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Version 0: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
The goal of this paper (to identify the most toxic components of PM2.5 mass) is laudable. However, there is a major problem
in treating highly correlated variables, as shown in table S2 (which should be in the main document) as if they are
independent, and then applying a statistical approach to parse the effects of such highly correlated components as if they act
independent of one another (which they clearly are not). So just tossing them all in a weighted least squares and seeing
where the cards fall is inappropriate. 
In addition, past PM2.5 research has shown that the constituents do not act independent of one another (as assumed in this
analysis, as it seeks to parse the PM2.5 among the constituents considered), but instead interact with each other, depending
on the source mixture. For example, Weichenthal et al have found that sulfates were not related with CVD events unless
transition metals were also present at high levels, such as found in fossil fuel combustion particle mixtures (Association of
Sulfur, Transition Metals, and the Oxidative Potential of Outdoor with Acute Cardiovascular Events: A Case-Crossover Study
of Canadian Adults. EHP, 2021.). Clearly, there is a need to look at the interactive influences of transition metals not at all
considered here. Best would be to do source apportionment PM2.5, and compare the source specific mixture effects. Are
these data not available from the models employed? If not, the analysis is ignoring the source specific mixture effects, and
this must be well acknowledged. 
As to what could be done to improve the analysis, given the lack of a full characterization of the pollutant mixtures. At
minimum, there is a need to try other approaches and compare, such as looking at each constituent individually, as others
have done, and see which serves as the best single index of the highly intercorrelated mixture. That is not to say that that
would be the causal constituent, but instead it must be realized by the authors that their metrics are just indices, not
necessarily the causal agent. Measurement and estimation error by the model may drive the results. (The relative errors of
their respective estimations should also be incorporated into the Confidence Intervals). One example where misleading
results can come from the approach used here is ammonium, which is correlated with nitrate and sulfate because ammonia
has neutralized ambient sulfuric and nitric acid to form ammonium sulfate and ammonium nitrate. But while ammonium may
be a good index of these two toxic ions, it itself has no known toxicity of its own, perse. These biological plausibility
arguments must be considered and addressed. 
The weighted least squares approach used here is highly unstable, statistically, given the very high intercorrelations among
the variables it attempts to parse. The authors do trim the data, which may help, but they should, at minimum, also apply a 10
fold cross-validation approach to assess the uncertainty of the results to choice of observations (in addition to ther relative
accuracy of estimation: have these estimates been compared with ambient data in the locale considered?). I expect adding
those uncertainties will indicate much wider confidence intervals in the estimates than those presented in Table 2 or 3. In
other words, it seems unlikely that a fuller consideration of the uncertainties in this approach will actually yield estimates that
differ across the various constituent indices. 

Reviewer #2 

(Remarks to the Author) 
Using a nationwide health database with more than 2 million acute coronary syndrome (ACS) patients and a case-crossover
design, this manuscript reported the results of a data analysis examining the differential effects of fine particulate
constituents on ACS onset. The strengths of this study include a large and representative sample of ACS patients in China,
the high spatial and temporal resolution model for the constituent data of fine particulate matter exposure, and the use of a



novel statistical model to assess the joint effects of correlated co-exposures. 

The findings of differential effects of fine particulate constituents on ACS onset are interesting and have some potential to
significantly advance the current literature in relevant research fields. However, my enthusiasm for this manuscript is
reduced by a few major concerns: 

1. As reported in this study, each of the constituents was only associated with 2% or less increased odds in ACS onset.
Given the low magnitude of the associations, the significance of the study findings are not very convincing. At the population
level, however, the authors may want to report the total number of ACS cases that could be prevented if the level of each
constituent is reduced by 1 standard deviation or interquartile range. Reporting the number of ACS cases that can be
prevented by reducing air pollution level will give this study a lot higher public health relevance. 

2. Some of the comments in the Introduction do not seem to be correct or appropriate. For example, “The majority of studies
utilized time-series design based on daily counts of CVD hospitalization or death, rather than disease onset. This inevitably
leads to ecological fallacy and temporal misclassification of exposure.”. This statement sounds too absolute and strong, as
not all of the studies with those types of design would have ecological fallacy or temporal misclassification. Pls revise this
statement and clearly specify under what circumstances that ecological fallacy and temporal misclassification would
happen. 

3. It is not appropriate to examine the differences between groups using a Z-test as specified on page 10. Instead, it is better
to use interaction terms to test potential effect modifications. 

4. Page 17, 2nd paragraph: The discussions regarding potential mechanisms for the observed differential associations
between PM2.5 constituents and ACS subtypes are unclear and hard to following. It’ll be helpful to add a more thoughtful
discussion here that may explain some of the study findings related to ACS subtypes. 

Reviewer #3 

(Remarks to the Author) 
The authors analyzed the joint and individual effect of five PM2.5 chemical compounds (organic matter, black carbon,
ammonium, nitrate and sulfate) on the occurrence of ACS. An impressive number of more than 2,100,000 patients from
2,096 Chinese hospitals were included in a seven-year time period, and a case-crossover design was applied. The total
PM2.5 mass and the mass of all five chemical compounds were significantly associated with an increased risk of acute
coronary syndrome. The effects were higher in lag 0, for chemical compounds organic matter and black carbon, in older
patients, in cold season and in the southern part of China. A sensitivity analysis with adjustment for total PM2.5 mass
showed significant results for organic matter, black carbon and ammonium, but not for nitrate or sulfate. 

The topic of this article is highly relevant, novel and interesting. Indeed, acute effects of ambient PM2.5 mass on ACS are
widely described and recognized. However, only the size of the particles is taken into consideration to classify the exposure
to this air pollutant and only very few studies have focused on the qualitative aspects of the particle composition. Indeed,
toxicity of particles depends of their chemical composition and, in 2024, we have very few evidences on the chemical
compounds triggering the cardiovascular consequences of air pollutantion exposure. Even if this study is highly relevant,
there are some mains points needing some revision. 

Major comments: 
1) The methodology of how the PM2.5 constituents were measured needs is not explained in the method section. This is not
acceptable for a study aiming to describe the effects of PM chemical constituents on the triggering of ACS. Only after reading
the dedicated TAP website it appears that the chemical nature of the PM2.5 were not directly evaluated at it was done by
other investigators from China, Canada or US but comes from a modelization method based on daily measured values of
fixed stations, completed by a machine learning algorithm. This method merits a better description and explanation on how it
was validated against field measurement. 

2) Line 83 and 374: Exposure misclassification is indeed an important limitation in the modelization of PM2.5 effects on
health. This study used again a combination of weather forecasting, ground observations, machine learning and multisource
PM2.5 data to estimate the PM2.5 constituent mass at the hospital address on a 10x10km resolution. Although this reduces
the exposure misclassification compared to using aggregated regional pollution data or the values of fixed monitoring
stations, the modelization was not done at the patient living address and authors assume that the patient exposure was
related to the exposure at the admission hospital. Consequently, there is still a major possible exposure misclassification
bias left. 

3) Air temperature changes are a main trigger of AMI. All pollutants are negatively (PM, NO2) or positively (O2) associated
with temperature. Control of temperature bias is one of the most important interest in the use of case crossover design with
stratification of control periods in the case crossover are frequently done in the same temperature range (+/- 1 or 2°C for ex.). 
Could you explain why you chose to add temperature as a confounder in the model, instead of matching the cases and
controls according to ambient temperature? 

4) Line 145: “To avoid the potential influence of outliers in air pollutants concentrations, the highest and lowest 2.5% of daily



concentrations during the study period were removed before formal analyses”. China is known as one of the hot spot of air
pollutant exposure worldwide. Are these outliers related to some errors in modelization or related to real major air pollution
peaks only observable in highly industrialized country like China ? Do you mean that ACS during these outlier days were
not included into the study ? Were the values investigated before the decision to remove them from the analysis ? If the
outliers are no errors, than they should leave into the analysis as they reflect the variability of the study area ? 

5) Line 269 and Figure 3: a WQS is used and a bar chart illustrates the weight of the five constituents in the effect of PM2.5
on ACS. However, a limitation of the study is the non-measurement of transition metals. Figure 3 gives a clear overview but
the reader may falsely conclude that all five compounds together explain 100% of the effect of the PM2.5 on ACS. Is the
WQS model able to estimate the effect of non-measured compounds? 

6) While literature is not always able to show significant results regarding the effect of PM2.5 on ACS (only a positive trend is
very common), this study has significant results, not only for the effect of total PM2.5 mass on ACS in the total study
population, but as well in all subgroups and for all measured chemical constituents. This can be explained by the very high
power because of the very large database, but also because of the choise to estimate the risk for ACS per IQR increase in
PM2.5. Indeed most studies investigate the effect of an increase of 10µg/m3, while in this study the IQR equals an increase
of 30µg/m3. To generalize the findings and be able to compare them with other literature, I suggest performing an additional
analysis on the effect of a 10µg/m3 PM2.5 increase. 

7) Line 220: In contrast with literature, the proportion of STEMI (35.9%) is higher than NSTEMI (21.2%). Can you explain this
please? 

Minor comments: 

- Line 45. “All five constituents” is mentioned, but the different constituents are not yet listed. This creates confusion for the
readers. 

- Line 80: For me, it is not clear why the term ecologic fallacy is used here. Can you explain this please? 

- Line 265: the sensitivity analysis shows that the effect nitrate and sulfate is completely dependent on the total PM2.5 mass,
correct? This should be mentioned clearer. 

- Line 235 and Figure 1: “Generally, the onset risk increased immediately on the concurrent day of exposure, attenuated
thereafter, and became null at lag 2 day.” On figure 1 the effect decreases even more at lag3, nearly showing a significant
negative association. Have you explored the log4, log5 or other lag effects? This negative effect could be explained by the
harvesting effect, a period of excess mortality followed by a period with a mortality deficit because of the deaths of vulnerable
patients at the pollution peak. 

