detuning, consistent with the conventional exciton optical Stark effect. However, the shift in 

the attractive polarons differs from that in the repulsive polarons. There is an additional 

blueshift in the attractive polarons compared to the repulsive polarons, resulting in a larger shift 

in the attractive polarons. We attribute this blueshift, which is absent in the repulsive polarons, 

to the decreased binding energy of the attractive polarons. Therefore, the shift in the attractive 

polarons can be interpreted as the sum of the shift from the conventional model and the shift 

due to the reduced binding energy. The shift due to the reduced binding energy in the attractive 

polarons is supposed to be independent of the pump detuning, caused by the hot carriers under 

off-resonant pump excitation. We assume that the number of hot carriers does not significantly 

change when the detuning is varied by 20 meV.  

We consider that the attractive polaron shift is the sum of the shift from the conventional 



model and the shift from the reduced binding energy. It means that the shift consists of a 

component that is inversely proportional to the pump detuning and another component that is 

independent of the detuning. This is supported by our measurements of the shift of Fermi 

polarons as a function of the pump detuning (see Supplementary Fig. 4). We measure the energy 

shifts of Fermi polarons at three different doping levels, 𝐸F,h = 0 meV, -8.6 meV, and -12.4 

meV (Supplementary Figs. 4a, 4b and 4c). By extracting the energy shifts of the Fermi polarons 

from measurements, we see that the shifts decrease with increasing the detuning due to the 

change in Stark shifts. Additionally, we observe that the shift due to the reduced binding energy 

does not change with the pump detuning. This leads that the transient shift is rather “flat” 

regardless of the pump detuning. This argument is consistent with the expression for the shifts 

of Fermi polarons, ∆𝐸P ≅ 2
𝑀gx

2 𝜀2

𝐸X−ℎ𝜔pump
+ constant  (gray dashed lines for the repulsive 

polarons and red dashed lines for the attractive polarons). Additionally, there might be a 

concern regarding the reference energy we should use for the pump detuning when 𝐸F,h ≠ 0 . 

In this case, we obtain the detuning by considering the energy level of the repulsive polarons. 

As discussed above, we have ∆𝐸P ≅ 2
𝑀gx

2 𝜀2

𝐸X−ℎ𝜔pump
+ constant, so that determination of the 

detuning requires knowing the energy level of the excitons. In the finite hole-doped regime 

( 𝐸F,h ≠ 0 ), because the attractive and repulsive polaron branches are present, it makes 

impossible to extract the energy level of the excitons. We note that although the general features 

of the repulsive polarons, such as decreased oscillator strength and the blue-shifted energy 

levels, are similar to those of excitons, the exciton characteristics also vary with changing the 

carrier density. Therefore, we use the energy level of the repulsive polarons to calculate the 

detuning instead of that of excitons. 

 



6. Isolated atom-photon interaction model of the optical Stark effect 

The conventional atom-photon model used to explain the optical Stark effect has proven 

insufficient in describing the resonance shift of Fermi polarons. In this Note, we provide a 

series of dressed atom-photon pictures, including two- and three-level model, and present why 

such models fail to account for the Fermi-polaron cases.  

The optical Stark effect occurs because the virtual states experience a repulsion interaction 

with the equilibrium states. In the semi-classical theory, when optical pump field ℎ𝜔pump is 

present, the ground state |𝑔⟩  and A-exciton |𝑥⟩  are hybridized, forming the Floquet 

quasistates |𝑔 + ℏ𝜔pump⟩  and |𝑥 − ℏ𝜔pump⟩  due to the light-matter coupling. As shown 

below, the conventional atom-photon interaction models (neither two-level nor three-level 

model) fail to explain our experimental observations.  

In the simple two-level model, we can construct the effective Hamiltonian to calculate the 

energy shift for |𝑥⟩ as 

𝐻2−level = (
ℏ𝜔pump 𝑉X

𝑉X 𝐸A
),    (S2) 

where 𝐸|𝑔⟩ = 0 and 𝐸|𝑥⟩ = 𝐸A, the energy level of A-exciton. 𝑉X refers to the light-matter 

coupling, which can be described as 𝑉X = 𝑀gx𝜀 , where 𝜀  is the amplitude of the applied 

electric field and 𝑀gx  is the polarization matrix element between |𝑔⟩  and |𝑥⟩ 13. With the 

same shift of the energy level for the ground state, the calculated energy level increases by 

∆𝐸 ≅ 2
𝑀gx

2 𝜀2

𝐸A−ℎ𝜔pump
, where the numerator 𝑀gx

2  is proportional to the oscillator strength 𝑓osc
18. 

