## Supplementary Information

## High performance 2D electronic devices enabled by strong and tough twodimensional polymer with ultra-low dielectric constant

Qiyi Fang<sup>1,2,#</sup> Kongyang Yi<sup>3,#</sup>, Tianshu Zhai <sup>1,#</sup>, Shisong Luo<sup>4</sup>, Chen-yang Lin<sup>1</sup>, Qing Ai<sup>1</sup>, Yifan Zhu<sup>1</sup>, Boyu Zhang<sup>1</sup>, Gustavo A. Alvarez<sup>5</sup>, Yanjie Shao<sup>6</sup>, Haolei Zhou<sup>2</sup>, Guanhui Gao<sup>1</sup>, Yifeng Liu<sup>1</sup>, Rui Xu<sup>1</sup>, Xiang Zhang<sup>1</sup>, Yuzhe Wang<sup>2</sup>, Xiaoyin Tian<sup>1</sup>, Honghu Zhang<sup>7</sup>, Yimo Han<sup>1</sup>, Hanyu Zhu<sup>1</sup>, Yuji Zhao<sup>4</sup>, Zhiting Tian<sup>5</sup>, Yu Zhong<sup>2</sup>, Zheng Liu<sup>3,\*</sup>, Jun Lou<sup>1,\*</sup>

<sup>1</sup>Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005,USA.

<sup>2</sup>Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.

<sup>3</sup>School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.

<sup>4</sup>Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.

<sup>5</sup>Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.

<sup>6</sup>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

<sup>7</sup>National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA.

<sup>#</sup>These authors contribute equally: Qiyi Fang, Kongyang Yi, Tianshu Zhai

\*Correspondence: jlou@rice.edu, z.liu@ntu.edu.sg



Supplementary Figure 1. TGA curves of Tp and HFDA. Both monomers begin to lose weight below  $300^{\circ}$ C.



**Supplementary Figure 2.** (a) Optical image of solution grown 2DP-F. In brief, 2ml solutions of Tp (2mM) and HFDA(3mM) in acetonitrile were mixed and 0.2 ml of 6M AcOH was added. A desired substrate (sapphire in this case) was added into the solution and kept at room temperature for 3 days. A yellow film of 2DP-F on sapphire was picked out, washed with Acetonitrile for 3 times and dried under ambient for further characterization. (b) AFM image of solution grown 2DP-F film and (c) corresponding line profile.



**Supplementary Figure 3.** AFM image of 2DP-F film ranging from 25nm to 250nm. Both films exhibited smooth and uniform surface.



**Supplementary Figure 4.** (a) Thickness of the 2DP-F film as a function of growth time and temperature when using 5nm 2DP-F thin film as starting substrate and 3M AcOH (aq) as catalyst. (b) AFM image of a 530 nm thick 2DP-F film and (c) corresponding line profile.



**Supplementary Figure 5.** Photograph of 2DP-F film grown in other transparent substrates.



**Supplementary Figure 6.** (a) Schematical illustration of direct photolithography on 2DP-F films. (b) Optical image of patterned 2DP-F films. (c) AFM image of 2DP-F film before and after patterning and (d) Corresponding line profile. (e) Schematic illustration of patterning 2DP-F by direct deposition of 2DP-F on patterned substrates. (f) Optical image of the 2DP-F film after lift-off in acetone with ultrasonication. (g) AFM image of the area highlighted in black square and (h) Corresponding line profile.



**Supplementary Figure 7.** (a) Raman spectra of 2DP-F film and monomers. (b) survey XPS of 2DP-F film. (inset: XPS spectrum of C1S signal from 2DP-F).



**Supplementary Figure 8.** Thickness-dependent XPS N1s spectra of 2DP-F films. The result indicates that some unreacted amino groups are present when the thickness is larger than 100 nm.



**Supplementary Figure 9.** (a). SEM image of a 20 nm 2DP-F suspended on a TEM grid. (b) High-resolution TEM image of suspended 2DP-F film. (c). A magnified view of the area indicated by the white box in b shows an amorphous structure. (d). FFT result of the area in (c) demonstrating a diffuse diffraction pattern of the amorphous structure.



**Supplementary Figure 10.** (a)GIWAXS scattering 2D image and (b) its intensity profile near  $Q_r=0$ . (c) molecular structure of a building unit in 2DP-F. (d) PXRD of 2DP-F powder collected after the reaction.



Supplementary Figure 11. Nitrogen sorption curves for 2DP-F powder.



i) Spin coat PMMA; ii) thermal release tape; iii) Peel off electrode in the presence of 10% NaOH(aq); iv) Put TRT/PMMA/Electrode on 2DP-F film; v) Remove TRT and PMMA by heating to 120°C and acetone respectively.

**Supplementary Figure 12.** Schematical illustration of the "dry-transfer" method to fabricate MIM devices based on 2DP-F.



**Supplementary Figure 13.** Leakage current density versus the applied electrical field across the MIM devices based on 2DP-F with different thicknesses.



**Supplementary Figure 14.** Capacitance-voltage (C-V) characteristic of 2DP-F parallel capacitors with different thicknesses.