Reviewer #4 

(Remarks to the Author) 
I co-reviewed this manuscript with one of the reviewers who provided the listed reports. This is part of the Nature
Communications initiative to facilitate training in peer review and to provide appropriate recognition for Early Career
Researchers who co-review manuscripts. 

Version 1: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
The model applied is a weighted linear model, and the problem of very high intercorrelations remains. The model has the
limitation that it assumes linearity (see Renzetti et al, Front Public Health.2023), which the Supplementary Figures indicate
not to be satisfied. As seen in Supplementary Figure 5, for example, sulfates is the index that tends to satisfy linearity for that
NSTEMI outcome, as well as for UA. The very bent over shape of the carbon metrics is contrary to biological plausibility for it
to be causal, itself: Why would there be diminished (or no) added health effects as concentrations rise (e.g., for Black Carbon
above 4 µg/m3 )? This needs acknowledgement and addressing in the paper. The likely reason for the bending of the
carbon metrics is that the dominant source of carbon must change as the concentration rises, perhaps from fossil fuel
combustion at low levels, to biomass burning at the highest levels? This is a situation similar to that confronted by Rahman
et al, Int J Epidemiol, 2021), and applying their approach to these data would be informative. 
Looking at the sulfate effect coefficients, for example, it is apparent that its associated PM2.5 mass is more toxic than the
average overall PM2.5 mass. Using Supplemental Table 3, the % NSTEM1 (lag 0) increase is 0.43% per 1 µg/m3 SO4. So,
since it is likely as ammonium sulfate, that is 0.43% per 1 x 132/96 (based on molecular wts) = 1.375 µg/m3 sulfate PM2.5
mass for the .43% effect, yielding an effect of (10/1.375) x .43% = 3.1% per sulfate associated PM2.5 , or (3.1/.94 =) 3.3 times
the STEM1 effect per 10 µg/m3 of the overall PM2.5 . This also needs consideration and discussion. 

Reviewer #2 



(Remarks to the Author) 
This revision has adequately addressed all of my previous concerns. I have no further comments. 

Reviewer #3 

(Remarks to the Author) 
All my comments are properly answered. No further comments. Congrats for your work. 

Reviewer #4 

(Remarks to the Author) 
I co-reviewed this manuscript with one of the reviewers who provided the listed reports. This is part of the Nature
Communications initiative to facilitate training in peer review and to provide appropriate recognition for Early Career
Researchers who co-review manuscripts. 

Version 2: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
This revision has adequately addressed my previous concerns. 
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Response to Comments from Reviewers: 

We sincerely appreciate your valuable time in reviewing our manuscript 

and the excellent suggestions and comments you provided. We have 

performed additional analyses and made changes to our manuscript in 

response to the comments. Point-by-point responses were made for each 

comment. The line numbers in this response letter refer to those in the revised 

manuscript. According to the journal's formatting requirements, we have placed 

the Methods section at the end, after the Discussion. 

 

REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

1. The goal of this paper (to identify the most toxic components of PM2.5 mass) 

is laudable. However, there is a major problem in treating highly correlated 

variables, as shown in table S2 (which should be in the main document) as if 

they are independent, and then applying a statistical approach to parse the 

effects of such highly correlated components as if they act independent of one 

another (which they clearly are not). So just tossing them all in a weighted least 

squares and seeing where the cards fall is inappropriate.  

Response: Thanks for your comment. We believe the reviewer's negative 

comments mainly stem from a misunderstanding of our methodology. Our 

study applied the WQS (i.e., weighted quantile sum) regression, not the 

weighted least squares (WLS) regression.  

First, WQS regression is a common and classic modeling technique which 

can identify the association between mixtures and the outcome of interest while 

reducing the impact of high collinearity 1. It has been widely used in 

environmental epidemiological studies to explore the health effects of multiple 

environmental factors such as PM2.5 chemical constituents 2-7. The main 

principle of WQS regression is to combine multiple correlated predictors 

into a single index that represents the overall mixture. Different from WLS 

which applies weights to observations to address heteroscedasticity, 

WQS gives weights to predictive variables of interest to build a composite 

index. Specifically, the process begins with randomly splitting the original data 
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into a training set and a validation set. Each constituent exposure is converted 

into a categorical variable representing the quantiles (quartiles in our case). A 

fixed number of bootstrap samples of the same size as the training dataset are 

first generated from the training dataset, and are used to estimate the weights 

through maximum likelihood estimation. The weights are constrained to sum to 

1. The final weights are defined using average weights across the bootstrap 

samples. Then a weighted index is constructed by using the final weights and 

subsequently incorporated into the regression model using the validation set to 

estimate the joint effects of components mixture on the health outcome. In the 

present analysis, 40% of the dataset was used for training and 60% for 

validation, with the bootstrap set at 100 times. We have also added more details 

on the WQS regression in the revised manuscript (see lines 456-485 and 

Supplementary Methods). 

Second, we acknowledge that our results reflect statistical associations 

rather than causal relationships. Future research, such as randomized 

controlled trials, is warranted to validate the true effects of the 

components and better understand their individual contributions. We 

have also included this limitation in the Discussion section of the revised 

manuscript (see lines 344-348).  

Third, following your suggestion, we have placed Supplementary Table 2 

into the main document. Please refer to Table 2 in the revised manuscript.  

If you suppose that there are other appropriate methods that could 

be applied in the present analyses, we are very willing to add the 

corresponding analyses.  

References: 
1. Carrico, C., Gennings, C., Wheeler, D.C. & Factor-Litvak, P. Characterization of 
Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting. 
J Agric Biol Environ Stat 20, 100-120 (2015). 
2. Li, S., et al. Long-term Exposure to Ambient PM2.5 and Its Components Associated 
With Diabetes: Evidence From a Large Population-Based Cohort From China. Diabetes 
Care 46, 111-119 (2023). 
3. Huang, Q., et al. Association between manganese exposure in heavy metals mixtures 
and the prevalence of sarcopenia in US adults from NHANES 2011-2018. J Hazard Mater 
464, 133005 (2024). 
4. Cai, C., et al. Long-term exposure to PM(2.5) chemical constituents and diabesity: 
evidence from a multi-center cohort study in China. Lancet Reg Health West Pac 47, 
101100 (2024). 
5. Guo, B., et al. Long-term exposure to ambient PM2.5 and its constituents is associated 
with MAFLD. JHEP Rep 5, 100912 (2023). 
6. Li, J., et al. Ambient PM2.5 and its components associated with 10-year 
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atherosclerotic cardiovascular disease risk in Chinese adults. Ecotoxicol Environ Saf 263, 
115371 (2023). 
7.  Pu, F., et al. Heterogeneous associations of multiplexed environmental factors and 
multidimensional aging metrics. Nat Commun 15, 4921 (2024). 

 

2. In addition, past PM2.5 research has shown that the constituents do not act 

independent of one another (as assumed in this analysis, as it seeks to parse 

the PM2.5 among the constituents considered), but instead interact with each 

other, depending on the source mixture. For example, Weichenthal et al have 

found that sulfates were not related with CVD events unless transition metals 

were also present at high levels, such as found in fossil fuel combustion particle 

mixtures (Association of Sulfur, Transition Metals, and the Oxidative Potential 

of Outdoor with Acute Cardiovascular Events: A Case-Crossover Study of 

Canadian Adults. EHP, 2021.). Clearly, there is a need to look at the interactive 

influences of transition metals not at all considered here. Best would be to do 

source apportionment PM2.5, and compare the source specific mixture effects. 

Are these data not available from the models employed? If not, the analysis is 

ignoring the source specific mixture effects, and this must be well 

acknowledged. 

Response: Thanks for your insightful comment.  

First, we acknowledge the importance of considering the interactions 

between different PM2.5 constituents, especially transition metals. 

Unfortunately, our study did not include metallic elements due to the lack 

of publicly available nationwide exposure data of high spatiotemporal 

resolution for these constituents in China. On the one hand, we added this 

issue as a limitation and the study of Weichenthal et al as a reference, and 

emphasized the need for future research to fully investigate the health impacts 

of metallic elements (see lines 351-353). On the other hand, to explore the 

potential presence of unmeasured constituents with health effects, we 

subtracted the concentrations of the five measured constituents from the 

total PM2.5 mass to obtain the remaining unmeasured components, and 

reran the main models based on these remaining components. As shown 

in Supplementary Table 9 and Supplementary Fig. 8, their effects were 

weaker than organic matter and black carbon, and comparable to nitrate, 

sulfate, and ammonium. These results suggest that there may be important 
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unmeasured constituents of PM2.5 that warrant further investigation. We added 

this as a supplementary analysis (see lines 186-192, 251-253, and 505-509), 

and did not explore the interactions between PM2.5 constituents and the 

remaining components for the following reasons: 1) since both PM2.5 and 

the five constituents were model-predicted, directly subtracting the 

concentrations of the five constituents from total PM2.5 mass is a rather crude 

approach and could introduce double exposure measurement errors; 2) there 

may be various unknown chemicals other than metallic elements in the 

remaining components, making it difficult to identify the nature of unmeasured 

constituents.  

Second, analyzing the health effects of PM2.5 components and PM2.5 

sources are distinct topics. There is a lack of nationwide PM2.5 source data 

of high spatiotemporal resolution in China, which limits our ability to explore the 

source-specific mixture effects. We have acknowledged this limitation in the 

revised manuscript (see lines 351-353). Additionally, we believe our analysis 

on the health effects of PM2.5 components could provide valuable clues and 

support for future research on source-specific effects.  