As shown in Fig. 1d in the main text, the oscillator strength of attractive polarons is 

significantly smaller than that of repulsive polarons. When using the two-level model, the 

energy shift ∆P of attractive polarons should be much smaller than that of repulsive polarons, 



as shown in the Supplementary Fig. 5a. However, our experiments demonstrate that ∆p is 

larger for the attractive polarons compared to the repulsive polarons (Fig. 3b in the main text). 

Thus, we have found that such the two-level atom-photon interaction model does not reproduce 

the data when the excess charges exist. Notably, there is a significant discrepancy in ∆p for 

attractive polarons between the results predicted by the two-level model and the experimental 

data.  

Similarly, the three-level model that includes the ground state, the attractive polaron state, 

and the repulsive polaron state, is also found to be failed to capture the observed phenomena. 

To calculate the energy level shift of attractive and repulsive polarons caused by the Floquet 

quasistate, |𝑔 + ℏ𝜔pump⟩ , we have constructed the following Hamiltonian under the 

assumption that there is no interaction between the attractive polarons and the repulsive 

polarons.  

𝐻3−level,p = (

ℏ𝜔pump 𝑉AP 𝑉RP

𝑉AP 𝐸AP 0
𝑉RP 0 𝐸RP

)   (S3) 

Additionally, we consider the shift of the energy level for ground state with 

𝐻3−level,g = (

0 𝑉AP 𝑉RP

𝑉AP 𝐸AP − ℏ𝜔pump 0

𝑉RP 0 𝐸RP − ℏ𝜔pump

),   (S4) 

where 𝑉AP  (𝑉RP ) is the light-matter coupling between |𝑔⟩  and the attractive (repulsive) 

polaron state, which can be expressed as 𝑉AP = 𝑀AP𝜀 (𝑉RP = 𝑀RP𝜀), where 𝑀AP (𝑀RP) is 

the polarization matrix element between |𝑔⟩ and the attractive (repulsive) polaron state. The 

calculated ∆p  for the attractive polarons and the repulsive polarons with varying 𝐸F,h  is 

shown in the solid line in Supplementary Fig. 5b. The solid black line indicates ∆p of the 



repulsive polarons, and the solid red line represents ∆p of the attractive polarons. Compared 

to the two-level model, ∆p of attractive polarons becomes larger than the results predicted by 

the two-level model. However, it remains too small to reproduce the experimental data, which 

show that ∆p  of the attractive polarons is larger than that of the repulsive polarons. This 

discrepancy arises because when the Floquet quasistate |𝑔 + ℏ𝜔pump⟩ shows the repulsion 

with the attractive polaron state, the repulsion is more significant with larger values of 𝑀AP. 

However, since the attractive polarons have a smaller oscillator strength, the repulsion is 

weaker, resulting in a smaller shift for the attractive polarons.  

To address these discrepancies, our next attempt is to consider another three-level model 

after including the interaction factor (γ) between the attractive and repulsive polarons7.  

𝐻3−level,p
∗ = (

ℏ𝜔pump 𝑉AP 𝑉RP

𝑉AP 𝐸AP 𝛾
𝑉RP 𝛾 𝐸RP

).   (S5) 

However, this model results in a repulsion between the attractive and repulsive polaron 

states, causing the attractive polarons to redshift as shown in the dashed red line in 

Supplementary Fig. 5b. Due to the higher energy level of the repulsive polarons, the repulsive 

polarons shifts upwards, while the attractive polarons shift downwards. Consequently, this 

model also cannot reproduce the experimental data, where ∆p of the attractive polarons is 

larger than that of the repulsive polarons.  