**Supplementary Figure 15.** (a) Capacitance-voltage (C-V) characteristic, (b) C-f characteristic, and (c) leakage current of 2DP-F MIM device prepared using the direct metal deposition method.



**Supplementary Figure 16.** (a). SEM image of the interdigital capacitors and (b) magnification of the area indicated by the white box in a.



**Supplementary Figure 17.** (a). C-V characteristic of interdigitated capacitors before and after gap filling. (b) breakdown of the interdigitated capacitors.



**Supplementary Figure 18.** (a). Schematic of a simplified Cu interconnect structure (top) and corresponding equivalent circuit used for the Silvaco TCAD simulation. (b) Interconnect parasitic capacitance reduction by substituting silicon oxide and SILK<sup>®</sup> with 2DP-F.



**Supplementary Figure 19.** (a). Schematic illustration of the indentation test. The displacement of the AFM tip includes two parts. (1) deformation of the AFM cantilever, and it can be expressed as  $Z_{cantilever}$ =F/Kc., where F is the load and Kc is the stiffness of the cantilever. (2) deflection of the thin film, and it can be expressed as  $Z_{film}$ =displacement-  $Z_{cantilever}$ , and the load-deflection curves of the film can be obtained by subtracting cantilever deformation, as illustrated in b. c. SEM image of the AFM tip.



**Supplementary Figure 20.** (a) Schematic illustration of the tensile test of 2DP-F film. (b) Stran-stress curves of a 40 nm 2DP-F film. The highest Young's modulus reaches 13.5 GPa.



**Supplementary Figure 21.** (a) Phase lag vs. frequency data obtained from FDTR measurements shows a good approximation to the calculated best-fit curve. Each measurement is an average of three runs. (inset: schematic of FDTR measurement). (b) Sensitivity analysis of the thermal conductivity k of the COF, the thermal boundary conductance G1 between Au and the COF, and G2 between the COF and the substrate. k of the COF is highly sensitive throughout the frequency range of our measurement.



**Supplementary Figure 22.** (a) Optical image of CVD-grown  $MoS_2$  crystals. (b) Raman and (c) PL spectrum of monolayer  $MoS_2$ .



**Supplementary Figure 23.** Transfer curve of MoS<sub>2</sub> a. with and b. without 2DP-F film dielectric layer, demonstrating that 2DP-F significantly suppressed the hysteresis induced by oxides.

| Category       | Materials               | k    | YM(GPa) | Density<br>(a/cm3) | Normalized<br>YM | reference |  |
|----------------|-------------------------|------|---------|--------------------|------------------|-----------|--|
| MOFs           | ZIF-67                  | 2.39 | 3.79    | 0.94               | 4.03             | 1         |  |
|                | ZIF-8                   | 2.23 | 3.15    | 0.96               | 3.28             |           |  |
|                | ZIF-8                   | 2.33 | 3       | 0.96               | 3.125            | 2         |  |
|                | HKUST-1                 | 2.8  | 22      | 1.07               | 20.56            | 3         |  |
| PSZs           | PSZ-MFI film            | 2.7  | 53.9    | 1.76               | 30.625           | 4         |  |
|                | PSZ-FER<br>crystal      | 1.78 | 49.4    | /                  |                  |           |  |
|                | PSZ MFI film<br>on gold | 1.71 | 54      | 1.76               | 30.625           | 5         |  |
| Porous<br>OSGs | 22 C:H                  | 2.25 | 4.5     | 0.7                | 6.428            | 6         |  |
|                | 625-SiOC:H              | 2.2  | 4.5     | 0.9                | 5                |           |  |
|                | 186-SiOC:H              | 2.25 | 5.1     | 0.9                | 5.67             |           |  |
|                | 322-SiOC:H              | 2.2  | 5.4     | 0.9                | 6                |           |  |
|                | 94-SiOC:H               | 2    | 4.4     | 0.7                | 6.29             |           |  |
|                | Si0.2C0.8:H#1           | 3.2  | 3.5     | 1.15               | 3.04             | 7         |  |
|                | Si0.2C0.8:H#2           | 3.2  | 4.8     | 1.15               | 4.12             |           |  |
|                | Si0.2C0.8:H#3           | 2.85 | 6.8     | 1.15               | 5.91             |           |  |
|                | SiOC:H#1                | 2.55 | 5.9     | 1.1                | 5.36             |           |  |
|                | SiOC:H#2                | 2.6  | 5.7     | 1.1                | 5.18             |           |  |
|                | SiOC:H#3                | 2.5  | 8.3     | 1.25               | 6.64             |           |  |
|                | SiOC:H#4                | 2.5  | 8.7     | 1.25               | 6.96             |           |  |
|                | c-T8B8                  | 2.25 | 2.35    | 1.191              | 1.97             | 8         |  |
|                | c-T10B10                | 2.03 | 2.97    | 1.182              | 2.51             |           |  |
|                | c-T12B12                | 1.83 | 3.35    | 1.176              | 2.85             |           |  |
|                | c-T8PB8                 | 2.30 | 2.5     | 1.141              | 2.19             |           |  |
|                | c-T10PB10               | 2.10 | 2.4     | 1.125              | 2.13             |           |  |
|                | c-T12PB12               | 1.93 | 2.43    | 1.119              | 2.17             |           |  |
|                | c-T8F8                  | 2.52 | 2.36    | 1.281              | 1.84             |           |  |
|                | c-T10F10                | 2.33 | 2.51    | 1.274              | 1.97             |           |  |
|                | c-T12F12                | 2.14 | 2.69    | 1.266              | 2.12             |           |  |
|                | TmBPHF                  | 2.1  | 2.02    | 1.21               | 1.67             | 9         |  |
|                | p-DBCOD-<br>BCB         | 2.66 | 3.7     |                    |                  | 10        |  |