 

3. As to what could be done to improve the analysis, given the lack of a full 

characterization of the pollutant mixtures. At minimum, there is a need to try 

other approaches and compare, such as looking at each constituent individually, 

as others have done, and see which serves as the best single index of the highly 

intercorrelated mixture. That is not to say that that would be the causal 

constituent, but instead it must be realized by the authors that their metrics are 

just indices, not necessarily the causal agent. Measurement and estimation 

error by the model may drive the results. (The relative errors of their respective 

estimations should also be incorporated into the Confidence Intervals). One 

example where misleading results can come from the approach used here is 

ammonium, which is correlated with nitrate and sulfate because ammonia has 

neutralized ambient sulfuric and nitric acid to form ammonium sulfate and 

ammonium nitrate. But while ammonium may be a good index of these two toxic 

ions, it itself has no known toxicity of its own, perse. These biological plausibility 

arguments must be considered and addressed. 

Response: This is a thought-provoking question! In this study, we did 
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examine the effects of individual constituents and reported the 

corresponding effect estimates with 95% confidence intervals, as 

previous studies have done 1-3. Then we utilized weighted quantile sum 

(WQS) regression to investigate the joint effects and each constituent’s 

relative contribution.  

Currently, the mainstream approaches for evaluating health effects of 

highly-correlated pollutant mixtures include WQS regression 4, quantile-

based g computation (QGC) 5, and Bayesian kernel machine regression 

(BKMR) 6. We provide a brief comparison among the three approaches in Table 

R1.  

 

Table R1. A brief comparison among WQS, QGC, and BKMR. 

Methods Advantages Limitations 

WQS • Examines the joint effects of 

chemical mixture exposures 

• Provides interpretable weights for 

each component of the mixture, 

aiding in identifying key 

components 

• Limited in assessing joint effects 

of chemicals with diverse effect 

directions 

• Limited in chemical interactions 

identification 

QGC • Combines WQS regression and 

g-computation without assuming 

directional homogeneity 

• Results can be harder to interpret 

compared to WQS 

BMKR • Facilitates the visualization of the 

effect of a single and combined 

exposure 

• Extrapolating nonlinear exposure-

response functions 

• Very computationally intensive, 

particularly for large datasets or 

many exposures 

• Fixing other chemicals at certain 

levels to extrapolate the 

exposure–response function 

limits the ability to estimate the 

effects of co-exposure patterns 

with both high and low levels of 

chemicals 

Abbreviations: WQS, weighted quantile sum; QGC, quantile-based g 
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computation; BKMR, Bayesian kernel machine regression.  

 

This reviewer rightly highlighted the importance of incorporating the relative 

errors of each component into the confidence intervals. However, none of the 

three methods mentioned above (WQS, QGC, and BKMR) provide 

confidence intervals for individual components when estimating their 

relative importance (i.e., weights in WQS and QGC, and posterior inclusion 

probabilities in BKMR). Despite this limitation, WQS, QGC, and BKMR remain 

widely utilized in thousands of previous studies. A newly proposed method, 

named repeated holdout validation for WQS, can help characterize the 

uncertainty of weights by randomly partitioning the dataset for 100 times and 

repeating WQS regression on each set to simulate a distribution of validated 

results 7. However, it is computationally intensive and up to 100 times more 

time-consuming than standard WQS. This method is considered suitable for 

smaller sample sizes (hundreds to thousands). For large datasets like ours, this 

approach is not feasible, and our sample size is stable enough that such 

extensive random partitioning is generally unnecessary. In summary, 

addressing the technical limitation proposed by the reviewer is still a 

promising area for future methodological development by statisticians. 

We have included these issues in the limitation section of the revised 

manuscript (see below or refer to lines 348-351). 

“Fourth, both WQS and QGC provide fixed index weights without 

confidence intervals, which is a shortcoming in this area as it prevents 

estimating the statistical significance of the weights.” 

 

In response to your suggestion of trying other approaches, we added 

an analysis by using QGC (see lines 182-186, 240-251, 498-504, and 

Supplementary Fig. 7). This method maintains the simple inferential 

framework of WQS without assuming directional homogeneity, and the weights 

may go in either direction. The sum of positive and negative weights is both 

equal to 1. The weights are only compatible with other weights in the same (i.e., 

positive or negative) direction, whereas positive and negative weights should 

not be compared with each other. Results showed that a quartile increase in 

mixture of the five constituents was significantly associated with an increase of 
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0.92% (95%CI: 0.75%–1.09%) in the risk of ACS onset. Organic matter and 

black carbon had higher weights, which was consistent with our initial 

results. An interesting finding is that the estimated weight for nitrate became 

negative. However, it does not necessarily indicate a significant negative 

association between nitrate and ACS onset. This may be explained by high 

correlations among these constituents, which can lead to some constituents 

being non-significant in QGC and ultimately result in the overall negative effect 

being close to zero and negative weights being substantive 8. Similar patterns 

have also been observed in previous studies 8-10. We did not implement 

BKMR due to its substantial computational demands. Current applications 

of BKMR are typically limited to sample sizes less than 10,000. The 

computational resources and time would become prohibitive for our dataset of 

over 2,000,000 cases and 7,000,000 controls. Besides, we are open to other 

specific methodological suggestions you may have and are willing to 

incorporate further modifications to improve our analyses. 

We agree that biological plausibility is crucial in interpreting our results. In 

the revised manuscript, we emphasized that results on ammonium should be 

interpreted with caution, and future studies are warranted to clarify this issue. 

Please see below or refer to lines 262-266. 

“Furthermore, ammonium is often correlated with nitrate and sulfate 17, 

which complicates the interpretation of the results, as the observed health 

effects may be attributed to nitrate and sulfate rather than ammonium itself. 

Therefore, results on ammonium should be interpreted with caution and warrant 

future elucidation.” 

 
References: 
1. Peng, R.D., et al. Emergency admissions for cardiovascular and respiratory diseases 
and the chemical composition of fine particle air pollution. Environ Health Perspect 117, 
957-963 (2009). 
2. Mo, S., et al. Short-term effects of fine particulate matter constituents on myocardial 
infarction death. J Environ Sci (China) 133, 60-69 (2023). 
3. Liu, L., Zhang, Y., Yang, Z., Luo, S. & Zhang, Y. Long-term exposure to fine particulate 
constituents and cardiovascular diseases in Chinese adults. J Hazard Mater 416, 126051 
(2021). 
4. Carrico, C., Gennings, C., Wheeler, D.C. & Factor-Litvak, P. Characterization of 
Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting. 
J Agric Biol Environ Stat 20, 100-120 (2015). 
5. Keil, A.P., et al. A Quantile-Based g-Computation Approach to Addressing the Effects 
of Exposure Mixtures. Environ Health Perspect 128, 47004 (2020). 
6. Bobb, J.F., et al. Bayesian kernel machine regression for estimating the health effects 
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of multi-pollutant mixtures. Biostatistics 16, 493-508 (2015). 
7.  Tanner, E.M., Bornehag, C.G. & Gennings, C. Repeated holdout validation for 
weighted quantile sum regression. MethodsX 6, 2855-2860 (2019). 
8. Zhou, H., et al. Associations of Long-Term Exposure to Fine Particulate Constituents 
With Cardiovascular Diseases and Underlying Metabolic Mediations: A Prospective 
Population-Based Cohort in Southwest China. J Am Heart Assoc 13, e033455 (2024). 
9. Zhao, N., Smargiassi, A., Chen, H., Widdifield, J. & Bernatsky, S. Systemic 
autoimmune rheumatic diseases and multiple industrial air pollutant emissions: A large 
general population Canadian cohort analysis. Environ Int 174, 107920 (2023). 
10. Zhao, N., et al. Fine particulate matter components and interstitial lung disease in 
rheumatoid arthritis. Eur Respir J 60(2022). 

 

4. The weighted least squares approach used here is highly unstable, 

statistically, given the very high intercorrelations among the variables it attempts 

to parse. The authors do trim the data, which may help, but they should, at 

minimum, also apply a 10 fold cross-validation approach to assess the 

uncertainty of the results to choice of observations (in addition to ther relative 

accuracy of estimation: have these estimates been compared with ambient data 

in the locale considered?). I expect adding those uncertainties will indicate 

much wider confidence intervals in the estimates than those presented in Table 

2 or 3. In other words, it seems unlikely that a fuller consideration of the 

uncertainties in this approach will actually yield estimates that differ across the 

various constituent indices. 

Response: Thanks for the comment.  

Firstly, it is important to clarify that our study utilized weighted 

quantile sum (WQS) regression, not weighted least squares (WLS) 

regression. Details on WQS regression and its difference from WLS have 

been provided in our response to the first comment of Reviewer #1. The 

standard practice for WQS involves the use of bootstrap resampling (100 times 

in our analysis) among the training dataset when estimating the empirical 

weight index. For each bootstrap sample, a dataset of the same size as the 

training dataset is created by sampling with replacement from the training 

dataset. The weights of each exposure component are first estimated through 

maximum likelihood estimation for each bootstrap sample. After the bootstrap 

ensemble is completed, the final weights are averaged across the bootstrap 

samples. Then a weighted index is constructed by using the final weights and 

incorporated into the regression model using the validation dataset to estimate 

the joint effects of components mixture. Bootstrap resampling in WQS 
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regression significantly enhances model sensitivity, provides robust 

parameter uncertainty estimates, and ensures model robustness, which 

substantially improves the reliability of model results 1. 

Secondly, we did not apply a 10-fold cross-validation approach for the 

following reasons: 1) the 10-fold validation is more appropriate when the goal 

is predictive accuracy, whereas the primary focus of WQS regression is on the 

sensitivity and specificity of chemical weights 2; 2) we attempted to set the 

proportion of training and validation datasets as 90% and 10%, respectively, 

but the computational load was exceedingly high and impractical to complete. 