7. More details on the polaron theory  

We start here with a brief overview of the well-established N-body Green’s function 

approach19. The retarded Green’s function for a single impurity particle is defined by 

 𝑖𝐺𝑖𝑗
𝑟 (𝑡) = Θ(𝑡)⟨0|[ℎ𝑖(𝑡),  ℎ𝑗

†]|0⟩ , (S6) 

where the state vector |0⟩ is the ground state of N fermions (holes) in the absence of impurity 

(exciton), ℎ𝑖  and ℎ𝑗
†
 are the annihilation and creation operators of the 𝑖-th and 𝑗-th holes, 

respectively, and the prefactor Θ(𝑡) is the Heaviside step function to meet the causality. The 

equation of motions in the Heisenberg picture is given by 

 𝑖𝜕𝑡𝐴(𝑡) = [𝐴(𝑡),  𝐻] , (S7) 

which leads to the equation of motion for the retarded Green’s functions, 

 𝑖𝜕𝑡𝐺𝑖𝑗
𝑟 (𝑡) = 𝛿(𝑡)⟨0|[ℎ𝑖(𝑡),  ℎ𝑗

†]|0⟩ + 𝐺[ℎ𝑖(𝑡), 𝐻], 𝑗
𝑟 (𝑡). (S8) 

Taking the temporal Fourier transform with respect to 𝑡, we obtain 

 𝜔𝐺𝑖𝑗
𝑟 (𝜔) = ⟨0|[ℎ𝑖,  ℎ𝑗

†]|0⟩ + 𝐺
[ℎ𝑖(𝑡), 𝐻], ℎ𝑗

†
𝑟 (𝜔). (S9) 

In the case of non-interacting free fermions (holes), we can obtain a closed expression for the 

Green’s functions. We consider a Hamiltonian of the form 

 𝐻 =  ∑ 𝜖𝑘ℎ𝑘
†ℎ𝑘𝑘 , (S10) 

where the eigenvalue 𝜖𝑘  depends on the dispersion of the system, specifically 𝜖𝑘 =

ℏ2 𝑘2/2𝑚 for the free particles. To analyze the equation of motion, we need to examine the 

commutator 



[ℎ𝑖 , 𝐻] =  ∑ 𝜖𝑘[ℎ𝑖,

𝑘

 ℎ𝑘
†ℎ𝑘] 

                                       = ∑ 𝜖𝑘([ℎ𝑖, ℎ𝑘
†]ℎ𝑘 + ℎ𝑘

†[ℎ𝑖 , ℎ𝑘]) 

𝑘

 

= ∑ 𝛿𝑖𝑘𝜖𝑘ℎ𝑘

𝑘

 

                                = ϵ𝑖ℎ𝑖 ,                             (S11) 

which is simplified using the below commutator relations for fermions 

 [ℎ𝑖, ℎ𝑗
†] = 𝛿𝑖𝑗 , [ℎ𝑖 , ℎ𝑗] = [ℎ𝑖

†, ℎ𝑗
†] = 0. (S12) 

As a result, the equation of motion (S9) follows, 

 𝜔𝐺𝑖𝑗
𝑟 (𝜔) = 𝛿𝑖𝑗 + 𝜖𝑖𝐺𝑖𝑗

𝑟 (𝜔), (S13) 

which yields 

 𝐺𝑘
𝑟(𝜔) =

1

𝜔 + 𝑖0+ − 𝜖𝑘
. (S14) 

The introduction of the converging factor 𝑖0+ may seem arbitrary. To confirm the validity of 

this approach, let us perform the inverse Fourier transform 

 𝐺𝑘
𝑟(𝑡) = ∫

𝑑𝜔

2𝜋

𝑒−𝑖𝜔𝑡

𝜔 + 𝑖0+ − 𝜖𝑘

∞

−∞

. (S15) 

We aim to evaluate the integral with the Cauchy's residue theorem. When 𝑡 > 0 , the 

integration is closed in the contour of the lower half-plane, ensuring it encompasses the pole. 

Conversely, for 𝑡 < 0, we have to close the contour in the upper half-plane. Since there are no 

poles in this upper half-plane, the integral vanishes. This analysis reveals that the causality is 



consistent with the definition of retarded Green’s function shown in (S6). 

