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Supplementary Figure 1. TGA curves of Tp and HFDA. Both monomers begin to lose 

weight below 300℃. 

 

 

  



 

 

 

 

 

 

 

 

Supplementary Figure 2. (a) Optical image of solution grown 2DP-F. In brief, 2ml 

solutions of Tp (2mM) and HFDA(3mM) in acetonitrile were mixed and 0.2 ml of 6M AcOH 

was added. A desired substrate (sapphire in this case) was added into the solution and 

kept at room temperature for 3 days. A yellow film of 2DP-F on sapphire was picked out, 

washed with Acetonitrile for 3 times and dried under ambient for further characterization. 

(b) AFM image of solution grown 2DP-F film and (c) corresponding line profile. 

 

 

  



 

 

 

 

 

Supplementary Figure 3. AFM image of 2DP-F film ranging from 25nm to 250nm. Both 

films exhibited smooth and uniform surface. 

 

 

 

 



 

 

 

 

 

Supplementary Figure 4. (a) Thickness of the 2DP-F film as a function of growth time 

and temperature when using 5nm 2DP-F thin film as starting substrate and 3M AcOH (aq) 

as catalyst. (b) AFM image of a 530 nm thick 2DP-F film and (c) corresponding line profile. 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

Supplementary Figure 5. Photograph of 2DP-F film grown in other transparent 

substrates.  

 

  



 

 

Supplementary Figure 6. (a) Schematical illustration of direct photolithography on 2DP-

F films. (b) Optical image of patterned 2DP-F films. (c) AFM image of 2DP-F film before 

and after patterning and (d) Corresponding line profile. (e) Schematic illustration of 

patterning 2DP-F by direct deposition of 2DP-F on patterned substrates. (f) Optical image 

of the 2DP-F film after lift-off in acetone with ultrasonication. (g) AFM image of the area 

highlighted in black square and (h) Corresponding line profile. 

 

  



 

 

 

 

 

 

 

Supplementary Figure 7. (a) Raman spectra of 2DP-F film and monomers. (b) survey 

XPS of 2DP-F film. (inset: XPS spectrum of C1S signal from 2DP-F).  

 

 

  



 

 

 

 

 

 

Supplementary Figure 8. Thickness-dependent XPS N1s spectra of 2DP-F films. The 

result indicates that some unreacted amino groups are present when the thickness is 

larger than 100 nm. 

 

  



 

 

 

 

 

 

 

Supplementary Figure 9. (a). SEM image of a 20 nm 2DP-F suspended on a TEM grid. 

(b) High-resolution TEM image of suspended 2DP-F film. (c). A magnified view of the area 

indicated by the white box in b shows an amorphous structure. (d). FFT result of the area 

in (c) demonstrating a diffuse diffraction pattern of the amorphous structure. 

 

  



 

 

 

 

 

 

Supplementary Figure 10. (a)GIWAXS scattering 2D image and (b) its intensity profile 

near Qr=0. (c) molecular structure of a building unit in 2DP-F. (d) PXRD of 2DP-F powder 

collected after the reaction. 

 

  



 

 

 

 

 

 

 

Supplementary Figure 11. Nitrogen sorption curves for 2DP-F powder. 

  



 

 

 

 

 

 

 

 

 

 

Supplementary Figure 12. Schematical illustration of the “dry-transfer” method to 

fabricate MIM devices based on 2DP-F. 

 

 

  



 

 

 

 

 

 

Supplementary Figure 13. Leakage current density versus the applied electrical field 

across the MIM devices based on 2DP-F with different thicknesses. 

 

  



 

 

 

 

 

 

Supplementary Figure 14. Capacitance-voltage (C-V) characteristic of 2DP-F parallel 

capacitors with different thicknesses.   

 

  



 

 

 

 

 

 

 

 

 

 

Supplementary Figure 15.  (a) Capacitance-voltage (C-V) characteristic, (b) C-f 

characteristic, and (c) leakage current of 2DP-F MIM device prepared using the direct 

metal deposition method.   

 

  



 

 

Supplementary Figure 16. (a). SEM image of the interdigital capacitors and (b) 

magnification of the area indicated by the white box in a. 

 

 

  



 

 

 

 

 

 

 

 

 

 

Supplementary Figure 17. (a). C-V characteristic of interdigitated capacitors before and 

after gap filling. (b) breakdown of the interdigitated capacitors. 

  



 

Supplementary Figure 18. (a). Schematic of a simplified Cu interconnect structure (top) 

and corresponding equivalent circuit used for the Silvaco TCAD simulation. (b) 

Interconnect parasitic capacitance reduction by substituting silicon oxide and SILK® with 

2DP-F.  