Repeating this process 10 times would far exceed our computational capacity. 

To enhance the stability of WQS estimates, an alternative method called 

repeated holdout validation has been proposed 2. This method involves 

randomly partitioning the dataset for 100 times and repeating WQS 

regression on each set to simulate a distribution of validated results. However, 

this approach is computationally intensive and up to 100 times more time-

consuming than standard WQS, making it suitable primarily for smaller sample 

sizes (hundreds to thousands). For large datasets like ours, such extensive 

random partitioning is both generally unnecessary due to the inherent 

stability of our data and impractical due to the extreme computational 

demands. Therefore, the standard WQS approach that we are currently using 

is relatively suitable.  

Thirdly, PM2.5 and its chemical components in the Tracking Air 

Pollution in China (TAP) dataset are in good agreement with the available 

ground observations, and have been widely used in previous epidemiological 

studies 3-5. For daily PM2.5 total mass, the out-of-bag cross-validation R2 ranges 

from 0.80 to 0.88, and the root-mean-square error (RMSE) is between 13.9 and 

22.1 µg/m3 when compared with ground observations for different years during 

2013–2020. For daily PM2.5 chemical constituents, the correlation coefficients 

range from 0.67 to 0.80 and most normalized mean biases were within ± 20% 

when compared with ground observations during 2013–2020. The 

spatiotemporal variations in PM2.5 chemical components are also well captured, 

including the long-term trend and day-to-day variability across China. More 

details on the model performance have been described in recently published 

papers 6-7. We have also added a detailed description of this methodology and 
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its validation against ground observations in the revised manuscript (see line 

407 and Supplementary Methods).  

Finally, we did conduct several sensitivity analyses to test the robustness 

of our results, such as constituent-PM2.5 models and quantile-based g 

computation (see lines 173-175, 182-186, 240-251, 254-266, 487-490, 498-

504, Supplementary Table 6, and Supplementary Fig. 7). Results generally 

remained robust, indicating organic matter and black carbon might play more 

important roles.  

We hope these explanations and additional analyses could address your 

concerns. If there are any further analyses or modifications you feel are 

necessary, please let us know, and we are very willing to further improve 

our manuscript.  

References: 
1. Carrico, C., Gennings, C., Wheeler, D.C. & Factor-Litvak, P. Characterization of 
Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting. 
J Agric Biol Environ Stat 20, 100-120 (2015). 
2.  Tanner, E.M., Bornehag, C.G. & Gennings, C. Repeated holdout validation for 
weighted quantile sum regression. MethodsX 6, 2855-2860 (2019). 
3. Xiao, Q., et al. Tracking PM2.5 and O3 Pollution and the Related Health Burden in 
China 2013–2020. Environ Sci Technol 56, 6922-6932 (2022). 
4. Ma, H., et al. Short-Term Exposure to PM(2.5) and O(3) Impairs Liver Function in 
HIV/AIDS Patients: Evidence from a Repeated Measurements Study. Toxics 11(2023). 
5. Qiu, T., et al. Short-term exposures to PM(2.5), PM(2.5) chemical components, and 
antenatal depression: Exploring the mediating roles of gut microbiota and fecal short-chain 
fatty acids. Ecotoxicol Environ Saf 277, 116398 (2024). 
6. Liu, S., et al. Tracking Daily Concentrations of PM(2.5) Chemical Composition in China 
since 2000. Environ Sci Technol 56, 16517-16527 (2022). 
7. Geng, G., et al. Tracking Air Pollution in China: Near Real-Time PM(2.5) Retrievals 
from Multisource Data Fusion. Environ Sci Technol 55, 12106-12115 (2021). 

 

 

Reviewer #2 (Remarks to the Author): 

 

Using a nationwide health database with more than 2 million acute coronary 

syndrome (ACS) patients and a case-crossover design, this manuscript 

reported the results of a data analysis examining the differential effects of fine 

particulate constituents on ACS onset. The strengths of this study include a 

large and representative sample of ACS patients in China, the high spatial and 

temporal resolution model for the constituent data of fine particulate matter 

exposure, and the use of a novel statistical model to assess the joint effects of 

correlated co-exposures. 
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The findings of differential effects of fine particulate constituents on ACS onset 

are interesting and have some potential to significantly advance the current 

literature in relevant research fields. However, my enthusiasm for this 

manuscript is reduced by a few major concerns: 

Response: We appreciate your positive and generous comments. We have 

revised the manuscript accordingly and provided point-to-point responses to 

your comments. 

 

1. As reported in this study, each of the constituents was only associated with 

2% or less increased odds in ACS onset. Given the low magnitude of the 

associations, the significance of the study findings are not very convincing. At 

the population level, however, the authors may want to report the total number 

of ACS cases that could be prevented if the level of each constituent is reduced 

by 1 standard deviation or interquartile range. Reporting the number of ACS 

cases that can be prevented by reducing air pollution level will give this study a 

lot higher public health relevance. 

Response: Thanks for this brilliant suggestion! Although the magnitudes of the 

associations are relatively low, their cumulative effect at the population level 

could have a significant public health impact. In the revised version, we 

calculated the fraction and number of ACS cases that could be prevented if the 

level of each constituent is reduced by an interquartile range to convey the 

public health significance more clearly. As shown in Supplementary Table 5, 

reducing total PM2.5 concentrations by an interquartile range could have 

prevented 1.96% of ACS cases, equivalent to 41,348 cases in the present 

database. If reducing different constituents of PM2.5 by an interquartile range, 

the preventable fractions of ACS cases range from 1.49% for ammonium to 

2.11% for organic matter, corresponding to a reduction of 31,436 to 44,566 

cases. We hope these revisions could address your concerns. Please refer to 

lines 160-165, 447-455, and Supplementary Table 5 for more details.  

 

2. Some of the comments in the Introduction do not seem to be correct or 

appropriate. For example, “The majority of studies utilized time-series design 

based on daily counts of CVD hospitalization or death, rather than disease 

onset. This inevitably leads to ecological fallacy and temporal misclassification 
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of exposure.”. This statement sounds too absolute and strong, as not all of the 

studies with those types of design would have ecological fallacy or temporal 

misclassification. Pls revise this statement and clearly specify under what 

circumstances that ecological fallacy and temporal misclassification would 

happen. 

Response: We apologize for the inappropriate statements. Ecological fallacy 

occurs when inferences about the nature of specific individuals are based solely 

upon aggregate statistics collected for the group to which those individuals 

belong 1. Thus, the conclusions do not reflect the reality of individuals within 

that group. For time-series studies and aggregate-level case-crossover 

studies, ecological fallacy can occur because: 1) the exposure is assumed 

to be the same for all events in a city on a given day; 2) the analysis is based 

on daily aggregated counts of events rather than individual cases. The use of 

individual-level time-stratified case-crossover study design could significantly 

mitigate this concern. Regarding temporal misclassification, we acknowledge 

that this term may not be the most suitable here. The major advantage of 

using disease onset as the health outcome lies in that it is more sensitive 

and immediate than hospital admissions or deaths, and can offer earlier 

opportunities for public health interventions. We have included more 

detailed explanations in the revised manuscript. Please see below or refer to 

lines 79-86. 

“Previous time-series studies and aggregate-level case-crossover studies 

often used daily pollutant concentrations and daily counts of CVD 

hospitalization or death in specific cities 14,15,17, rather than individual-level data, 

which can lead to apparent ecological fallacy 18. Accordingly, utilizing the 

individual-level time-stratified case-crossover study design could significantly 

reduce this concern. Additionally, disease onset is more sensitive and 

immediate than hospital admissions or deaths, which provides earlier 

opportunities for public health interventions.” 

References: 
1. Duque, J.C., Artís, M. & Ramos, R. The ecological fallacy in a time series context: 
evidence from Spanish regional unemployment rates. J Geograph Syst 8, 391-410 (2006). 

 

3. It is not appropriate to examine the differences between groups using a Z-

test as specified on page 10. Instead, it is better to use interaction terms to test 
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potential effect modifications. 

Response: Thanks for the kind reminder! In the revised version, we removed 

the z-test analysis and conducted interaction analyses by including interaction 

terms between the grouping factor (i.e., age, sex, season, and region) and 

PM2.5 constituents in the models. Results showed significant effect 

modifications by season for the associations of organic matter and sulfate, and 

by region for the associations of PM2.5 total mass, organic matter, black carbon, 

and sulfate. Please refer to lines 151-159, 444-446 and Supplementary Table 

4 for more details. 

 

4. Page 17, 2nd paragraph: The discussions regarding potential mechanisms 

for the observed differential associations between PM2.5 constituents and ACS 

subtypes are unclear and hard to following. It’ll be helpful to add a more 

thoughtful discussion here that may explain some of the study findings related 

to ACS subtypes. 

Response: Thanks! Our results showed that stronger associations were 

observed for NSTEMI, followed by STEMI, and UA, which was consistent 

across different PM2.5 constituents. Evidence on the associations between 

PM2.5 constituents and ACS subtypes is extremely limited, making direct 

comparisons with existing studies difficult. However, previous findings on the 

associations between PM2.5 total mass or other air pollutants and AMI provide 

some support for our results. We have compared our results with these 

studies and added some more thoughtful and detailed discussion on 

findings related to ACS subtypes. Please see the revised text below or refer 

to lines 267-289. 