An important application is the perturbative system (Fermi-polaron problems), which 

states the presence of the impurity (excitons) in the Fermi sea. Following an approach proposed 

by Sidler et al.20, the interacting Hamiltonian describing the system is 

 

𝐻 =  ∑ 𝜔X(𝑘)𝑥𝑘
†𝑥𝑘

𝑘

+ ∑ 𝜖𝑘ℎ𝑘
†ℎ𝑘

𝑘

 

= + ∑ 𝑉𝑞(𝑥𝑘+𝑞
† ℎ

𝑘′−𝑞
† ℎ𝑘′𝑥𝑘

𝑘,𝑘′,  𝑞

+ ℎ. 𝑐. ), 

 

(S16) 

 𝜔X(𝑘) = ∆𝐸X +
ℏ𝑘2

2𝑚exc
+ 𝛿(𝐸F), 𝜖𝑘 =

ℏ𝑘2

2𝑚h
, (S17) 

where 𝑥𝑘  (𝑥𝑘
†) and ℎ𝑘  (ℎ𝑘

†) are the annihilation (creation) operators of an exciton and a hole 

respectively, while 𝑚exc  and 𝑚h  are the effective mass of the exciton and the hole. The 

interaction between the polarons mediated by the Fermi sea can be determined with the self-

energy (Σ) which is the result of the variational method using Chevy Ansatz for the polaron 

state. This is given by 

 Σ (𝜔) =  ∑ [
1

𝑉
− ∑

1

𝜔+𝑖0+−𝜔X(𝑞−𝑘)+𝜖(𝑘)−𝜖(𝑞)
Ω
𝑘=𝑘𝐹

]
−1

𝑞 , (S18) 

where 

 
1

𝑉
= ∑

1

∆𝐸P − 𝜔X(0) + 𝜔X(𝑘) + 𝜖(𝑘)

𝑘𝐹

𝑘=0

 (S19) 

with ∆𝐸P is the binding energy of the attractive polarons. By definition of the self-energy Σ, 

on one hand, we have the Dyson equation 



 𝐺𝑘
𝑟(𝜔) =

1

𝜔 + 𝑖0+ − 𝜔X(0) − Σ(𝜔)
 , (S20) 

with the impurity kinetic energy function 𝜔X(0). On the other hand, we obtain the spectral 

function of the impurity excitons 

 𝐴(𝜔) = −
1

𝜋
Im𝐺𝑘

𝑟(𝜔) = −
1

𝜋
Im[𝜔 + 𝑖0+ − 𝜔X(0) − Σ(𝜔)]−1. (S21) 

In Supplementary Fig. 6, we observe distinct features in the simulation of the spectral 

function 𝐴(𝜔). First, one peak emerges at the trion resonance 𝐸T with a slightly redshifted 

spectrum (attractive polarons), while another peak at the exciton energy (1.65 eV) is blueshifted 

with increasing Fermi energy (repulsive polarons). Furthermore, we observe a continuum of 

state with minimal oscillator strength which is identified as a molecular state, as proposed in 

the previous study20. 

  



 

Supplementary Figure 1 | Reflectance contrast spectroscopy in an electron-doped regime. 

a, Reflectance contrast spectra ∆𝑅/𝑅′  as a function of a photon energy (bottom axis) and 

Fermi energy 𝐸F,e (left axis) in an electron-doped regime. Here, ∆𝑅 = 𝑅′ − 𝑅, where 𝑅 is 

reflection signal from the WSe2 monolayer sample and 𝑅′  is reference spectrum from the 

background hBN nearby the sample. b, ∆𝑅/𝑅′  when 𝐸F,e  is 6.7 meV. The gray circles 

represent the measured data. On top of the data, we show a sum of the fit functions for repulsive 

polarons (black line), singlet polarons (blue line) and triplet polarons (red line). c, Schematic 

illustration of the singlet and the triplet polaron configurations for WSe2 where an exciton is 

formed in the K valley. Spin-up (-down) bands are shown in red (blue) color. Electrons in the 

spin-up (-down) state are represented by solid red (blue) circles and holes in the spin-up (-down) 

state are represented by empty red (blue) circles. d, Absorption spectra α when 𝐸F,e is 6.7 

meV without the 1.55-eV pump excitation (black lines). With the pump excitation (red lines), 

the Fermi polarons are blueshifted. e, The change of absorbance α  is determined by 

subtracting the absorption spectra without the pump excitation (black lines in Supplementary 

Fig. 1d) from the spectra with the pump excitation (red lines in Supplementary Fig. 1d). f, The 



differential reflectance spectrum ∆𝑅/𝑅0  measured at zero time-delay of the pump pulses 

when 𝐸F,e = 6.7 meV. The pump and probe polarization is co-circularly polarized. Due to the 

overlap between two attractive polarons, it is very challenging to extract the shift of each 

attractive polaron resonance. g, Schematic illustration of the attractive polarons for WSe2, 

where an exciton is formed in the K valley in the hole-doped regime.  