 

 

 

 

 

  



 

 

 

Supplementary Figure 19. (a). Schematic illustration of the indentation test. The 

displacement of the AFM tip includes two parts. (1) deformation of the AFM cantilever, 

and it can be expressed as Zcantilever=F/Kc., where F is the load and Kc is the stiffness of 

the cantilever. (2) deflection of the thin film, and it can be expressed as  

Zfilm=displacement- Zcantilever, and the load-deflection curves of the film can be obtained by 

subtracting cantilever deformation, as illustrated in b. c. SEM image of the AFM tip.  

 

  



 

 

 

 

 

 

 

Supplementary Figure 20. (a) Schematic illustration of the tensile test of 2DP-F film. (b) 

Stran-stress curves of a 40 nm 2DP-F film. The highest Young’s modulus reaches 13.5 

GPa. 

  



 

 

Supplementary Figure 21. (a) Phase lag vs. frequency data obtained from FDTR 

measurements shows a good approximation to the calculated best-fit curve. Each 

measurement is an average of three runs. (inset: schematic of FDTR measurement). (b) 

Sensitivity analysis of the thermal conductivity k of the COF, the thermal boundary 

conductance G1 between Au and the COF, and G2 between the COF and the substrate. 

k of the COF is highly sensitive throughout the frequency range of our measurement. 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

Supplementary Figure 22. (a) Optical image of CVD-grown MoS2 crystals. (b) Raman 

and (c) PL spectrum of monolayer MoS2.  

 

 

  



 

 

 

 

 

 

 

 

 

Supplementary Figure 23. Transfer curve of MoS2 a. with and b. without 2DP-F film 

dielectric layer, demonstrating that 2DP-F significantly suppressed the hysteresis induced 

by oxides. 

  



 

 

Category  Materials k YM(GPa) Density  
(g/cm3) 

Normalized  
YM 

reference 

 
MOFs 

ZIF-67 2.39 3.79 0.94 4.03 1 

ZIF-8 2.23 3.15 0.96 3.28 

ZIF-8 2.33 3 0.96 3.125 2 

HKUST-1 2.8 22 1.07 20.56 3 

 
PSZs 

PSZ-MFI film 2.7 53.9 1.76 30.625 4 

PSZ-FER 
crystal 

1.78 49.4 /  

PSZ MFI film 
on gold 

1.71 54 1.76 30.625 5 

 
 
 
 
 
 
 
 
 
 
 
Porous 
OSGs 

22 C:H 2.25 4.5 0.7 6.428 6 

625-SiOC:H 2.2 4.5 0.9 5 

186-SiOC:H 2.25 5.1 0.9 5.67 

322-SiOC:H 2.2 5.4 0.9 6 

94-SiOC:H 2 4.4 
 

0.7 6.29 

Si0.2C0.8:H#1 3.2 3.5 1.15 3.04 7 

Si0.2C0.8:H#2 3.2 4.8 1.15 4.12 

Si0.2C0.8:H#3 2.85 6.8 1.15 5.91 

SiOC:H#1 2.55 5.9 1.1 5.36 

SiOC:H#2 2.6 5.7 1.1 5.18 

SiOC:H#3 2.5 8.3 1.25 6.64 

SiOC:H#4 2.5 8.7 1.25 6.96 

c-T8B8 2.25 2.35 1.191 1.97 8 

c-T10B10 2.03 2.97 1.182 2.51 

c-T12B12 1.83 3.35 1.176 2.85 

c-T8PB8 2.30 2.5 1.141 2.19 

c-T10PB10 2.10 2.4 1.125 2.13 

c-T12PB12 1.93 2.43 1.119 2.17 

c-T8F8 2.52 2.36 1.281 1.84 

c-T10F10 2.33 2.51 1.274 1.97 

c-T12F12 2.14 2.69 1.266 2.12 

 
 
 

TmBPHF 2.1 2.02 1.21 1.67 9 

p-DBCOD-
BCB 

2.66 3.7   10 
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Supplementary Table 1. Meta-analysis of other low-k dielectrics with reported Young’s modulus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
polymers 

p-DBCOD-
ene-BCB 

2.54 3.8  
 

 

PI-FH 2.05 2.11 1.42 1.49 11 

PI-FO 2.76 2.42 1.42 1.70 

PI-FP 2.92 2.86 1.42 2.01 

6FDA-
PFODA-trans 

2.42 2.5 1.246 2.00 12 

6FDA-
PFODA-cis 

2.44 3.1 1.249 2.48 

PFODPA-
TFMB 

2.46 2.7 1.241 2.18 

6FDA-co-
PFODPA-
PFODA 

2.37 2.2 1.241 1.77 

6FDA-TFMB 2.78 2.5 1.283 1.95 

CYTOP® 2.1 1.3 2.03 0.64 13 

 
 
2DPs 

 
TAPB-TPOCx-
COF 

1.2 1.4 0.4 3.50 14. 

2DP-F 1.85 16.8 0.46 36.5 This work 
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