“Our results show that stronger associations were observed for NSTEMI, 

followed by STEMI, and UA, which was consistent across different PM2.5 

constituents. Evidence on the associations between specific constituents of 

PM2.5 and ACS subtypes is extremely limited, making direct comparisons with 

previous studies difficult. However, previous findings on the associations 

between total PM2.5 mass or other air pollutants and AMI provide some support 

for our results. For example, a few studies reported stronger associations of air 

pollution with NSTEMI than STEMI 37-39. Nevertheless, another study in the U.S. 

found statistically significant associations between PM2.5 and STEMI, rather 
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than NSTEMI 40. Mechanistically, STEMI mainly results from coronary artery 

occlusion following plaque rupture, and can lead to complete blood flow 

cessation and ischemic necrosis of the myocardial region. In contrast, NSTEMI 

usually involves plaque erosion and less severe coronary artery obstruction 40,41. 

The observed stronger association with NSTEMI than STEMI suggests that 

acute exposure to PM2.5 and its constituents is more likely to trigger plaque 

erosion and less severe obstructions, compared to complete coronary artery 

occlusion 39. UA results from various causes, including coronary artery spasm, 

transient increases in myocardial oxygen demand, and partial blockages of 

coronary artery 42. The diverse causes may make UA influenced by multiple 

factors beyond acute PM2.5 exposure, which helps explain its weaker 

association with PM2.5 and constituents. Nevertheless, given the mixed findings 

and scarce existing evidence, further research is urgently warranted to 

corroborate our results and fully elucidate the underlying mechanisms.” 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors analyzed the joint and individual effect of five PM2.5 chemical 

compounds (organic matter, black carbon, ammonium, nitrate and sulfate) on 

the occurrence of ACS. An impressive number of more than 2,100,000 patients 

from 2,096 Chinese hospitals were included in a seven-year time period, and a 

case-crossover design was applied. The total PM2.5 mass and the mass of all 

five chemical compounds were significantly associated with an increased risk 

of acute coronary syndrome. The effects were higher in lag 0, for chemical 

compounds organic matter and black carbon, in older patients, in cold season 

and in the southern part of China. A sensitivity analysis with adjustment for total 

PM2.5 mass showed significant results for organic matter, black carbon and 

ammonium, but not for nitrate or sulfate. 

The topic of this article is highly relevant, novel and interesting. Indeed, acute 

effects of ambient PM2.5 mass on ACS are widely described and recognized. 

However, only the size of the particles is taken into consideration to classify the 

exposure to this air pollutant and only very few studies have focused on the 

qualitative aspects of the particle composition. Indeed, toxicity of particles 
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depends of their chemical composition and, in 2024, we have very few 

evidences on the chemical compounds triggering the cardiovascular 

consequences of air pollutantion exposure. Even if this study is highly relevant, 

there are some mains points needing some revision. 

Response: Thanks for your constructive and encouraging comments. We have 

revised the manuscript accordingly and provided point-to-point responses to 

your comments. 

 

Major comments: 

1) The methodology of how the PM2.5 constituents were measured needs is 

not explained in the method section. This is not acceptable for a study aiming 

to describe the effects of PM chemical constituents on the triggering of ACS. 

Only after reading the dedicated TAP website it appears that the chemical 

nature of the PM2.5 were not directly evaluated at it was done by other 

investigators from China, Canada or US but comes from a modelization method 

based on daily measured values of fixed stations, completed by a machine 

learning algorithm. This method merits a better description and explanation on 

how it was validated against field measurement. 

Response: Thanks for pointing out this important issue. In our study, the 

concentrations of PM2.5 and its chemical constituents were not directly 

evaluated through field measurements but estimated using a model-based 

approach. This approach relies on ground observations, satellite-retrieved 

aerosol optical depth (AOD), chemical transport models (CTM) 

simulations, ancillary data (e.g., meteorological, land use, population, and 

elevation data), and advanced machine learning algorithms 1-4. Firstly, 

ground observations were collected from several operational monitoring 

networks (e.g., China National Environmental Monitoring Centre, China’s 

National Aerosol Composition Monitoring Network, the China Atmosphere 

Watch Network, and the Surface Particulate Matter Network) and literature 

studies. A total of 1640 stations for PM2.5 and 571 stations for PM2.5 chemical 

composition covering all provinces were used for model training and validation. 

Secondly, the PM2.5 estimation relied on a two-stage machine learning model, 

incorporating multisource data fusion from ground observations, satellite-

retrieved AOD, CTM simulations, and ancillary data (e.g., meteorological, land 
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use, population, and elevation data) 2. Thirdly, the PM2.5 chemical composition 

information (i.e., PM2.5 component proportions as conversion factors [CFs]) is 

obtained from the operational Weather Research and Forecasting–Community 

Multiscale Air Quality (WRF–CMAQ) modeling system. These factors were then 

revised by using the extreme gradient boosting (XGBoost) models trained on 

collected ground observations. Finally, the revised conversion factors were 

used to partition the total PM2.5 concentrations into specific components 

including organic matter, black carbon, nitrite, sulfate, and ammonium.  

PM2.5 and its chemical components in the TAP dataset are in good 

agreement with the available ground observations, and have been widely 

used in previous epidemiological studies 5-7. For daily PM2.5 total mass, the out-

of-bag cross-validation R2 ranges from 0.80 to 0.88, and the root-mean-square 

error (RMSE) is between 13.9 and 22.1 µg/m3 when compared with ground 

observations for different years during 2013–2020. For daily PM2.5 chemical 

constituents, the correlation coefficients range from 0.67 to 0.80 and most 

normalized mean biases were within ± 20% when compared with ground 

observations during 2013–2020. The spatiotemporal variations in PM2.5 

chemical components are also well captured, including the long-term trend and 

day-to-day variability across China. More details on the model performance 

have been described in recently published papers 1-2.  

We have also added a detailed description of this methodology and its 

validation against field measurements in the revised manuscript (see line 407 

and Supplementary Methods). We hope this detailed explanation addresses 

your concerns.  

References: 
1. Liu, S., et al. Tracking Daily Concentrations of PM(2.5) Chemical Composition in China 
since 2000. Environ Sci Technol 56, 16517-16527 (2022). 
2. Geng, G., et al. Tracking Air Pollution in China: Near Real-Time PM(2.5) Retrievals 
from Multisource Data Fusion. Environ Sci Technol 55, 12106-12115 (2021). 
3. Xiao, Q., et al. Separating emission and meteorological contributions to long-term 
PM2.5 trends over eastern China during 2000–2018. Atmos Chem Phys 21, 9475-9496 
(2021). 
4. Xiao, Q., et al. Evaluation of gap-filling approaches in satellite-based daily PM2.5 
prediction models. Atmos Environ 244, 117921 (2021). 
5. Xiao, Q., et al. Tracking PM2.5 and O3 Pollution and the Related Health Burden in 
China 2013–2020. Environ Sci Technol 56, 6922-6932 (2022). 
6. Ma, H., et al. Short-Term Exposure to PM(2.5) and O(3) Impairs Liver Function in 
HIV/AIDS Patients: Evidence from a Repeated Measurements Study. Toxics 11(2023). 
7. Qiu, T., et al. Short-term exposures to PM(2.5), PM(2.5) chemical components, and 
antenatal depression: Exploring the mediating roles of gut microbiota and fecal short-chain 
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fatty acids. Ecotoxicol Environ Saf 277, 116398 (2024). 

 

2) Line 83 and 374: Exposure misclassification is indeed an important limitation 

in the modelization of PM2.5 effects on health. This study used again a 

combination of weather forecasting, ground observations, machine learning 

and multisource PM2.5 data to estimate the PM2.5 constituent mass at the 

hospital address on a 10x10km resolution. Although this reduces the exposure 

misclassification compared to using aggregated regional pollution data or the 

values of fixed monitoring stations, the modelization was not done at the patient 

living address and authors assume that the patient exposure was related to the 

exposure at the admission hospital. Consequently, there is still a major possible 

exposure misclassification bias left. 

Response: This is a thought-provoking question! In the previous manuscript, 

we matched exposure data for each patient based on hospital addresses rather 

than the specific addresses of symptom onset, as more than 50% of patients 

did not provide complete onset addresses. However, this would not be a 

major concern because: 1) ACS patients in China are always sent to the 

nearest hospital for timely care, and we had further excluded those transferred 

from other hospitals; and 2) the median distance between hospitals and the 

onset address was 6.2 kilometers among participants who provided complete 

onset addresses; and this distance is generally acceptable in epidemiological 

studies on short-term exposures, in which the temporal variations of exposures 

are more important than spatial variations.  

In the revised version, we restricted the analysis to participants who 

provided complete addresses of their location at the time of ACS onset 

(N= 1,025,744), and reran the main model using air pollution data matched 

according to the address of disease onset and reporting hospital, 

respectively. According to Supplementary Table 7, the results were little 

affected by using air pollutant concentrations matched by the addresses of the 

event onset versus hospitals. We included this as a sensitivity analysis (see 

lines 176-178, 490-493, and Supplementary Table 7), and additionally 

discussed this limitation (see below or refer to lines 332-344) in the revised 

manuscript.  

“Second, in the main analysis, we matched exposure data for each patient 
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based on hospital addresses rather than the specific addresses of symptom 

onset, as more than 50% of patients did not provide complete onset addresses. 

However, this would not be a major concern because: 1) ACS patients in China 

are always sent to the nearest hospital for timely care, and we had further 

excluded those transferred from other hospitals; 2) the median distance 

between hospitals and the onset address was 6.2 kilometers among 

participants who provided complete onset addresses; and this distance is 

generally acceptable in epidemiological studies on short-term exposures, in 

which the temporal variations of exposures are more important than spatial 

variations; and 3) our sensitivity analysis based on addresses of disease onset 

yielded comparable results to those estimated using hospital addresses.” 