  



 

Supplementary Figure 2 | Spectra analysis of attractive and repulsive polarons in a hole-

doped regime. a, An optical microscopic image of the hBN encapsulated WSe2 device. This is 

different device from the device described in the main section. b, Reflectance contrast spectra 

∆𝑅/𝑅′  as a function of photon energy (bottom axis) and Fermi energy 𝐸F,h  (left axis). c, 

∆𝑅/𝑅′ spectra as a function of 𝐸F,h. The attractive polarons are redshifted and the repulsive 

polarons are blueshifted with increasing 𝐸F,h , i.e. more hole doping. The energy level and 

linewidth extracted from Supplementary Fig. 2c are plotted in d and e, respectively. d, The 

linewidths of both the attractive polarons (red circles) and the repulsive polarons (black squares) 

increase with 𝐸F,h . In contrast to the attractive polarons, an additional 𝐸F,h -dependent 

damping causes more broadened linewidth for the repulsive polarons. This arise because of the 

non-radiative transitions from the repulsive polarons to the attractive polarons. e, The repulsive 

polarons (black squares) exhibit a blueshift caused by the Pauli blocking effects and screening 



effects due to the doped holes. The redshift feature of the attractive polarons (red circles) can 

be explained by the enhanced attractive interactions between the excitons and the itinerant 

holes. Vertical error bars in d and e are obtained from the fits.  

 

  



 

Supplementary Figure 3 | Ultrafast pump-probe spectroscopy under 3.1 eV pump 

excitation. a, Transient ∆𝑅/𝑅0 spectra when 𝐸F,h is 0 meV (left), -12.7 meV (middle) and -

27.9 meV (right). The σ+-polarized pump (photon energy of 1.55 eV) is incident onto the 

sample shown in Supplementary Fig. 2a and the pump-induced ∆𝑅/𝑅0 changes are measured 

using with σ+-polarized white-light pulse pulses. b, The pump-probe spectroscopy data with an 

above-gap pump of 3.1 eV when 𝐸F,h is 0 meV (left), -12.7 meV (middle) and -27.9 meV 

(right) The decaying times of the pump-induced signals of both the attractive and the repulsive 

polarons decrease due to the scattering between the polarons and the carriers. Clearly, these 

data exhibit much longer relaxation dynamics compared to the data shown in a. 

 

 

  



 

Supplementary Figure 4 | Pump detuning dependence for the shift of Fermi polarons. The 

shifts of excitons and Fermi polarons at 𝐸F,h = 0 (a), -8.6 (b), -12.4 meV (c) are shown as the 

functions of the pump detuning, 𝛿X is referenced to the repulsive polaron resonances. The 

gray dashed lines and red dashed lines represents the dependence of the pump detuning for the 

repulsive polarons and the attractive polarons, respectively. Vertical error bars in a, b, and c are 

obtained from the fits. 

 

 

  



 

Supplementary Figure 5 | Isolated atom-photon interaction model. a, The energy shifts of 

the Fermi polarons calculated using the conventional atom-photon two-level model. When the 

dressed atom-photon model is used, ∆P  of attractive polarons is much smaller than that 

observed in the experimental data. The shift of attractive polarons (solid red line) increases, 

while that of repulsive polarons (solid black line) decreases. b, ∆P computed using the three-

level model with an interaction factor (γ). The solid line represents γ = 0 eV, indicating the 

absence of interaction between the Fermi polaron states, while the dashed line represents γ =

0.01  eV. When γ = 0.01  eV, the repulsive polaron experiences a larger shift due to the 

repulsion between the attractive and repulsive polaron states, the attractive polaron exhibits a 

red shift. Neither the results shown in a nor in b do not reproduce our measured data shown in 

Fig. 3c in the main text.  

 

 

 

 

 

 

 



 

Supplementary Figure 6 | Gate-dependent spectral functions of Fermi polarons. The 

spectral function 𝐴(𝜔) is computed using the Chevy ansatz for three different values of 𝐸F,h : 

-1.5 meV (red), -3 meV (green) and -5 meV (blue). Note that the logarithmic scale of 𝐴(𝜔) is 

used to show the weak oscillator strength of the molecular state. With increasing 𝐸F,h toward 

more hole doping, the attractive polarons shift slightly downwards (to the red) and the repulsive 

polarons shift upwards (to the blue).  
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