|          | p-DBCOD-<br>ene-BCB          | 2.54 | 3.8  |       |      |           |
|----------|------------------------------|------|------|-------|------|-----------|
| polymers | PI-FH                        | 2.05 | 2.11 | 1.42  | 1.49 | 11        |
|          | PI-FO                        | 2.76 | 2.42 | 1.42  | 1.70 |           |
|          | PI-FP                        | 2.92 | 2.86 | 1.42  | 2.01 |           |
|          | 6FDA-<br>PFODA-trans         | 2.42 | 2.5  | 1.246 | 2.00 | 12        |
|          | 6FDA-<br>PFODA-cis           | 2.44 | 3.1  | 1.249 | 2.48 |           |
|          | PFODPA-<br>TFMB              | 2.46 | 2.7  | 1.241 | 2.18 |           |
|          | 6FDA-co-<br>PFODPA-<br>PFODA | 2.37 | 2.2  | 1.241 | 1.77 |           |
|          | 6FDA-TFMB                    | 2.78 | 2.5  | 1.283 | 1.95 |           |
|          | CYTOP®                       | 2.1  | 1.3  | 2.03  | 0.64 | 13        |
| 2DPs     | TAPB-TPOCx-<br>COF           | 1.2  | 1.4  | 0.4   | 3.50 | 14        |
|          | 2DP-F                        | 1.85 | 16.8 | 0.46  | 36.5 | This work |

Supplementary Table 1. Meta-analysis of other low-k dielectrics with reported Young's modulus

## Supplementary References

- 1. Krishtab, M. *et al.* Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics. *Nature Communications* **10**, 3729 (2019).
- 2. Eslava, S. *et al.* Metal-Organic Framework ZIF-8 Films As Low-к Dielectrics in Microelectronics. *Chemistry of Materials* **25**, 27-33 (2013).
- 3. Babal, A.S., Chaudhari, A.K., Yeung, H.H.-M. & Tan, J.-C. Guest-Tunable Dielectric Sensing Using a Single Crystal of HKUST-1. *Advanced Materials Interfaces* **7**, 2000408 (2020).
- 4. Li, Z. *et al.* Mechanical and Dielectric Properties of Pure-Silica-Zeolite Low-k Materials. *Angewandte Chemie International Edition* **45**, 6329-6332 (2006).
- 5. Tiriolo, R. *et al.* Sub-Micrometer Zeolite Films on Gold-Coated Silicon Wafers with Single-Crystal-Like Dielectric Constant and Elastic Modulus. *Advanced Functional Materials* **27**, 1700864 (2017).
- 6. Zeng, M., Zhang, J. & Wang, Y. Investigation of the impact of annealing temperature on characteristics of porous SiOCH films. *Journal of Physics: Conference Series* **2563**, 012033 (2023).
- 7. Zhou, W. *et al.* Elastic properties of porous low-k dielectric nano-films. *Journal of Applied Physics* **110**, 043520 (2011).
- 8. Zhou, D.-L. *et al.* Linker engineering of larger POSS-based ultra-low-k dielectrics toward outstanding comprehensive properties. *Giant* **14**, 100146 (2023).
- 9. Qian, C. *et al.* Facile Strategy for Intrinsic Low-k Dielectric Polymers: Molecular Design Based on Secondary Relaxation Behavior. *Macromolecules* **52**, 4601-4609 (2019).
- 10. Feng, Y., Jin, K., Guo, J. & Wang, C. All-carbocycle hydrocarbon thermosets with high thermal stability and robust mechanical strength for low-k interlayer dielectrics. *Polymer Chemistry* **12**, 4812-4821 (2021).
- 11. Sun, Y. *et al.* Preparation and Characterization of Intrinsic Low-κ Polyimide Films. *Polymers* **13**, 4174 (2021).
- 12. Peng, W., Lei, H., Qiu, L., Bao, F. & Huang, M. Perfluorocyclobutyl-containing transparent polyimides with low dielectric constant and low dielectric loss. *Polymer Chemistry* **13**, 3949-3955 (2022).
- 13. Fong, N.R., Berini, P. & Tait, R.N. Mechanical Properties of Thin Free-Standing CYTOP Membranes. *Journal of Microelectromechanical Systems* **19**, 700-705 (2010).
- 14. Shao, P. *et al.* Flexible Films of Covalent Organic Frameworks with Ultralow Dielectric Constants under High Humidity. *Angewandte Chemie International Edition* **57**, 16501-16505 (2018).