 

3) Air temperature changes are a main trigger of AMI. All pollutants are 

negatively (PM, NO2) or positively (O2) associated with temperature. Control 

of temperature bias is one of the most important interest in the use of case 

crossover design with stratification of control periods in the case crossover are 

frequently done in the same temperature range (+/- 1 or 2°C for ex.). 

Could you explain why you chose to add temperature as a confounder in the 

model, instead of matching the cases and controls according to ambient 

temperature? 

Response: Great points! This study currently utilizes a time-stratified case-

crossover design. By matching cases and controls within the same year, month, 

and day of the week, this design effectively controls for seasonal trends, long- 

and mid-term trends, and day-of-week effects 1. However, time-varying 

factors such as ambient temperature are not controlled by design, which 

is why we adjust for temperature as a confounder in the model. This 

methodology has been widely applied in recent environmental epidemiological 

studies on air pollution and health 2-7. 

Following the reviewer’s suggestion on matching controls by temperature, 

we re-performed the analysis by selecting control days based on three 

criteria 8: (1) control days were taken from the same month and year as the 

case days; (2) control days and case days had to be at least 3 days apart from 

each other to avoid short-term autocorrelation; (3) only control days with a daily 

average temperature within 2°C from that on the case day were selected. The 
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results showed slightly weaker but significant effects, and the overall 

pattern for the differential effects of constituents remained consistent. 

Nevertheless, it is noteworthy that based on this strategy, the number of control 

days per case ranged from 0 to a maximum of 28, with an average of 10. This 

variability in the number of control days per case can introduce some 

imbalance, which is a major limitation. Besides, matching the cases and 

controls according to ambient temperature was relatively less used, and 

it was not a mainstream approach. Recent studies have increasingly 

adopted the method of matching by day of the week and adjusting for 

temperature as a confounder 2-7. Therefore, we kept our main analyses and 

added this temperature-matching approach as a sensitivity analysis. Please 

refer to lines 179-182, 493-498, and Supplementary Table 8 for more details. 

References: 
1. Janes, H., Sheppard, L. & Lumley, T. Case-crossover analyses of air pollution 
exposure data: referent selection strategies and their implications for bias. Epidemiology 
16, 717-726 (2005). 
2. Di, Q., et al. Association of Short-term Exposure to Air Pollution With Mortality in Older 
Adults. JAMA 318, 2446-2456 (2017). 
3.  Wei, Y., et al. Short term exposure to fine particulate matter and hospital admission 
risks and costs in the Medicare population: time stratified, case crossover study. BMJ 367, 
l6258 (2019). 
4. Liu, Y., et al. Short-Term Exposure to Ambient Air Pollution and Mortality From 
Myocardial Infarction. J Am Coll Cardiol 77, 271-281 (2021). 
5. Zhang, Y., et al. Risk of Cardiovascular Hospital Admission After Exposure to Fine 
Particulate Pollution. J Am Coll Cardiol 78, 1015-1024 (2021). 
6.  Pollution on Mortality in California: Implications for Climate Change. Am J Respir Crit 
Care Med 206, 1117-1127 (2022). 
7. Liu, Y., et al. Short-Term Exposure to Ambient Air Pollution and Asthma Mortality. Am 
J Respir Crit Care Med 200, 24-32 (2019). 
8. Scheers, H., et al. Does air pollution trigger infant mortality in Western Europe? A case-
crossover study. Environ Health Perspect 119, 1017-1022 (2011). 

 

4) Line 145: “To avoid the potential influence of outliers in air pollutants 

concentrations, the highest and lowest 2.5% of daily concentrations during the 

study period were removed before formal analyses”. China is known as one of 

the hot spot of air pollutant exposure worldwide. Are these outliers related to 

some errors in modelization or related to real major air pollution peaks only 

observable in highly industrialized country like China? Do you mean that ACS 

during these outlier days were not included into the study? Were the values 

investigated before the decision to remove them from the analysis? If the 

outliers are no errors, than they should leave into the analysis as they reflect 
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the variability of the study area? 

Response: Thank you for your important questions. Our exposure data were 

derived from a predictive model rather than direct measurements. Here, the 

“outliers” actually means the “extremes”. The extreme values are not 

necessarily errors but may represent the greater uncertainty of model 

predictions in air pollution extremes. Including such extremes can 

potentially skew results and reduce the reliability of the analysis. 

Therefore, we omitted the highest and lowest 2.5% of daily concentrations in 

the dataset to reduce this uncertainty. Besides, excluding the extreme values 

in exposure data has been a common practice in environmental 

epidemiology researches on air pollution 1-6, as it helps in achieving more 

robust effect estimations. In the revised version, we added several 

references accordingly (see lines 414-417).  

We hope these explanations could address your concerns. If you still 

believe that we should include the extremes in our analysis, we are very 

willing to make the necessary revisions. 

References: 
1. Xue, X., et al. Hourly air pollution exposure and the onset of symptomatic arrhythmia: 
an individual-level case-crossover study in 322 Chinese cities. CMAJ 195, E601-e611 
(2023). 
2.  Hu, J., et al. The acute effects of particulate matter air pollution on ambulatory blood 
pressure: A multicenter analysis at the hourly level. Environ Int 157, 106859 (2021). 
3. Liu, C., et al. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. N Engl 
J Med 381, 705-715 (2019). 
4. Samet, J.M., Dominici, F., Curriero, F.C., Coursac, I. & Zeger, S.L. Fine particulate air 
pollution and mortality in 20 U.S. cities, 1987-1994. N Engl J Med 343, 1742-1749 (2000). 
5. Zhang, Q., et al. Air pollution may increase the sleep apnea severity: A nationwide 
analysis of smart device-based monitoring. The Innovation 4, 100528 (2023). 
6.  Lei, J., et al. Fine and coarse particulate air pollution and hospital admissions for a 
wide range of respiratory diseases: a nationwide case-crossover study. Int J Epidemiol 52, 
715-726 (2023). 

 

5) Line 269 and Figure 3: a WQS is used and a bar chart illustrates the weight 

of the five constituents in the effect of PM2.5 on ACS. However, a limitation of 

the study is the non-measurement of transition metals. Figure 3 gives a clear 

overview but the reader may falsely conclude that all five compounds together 

explain 100% of the effect of the PM2.5 on ACS. Is the WQS model able to 

estimate the effect of non-measured compounds?  

Response: This is a thought-provoking question! We agree that transition 

metals are also critical components to consider. Unfortunately, our study did not 
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include metallic elements due to the lack of publicly available nationwide 

exposure data of high spatiotemporal resolution for these constituents in 

China. To address this concern, we subtracted the concentrations of the 

five measured constituents from the total PM2.5 mass to obtain the 

remaining unmeasured components, and reran the main models based on 

these remaining components. As shown in Supplementary Table 9 and 

Supplementary Fig. 8, their effects were weaker than organic matter and black 

carbon, and comparable to nitrate, sulfate, and ammonium. These results 

suggest that there may be important unmeasured constituents in PM2.5 

that warrant further investigation. We kept our main analyses and only 

added this as a supplementary analysis for the following reasons: 1) since 

both PM2.5 and the five constituents were model-predicted, directly subtracting 

the concentrations of the five constituents from total PM2.5 is a rather crude 

approach and could introduce double exposure measurement errors; 2) there 

may be various unknown chemicals other than metallic elements in the 

remaining components, making it difficult to identify the nature of unmeasured 

constituents. We further acknowledged the lack of data on metallic elements as 

a limitation in the revised manuscript. Please see lines 186-192, 251-253, 351-

353, 505-509, Supplementary Table 9, and Supplementary Fig. 8. 

Figure 3 aims to provide a clear overview of the relative contributions of 

the five measured constituents. We have added an explanation that these 

weights represent each component's contribution to the health effects of the 

mixture of the five measured constituents, rather than all of PM2.5 total mass. 

Please see below or refer to lines 248-253. 

“Still, it should be noted that these five constituents do not account for all 

of PM2.5 total mass, and the weights derived from WQS and QGC only 

represent each component's contribution to the health effects of the mixture of 

the five measured constituents. The supplementary analysis based on the 

remaining components also reveals that there may be important unmeasured 

constituents in PM2.5 that warrant further investigation.” 

 

6) While literature is not always able to show significant results regarding the 

effect of PM2.5 on ACS (only a positive trend is very common), this study has 

significant results, not only for the effect of total PM2.5 mass on ACS in the total 
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study population, but as well in all subgroups and for all measured chemical 

constituents. This can be explained by the very high power because of the very 

large database, but also because of the choise to estimate the risk for ACS per 

IQR increase in PM2.5. Indeed most studies investigate the effect of an 

increase of 10µg/m3, while in this study the IQR equals an increase of 30µg/m3. 

To generalize the findings and be able to compare them with other literature, I 

suggest performing an additional analysis on the effect of a 10µg/m3 PM2.5 

increase. 

Response: Thanks. We agree that the large sample size increases statistical 

power, contributing to the significance of the results. However, using the IQR 

affects only the magnitude of the effect estimates, not their significance. In the 

original submission, we presented effect estimates per IQR increase to facilitate 

direct comparisons among various constituents, given their different ranges of 

variations in concentrations. Following your suggestions, we have further 

reported the effect estimates per 10 μg/m3 increase for PM2.5 and per 1 

μg/m3 increase for chemical constituents in the supplementary file (lines 

135-137, 519-521, and Supplementary Table 3).  

 

7) Line 220: In contrast with literature, the proportion of STEMI (35.9%) is higher 

than NSTEMI (21.2%). Can you explain this please? 

Response: Thanks for your important comment. We double-checked the data 

and confirmed that STEMI and NSTEMI patients accounted for 35.9% and 21.2% 

of the total ACS cases, respectively. The higher proportion of STEMI in our 

study is consistent with previous studies conducted in China 1-5. For 

example, China Acute Myocardial Infarction Registry (CAMI), a prospective, 

nationwide, multicenter observational study for AMI care covering 108 hospitals 

from 31 provinces and municipalities across Chinese mainland since 2013, also 

reported a higher number of STEMI than NSTEMI 2-4.  

Although this differs from western developed countries such as the US and 

Germany, where the presentation of AMI was more frequently NSTEMI than 

STEMI 6,7, there has been a notable trend in China over the past few years 

that the proportion of STEMI was decreasing while NSTEMI was 

increasing. Table R2 presents the annual proportion of STEMI and NSTEMI 

in our database, which clearly shows the trend.  
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There were two possible reasons for the changing proportions in 

STEMI and NSTEMI in China. First, population aging contributed to the rise in 

NSTEMI incidence. Multiple studies have confirmed that an aging population 

can lead to a higher incidence of NSTEMI 7,8. Second, the sensitivity of 

diagnostic tests for cardiac biomarkers (e.g., high-sensitive troponin) has 

increased, which significantly enhanced the diagnosis rate of AMI, particularly 

NSTEMI 6,9. Since this is beyond the primary scope of our study, we only 

explained this issue in the reply letter and did not include additional discussion 

in the manuscript. 

 

Table R2. Annual proportions of STEMI and NSTEMI in the study population, 

2015-2021. 

 STEMI (%) NSTEMI (%) 

2015 46.4 15.8 

2016 42.7 16.2 

2017 39.0 19.0 

2018 35.7 19.2 

2019 34.9 20.3 

2020 36.1 22.5 

2021 34.3 24.1 

Abbreviations: STEMI, ST-segment-elevation myocardial infarction; NSTEMI, 

non-ST-segment-elevation myocardial infarction.  

References: 
1. Li, J., et al. ST-segment elevation myocardial infarction in China from 2001 to 2011 
(the China PEACE-Retrospective Acute Myocardial Infarction Study): a retrospective 
analysis of hospital data. Lancet 385, 441-451 (2015). 
2. Wei, Z.Y., Yang, J.G., Qian, H.Y. & Yang, Y.J. Impact of Marital Status on 
Management and Outcomes of Patients With Acute Myocardial Infarction: Insights From 
the China Acute Myocardial Infarction Registry. J Am Heart Assoc 11, e025671 (2022). 
3. Xu, H., et al. Association of Hospital-Level Differences in Care With Outcomes Among 
Patients With Acute ST-Segment Elevation Myocardial Infarction in China. JAMA Netw 
Open 3, e2021677 (2020). 
4. Zhao, Q., et al. Current Status and Hospital-Level Differences in Care and Outcomes 
of Patients With Acute Non-ST-Segment Elevation Myocardial Infarction in China: Insights 
From China Acute Myocardial Infarction Registry. Front Cardiovasc Med 8, 800222 (2021). 
5. Gao, X.J., et al. [Age-related coronary risk factors in Chinese patients with acute 
myocardial infarction]. Zhonghua Yi Xue Za Zhi 96, 3251-3256 (2016). 
6. Mefford, M.T., et al. Sex-Specific Trends in Acute Myocardial Infarction Within an 
Integrated Healthcare Network, 2000 Through 2014. Circulation 141, 509-519 (2020). 
7. Freisinger, E., et al. German nationwide data on current trends and management of 
acute myocardial infarction: discrepancies between trials and real-life. Eur Heart J 35, 979-
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988 (2014). 
8. Rosengren, A., et al. Age, clinical presentation, and outcome of acute coronary 
syndromes in the Euroheart acute coronary syndrome survey. Eur Heart J 27, 789-795 
(2006). 
9. Reynolds, K., et al. Trends in Incidence of Hospitalized Acute Myocardial Infarction in 
the Cardiovascular Research Network (CVRN). Am J Med 130, 317-327 (2017). 

 

Minor comments: 

 

- Line 45. “All five constituents” is mentioned, but the different constituents are 

not yet listed. This creates confusion for the readers. 

Response: Thanks. In the revised manuscript, we listed the specific names of 

the five constituents (i.e., organic matter, black carbon, nitrate, sulfate, and 

ammonium) when they were first introduced in Abstract. Please see line 35.  

 

- Line 80: For me, it is not clear why the term ecologic fallacy is used here. Can 

you explain this please? 

Response: We apologize for the ambiguous statements. Ecological fallacy 

occurs when inferences about the nature of specific individuals are based solely 

upon aggregate statistics collected for the group to which those individuals 

belong 1. Thus, the conclusions do not reflect the reality of individuals within 

that group. For time-series studies and aggregate-level case-crossover studies, 

ecological fallacy can occur because: 1) the exposure is assumed to be the 

same for all events in a city on a given day; 2) the analysis is based on daily 

aggregated counts of events rather than individual cases. We have included 

more detailed explanations in the revised manuscript. Please see below or refer 

to lines 79-84. 

“Previous time-series studies and aggregate-level case-crossover studies 

often used daily pollutant concentrations and daily counts of CVD 

hospitalization or death in specific cities 14,15,17, rather than individual-level data, 

which can lead to apparent ecological fallacy 18. Accordingly, utilizing the 

individual-level time-stratified case-crossover study design could significantly 

reduce this concern.” 

References: 
1. Duque, J.C., Artís, M. & Ramos, R. The ecological fallacy in a time series context: 
evidence from Spanish regional unemployment rates. J Geograph Syst 8, 391-410 (2006). 

 



25 

 

- Line 265: the sensitivity analysis shows that the effect nitrate and sulfate is 

completely dependent on the total PM2.5 mass, correct? This should be 

mentioned clearer. 

Response: Thanks for your insightful comment. After adjusting for PM2.5 in the 

models, the effects of nitrate and sulfate became non-significant. However, this 

finding does not necessarily imply that their effects are completely 

dependent on the total PM2.5 mass. This may represent a statistical 

dependency rather than a true mechanistic one. Several factors might 

contribute to this observation. First, constituent-PM2.5 models may mask the 

effects of specific components due to overadjustment related to the high 

collinearity with PM2.5, leading to an underestimation of associations 1. Second, 

the impacts of exposure measurement errors usually become more 

complicated in multi-pollutant models, adding to the statistical uncertainty of 

results. Therefore, future studies are warranted to clarify this issue. We have 

mentioned this point clearer in the Discussion. Please see lines 254-262. 

Reference: 
1. Cai, J., et al. Prenatal Exposure to Specific PM(2.5) Chemical Constituents and Preterm 
Birth in China: A Nationwide Cohort Study. Environ Sci Technol 54, 14494-14501 (2020). 

 

- Line 235 and Figure 1: “Generally, the onset risk increased immediately on 

the concurrent day of exposure, attenuated thereafter, and became null at lag 

2 day.” On figure 1 the effect decreases even more at lag3, nearly showing a 

significant negative association. Have you explored the log4, log5 or other lag 

effects? This negative effect could be explained by the harvesting effect, a 

period of excess mortality followed by a period with a mortality deficit because 

of the deaths of vulnerable patients at the pollution peak. 

Response: Thanks for the insightful suggestion! As suggested, we have 

extended our analysis to explore lagged effects for up to 5 days. The results 

indicate that the effects at lag 4 and lag 5 gradually approach null, and no 

obvious harvesting effect is observed (Table R3). We have provided the 

supplementary results for your reference.  

 

Table R3. Percent changes in the risk of onset of ACS per interquartile range 

increase in concentrations of PM2.5 total mass and its chemical constituents 

during different lag days.  
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Lag PM2.5 Organic matter Black carbon Nitrate Sulfate Ammonium 

0 d 2.00 (1.73, 2.26) 2.15 (1.90, 2.41) 2.03 (1.78, 2.28) 1.54 (1.28, 1.80) 1.57 (1.32, 1.81) 1.51 (1.25, 1.77) 

1 d 0.55 (0.29, 0.82) 0.69 (0.43, 0.94) 0.63 (0.38, 0.88) 0.49 (0.22, 0.75) 0.68 (0.43, 0.93) 0.41 (0.15, 0.67) 

2 d -0.06 (-0.33, 0.21) -0.06 (-0.31, 0.20) -0.05 (-0.30, 0.20) -0.13 (-0.39, 0.14) 0.03 (-0.23, 0.28) 0.00 (-0.28, 0.28) 

3 d -0.23 (-0.49, 0.04) -0.21 (-0.46, 0.04) 0.03 (-0.22, 0.28) -0.16 (-0.42, 0.10) -0.08 (-0.33, 0.16) -0.18 (-0.44, 0.08) 

4 d -0.14 (-0.41, 0.14) -0.12 (-0.37, 0.14) -0.15 (-0.41, 0.10) -0.16 (-0.44, 0.11) 0.08 (-0.18, 0.34) -0.09 (-0.34, 0.16) 

5 d -0.08 (-0.33, 0.18) -0.03 (-0.27, 0.21) -0.11 (-0.34, 0.13) -0.12 (-0.37, 0.13) -0.05 (-0.31, 0.21) -0.05 (-0.29, 0.18) 

Abbreviations: ACS, acute coronary syndrome; PM2.5, fine particulate matter. 

 

 

Reviewer #4 (Remarks to the Author): 

 

I co-reviewed this manuscript with one of the reviewers who provided the listed 

reports. This is part of the Nature Communications initiative to facilitate training 

in peer review and to provide appropriate recognition for Early Career 

Researchers who co-review manuscripts. 

Response: Thanks for your valuable time in reviewing our manuscript and the 

constructive suggestions you provided. Our detailed responses to the 

comments are provided above. Because of the valuable comments, we believe 

that our manuscript has been improved.  

 

Finally, we would like to thank the editors and reviewers once again for your 

thoughtful and detailed comments, which substantially improved our manuscript.  
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Response to Comments from Reviewers: 

We sincerely appreciate your valuable time in reviewing our manuscript 

and the excellent suggestions and comments you provided. We have made 

changes to our manuscript in response to the comments. Point-by-point 

responses were made for each comment.  

 

REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The model applied is a weighted linear model, and the problem of very high 

intercorrelations remains. The model has the limitation that it assumes linearity 

(see Renzetti et al, Front Public Health.2023), which the Supplementary 

Figures indicate not to be satisfied. As seen in Supplementary Figure 5, for 

example, sulfates is the index that tends to satisfy linearity for that NSTEMI 

outcome, as well as for UA. The very bent over shape of the carbon metrics is 

contrary to biological plausibility for it to be causal, itself: Why would there be 

diminished (or no) added health effects as concentrations rise (e.g., for Black 

Carbon above 4 µg/m3 )? This needs acknowledgement and addressing in the 

paper. The likely reason for the bending of the carbon metrics is that the 

dominant source of carbon must change as the concentration rises, perhaps 

from fossil fuel combustion at low levels, to biomass burning at the highest 

levels? This is a situation similar to that confronted by Rahman et al, Int J 

Epidemiol, 2021), and applying their approach to these data would be 

informative. 

Response: Thank you for raising this important issue. We acknowledge that 

the weighted quantile sum (WQS) regression used in our study has limitations, 

particularly regarding the assumption of linearity (see below or refer to lines 

371-374). Although most components exhibited a linear relationship with ACS 

onset, some of the exposure-response curves flattened slightly at higher 

concentrations. However, our results suggest that these associations are 

approximately linear overall. Additionally, previous studies have also 

demonstrated approximately linear relationships between PM2.5 components 

and health outcomes, and many of them have applied WQS regression to 
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explore these associations 1-4. Importantly, the WQS regression is specifically 

designed to evaluate health effects of highly-correlated pollutant mixtures while 

reducing the impact of high collinearity 5.  

“Fourth, WQS assumes linearity for these relationships. Although most 

components exhibited a linear relationship with ACS onset, some of the 

exposure-response curves flattened slightly at higher concentrations, which 

could affect the stability of our estimates.” 

Regarding the non-linear shape observed for some components (e.g., 

black carbon), there are two main explanations. One reason is the limited 

number of data points at higher concentrations, which leads to less stable 

estimates. The other explanation, as the reviewer pointed out, is that the 

sources of these components may vary with concentration levels. At lower 

concentrations, they are likely to originate from fossil fuel combustion, 

whereas at higher concentrations, biomass burning which has lower 

cardiovascular toxicity may dominate 6. However, there still lacks nationwide 

PM2.5 source data of high spatiotemporal resolution in China. Besides, in our 

study, we did not have data on specific tracers such as potassium and sulfur, 

which limits our ability to calculate source-specific concentrations in the way 

described by Rahman et al, and differentiate between PM2.5 sources such as 

fossil fuel combustion and biomass burning. As a result, we cannot directly 

validate this hypothesis within our study. Nonetheless, we believe our analysis 

on the health effects of PM2.5 components could provide valuable clues and 

support for future research on source-specific effects. We have added further 

discussion to the revised manuscript, and emphasized the need for future 

research on source-specific effects. Please see below or refer to lines 259-

273.  

“In our analysis, most PM2.5 components exhibited linear exposure-

response relationships with ACS onset. However, the exposure-response 

curves of some components, such as black carbon, flattened slightly at higher 

concentrations, indicating a lower health impact per unit increase of the 

components on highly polluted days. One possible explanation for this flattening 

is the limited number of data points at higher concentrations, which may lead to 

less stable estimates. Another possible explanation is that the sources of these 

components may vary with concentration levels. For instance, a time-series 
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study conducted in Dhaka, Bangladesh, observed a similar plateau in the 

exposure-response curve at higher PM2.5 levels. Their findings suggested that 

at lower concentrations, PM2.5 is primarily from fossil fuel combustion, while at 

higher concentrations, biomass burning which has lower cardiovascular toxicity 

may become more dominant. However, due to the lack of nationwide PM2.5 

source data with high spatiotemporal resolution in China, further research on 

source-specific effects is warranted to fully elucidate this issue.” 

References:  

1. Guo, B., et al. Long-term exposure to ambient PM2.5 and its constituents is associated 
with MAFLD. JHEP Rep 5, 100912 (2023). 
2.  Pan, X., et al. Long-term exposure to ambient PM(2.5) constituents is associated with 
dyslipidemia in Chinese adults. Ecotoxicol Environ Saf 263, 115384 (2023). 
3. Li, S., et al. Long-term Exposure to Ambient PM2.5 and Its Components Associated 
With Diabetes: Evidence From a Large Population-Based Cohort From China. Diabetes 
Care 46, 111-119 (2023). 
4. Li, J., et al. Ambient PM2.5 and its components associated with 10-year 
atherosclerotic cardiovascular disease risk in Chinese adults. Ecotoxicol Environ Saf 263, 
115371 (2023). 
5. Carrico, C., Gennings, C., Wheeler, D.C. & Factor-Litvak, P. Characterization of 
Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting. 
J Agric Biol Environ Stat 20, 100-120 (2015). 
6. Rahman, M.M., et al. Cardiovascular morbidity and mortality associations with 
biomass- and fossil-fuel-combustion fine-particulate-matter exposures in Dhaka, 
Bangladesh. Int J Epidemiol 50, 1172-1183 (2021). 

 

Looking at the sulfate effect coefficients, for example, it is apparent that its 

associated PM2.5 mass is more toxic than the average overall PM2.5 mass. 

Using Supplemental Table 3, the % NSTEM1 (lag 0) increase is 0.43% per 1 

µg/m3 SO4. So, since it is likely as ammonium sulfate, that is 0.43% per 1 x 

132/96 (based on molecular wts) = 1.375 µg/m3 sulfate PM2.5 mass for the .43% 

effect, yielding an effect of (10/1.375) x .43% = 3.1% per sulfate associated 

PM2.5 , or (3.1/.94 =) 3.3 times the STEM1 effect per 10 µg/m3 of the overall 

PM2.5 . This also needs consideration and discussion. 

Response: This is a thought-provoking comment. We appreciate your detailed 

analysis, and indeed, based on your calculation, it suggests that the sulfate 

component could exert a stronger effect than the average PM2.5 mass. In 

response to your suggestion, we have added further discussion in the revised 

manuscript emphasizing the possibility of a stronger effect associated with 

sulfate, and this warrants further investigation. Please see below or refer to 

lines 248-252. 
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“Although carbonaceous components showed relatively stronger effects, 

other components (e.g., sulfate, nitrate, and ammonium) should not be 

overlooked. Specifically, we observed that sulfate, which is mainly in the form 

of ammonium sulfate, exhibited a stronger health effect per unit increase in 

concentration compared to that of total PM2.5 mass in the single-pollutant 

models.” 

However, we would also like to clarify that while the assumption that sulfate 

exists predominantly as ammonium sulfate is reasonable, sulfate in ambient air 

can also exist in other forms, depending on environmental conditions and the 

availability of other ions. Therefore, the application of this molecular weight ratio 

(132/96 for ammonium sulfate) may not fully capture the variability in the sulfate 

species present in PM2.5. Furthermore, in the present study, we assess the 

strength of the health effects of PM2.5 components primarily based on statistical 

results. The findings provide important insights into the varying toxicities of 

these components, but at the same time should be interpreted with caution. We 

acknowledge that further toxicological studies and randomized controlled 

trials are needed to explore the specific effects of individual components, 

such as sulfate, in more detail. We added this issue as a limitation in the 

revised manuscript. Please see below or refer to lines 364-371.  

“Third, given the high correlation between different constituents, our results 

only reflect statistical associations rather than causal relationships, and the 

strength of their health effects was evaluated primarily based on statistical 

findings. Therefore, the findings should be interpreted with caution, and future 

researches, such as toxicological studies and randomized controlled trials, are 

warranted to validate the true effects of the components and better understand 

their individual contributions.” 

 

 

Reviewer #2 (Remarks to the Author): 

 

This revision has adequately addressed all of my previous concerns. I have no 

further comments. 

Response: Thank you for your positive comments and for taking the time to 

review our manuscript. We are pleased that the revisions have significantly 
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improved our work. 

 

 

Reviewer #3 (Remarks to the Author): 

 

All my comments are properly answered. No further comments. Congrats for 

your work. 

Response: Thank you for your kind words and thorough review of our 

manuscript. We are grateful for your comments, which have helped strengthen 

our work.  

 

 

Reviewer #4 (Remarks to the Author): 

 

I co-reviewed this manuscript with one of the reviewers who provided the listed 

reports. This is part of the Nature Communications initiative to facilitate training 

in peer review and to provide appropriate recognition for Early Career 

Researchers who co-review manuscripts. 

Response: Thanks for your constructive reviews and thoughtful suggestions. 

Our detailed responses to the comments are provided above.  

 

 

Finally, we would like to thank the editors and reviewers once again for your 

thoughtful and detailed comments, which have substantially improved our 

manuscript.  
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Response to Comments from Reviewers: 

We sincerely appreciate your valuable time in reviewing our manuscript 

and the excellent suggestions and comments you provided. We have made 

changes to our manuscript in response to the comments. Point-by-point 

responses were made for each comment.  

 

REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

This revision has adequately addressed my previous concerns. 

Response: Thank you for your kind words and thorough review of our 

manuscript. We are pleased that the revisions have significantly improved our 

work. 
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