Supplementary information

Cryogenic III-V and Nb electronics integrated on silicon for large-scale quantum computing platforms

Jaeyong Jeong¹, Seong Kwang Kim¹, Yoon-Je Suh¹, Jisung Lee² Joonyoung Choi³, Joon Pyo Kim¹, Bong Ho Kim¹, Juhyuk Park¹, Joonsup Shim¹, Nahyun Rheem¹, Chan Jik Lee¹, Younjung Jo³, Dae-Myeong Geum⁴, Seung-Young Park², Jongmin Kim⁵ and Sanghyeon Kim¹*

¹ School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea

- ² Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Daejeon, Republic of Korea
- ³ Department of Physics, Kyungpook National University (KNU), Daegu, Republic of Korea
- ⁴ Department of Electrical Engineering, Inha University, Incheon, Republic of Korea
- ⁵ Division of Device Technology, Korea Advanced Nano Fab Center (KANC), Suwon, Republic of Korea

*Corresponding Author: Sanghyeon Kim (<u>shkim.ee@kaist.ac.kr</u>)

Contents

Supplementary Section 1. Fabrication process

Supplementary Section 2. Contact characterization of Nb/n⁺-InGaAs

Supplementary Section 3. STEM analysis on III-V heterostructure

Supplementary Section 4. Device cryogenic characterization according to III-V heterostructure

Supplementary Section 5. Gate leakage characteristics of a short channel device

Supplementary Section 6. Analysis of parasitic resistance components according to temperature

Supplementary Section 7. Structure and resistance analysis of routing circuits

Supplementary Section 1. Fabrication process

Supplementary Figure 1 | III-V-on-Si platform. a–e, Fabrication process flow of the III-V-on-Si platform using direct wafer bonding technique.

Supplementary Figure 2 | Cryogenic III-V and Nb electronics integrated on Si. a–e, Fabrication process flow of heterogeneous and monolithic 3D integrated III-V and Nb-based cryogenic RF transistors and routing circuits using III-V-on-Si platform.

Supplementary Section 2. Contact characterization of Nb/n⁺-InGaAs

Supplementary Figure 3 | **Characteristics of Nb**/n⁺-**InGaAs contact. a**, Schematic of the transfer length method (TLM) measurement configuration for Nb/n⁺-InGaAs contact. **b**, TLM resistance as a function of spacing length of Nb/n⁺-InGaAs contact at 300 K and 4 K. **c**, Benchmarking of contact resistance (R_c) at cryogenic temperature with previously reported values for n⁺-InGaAs.

Supplementary Figure 4 | III-V heterostructure with different barrier thicknesses. a, Schematic of III-V and Nb-based HEMT integrated on Si. **b**, Zoomed structure of active III-V layers, featuring barrier thickness of 9, 11, and 18 nm. **c**,**d**,**e**, Scanning transmission electron microscopy (STEM) images of III-V heterostructures, each illustrating divergent InAlAs thickness: (c) 9, (d) 11, and (e) 18 nm. It was clearly confirmed that the epitaxial layers are uniformly grown with the target design thickness of each layer.

Supplementary Figure 5 | Cryogenic characteristics depending on the III-V heterostructure. a–c, Transfer characteristics of III-V HEMTs on Si with $L_G = 2 \mu m$ and different barrier thicknesses of 9 nm (a), 11 nm (b), 18 nm (c) at 300 K and 4 K. d–f, Transconductance characteristics of III-V HEMTs on Si with $L_G = 2 \mu m$ and different barrier thicknesses of 9 nm (d), 11 nm (e), 18 nm (f) at 300 K and 4 K.

Supplementary Section 5. Gate leakage characteristics of a short channel device

Supplementary Figure 6 | Gate leakage characteristics of the devices. Gate leakage current of III-V HEMTs on Si for the same device as in Figure 3a measured at V_{DS} of 50 (dashed) and 100 mV (solid). The measurements were conducted at 300 K and 4 K.

Supplementary Section 6. Analysis of parasitic resistance components according to temperature

Supplementary Figure 7 | Analysis of parasitic resistance components in cryogenic devices with different III-V heterostructures. a, Schematic of InGaAs HEMT with parasitic resistance components. b–d, Extraction results of parasitic resistance components within the III-V HEMT structure with three different III-V heterostructures from 300 K to 4 K. Comparing the R_C values from 300 K to 4 K, the R_C changes are not significant.

Supplementary Section 7. Structure and resistance analysis of routing circuits

b

< III-V & Nb-based routing circuit >

Supplementary Figure 8 | **Routing circuit structure analysis and resistance comparison. a**, Structure and resistance components of CMOS-based routing circuit. **b**, Structure and resistance components of III-V and Nb-based routing circuit.

Supplementary References:

- 1. Jeong, J. *et al.* Influence of Channel Structure on the Subthreshold Swing of InGaAs HEMTs at Cryogenic Temperatures Down to 4 K. *IEEE Trans. Electron Devices* **71**, 3390–3395 (2024).
- 2. Alt, A. R. & Bolognesi, C. R. Temperature dependence of annealed and nonannealed HEMT ohmic contacts between 5 and 350 K. *IEEE Trans. Electron Devices* **60**, 787–792 (2013).
- 3. Schleeh, J. *et al.* Ultralow-power cryogenic InP HEMT with minimum noise temperature of 1 K at 6 GHz. *IEEE Electron Device Lett.* **33**, 664–666 (2012).
- 4. Ferraris, A. et al. Cryogenic InGaAs HEMT-Based Switches For Quantum Signal Routing. In *International Electron Devices Meeting (IEDM)* 461–464 (2022).
- 5. Cha, E. *et al.* Cryogenic InGaAs HEMTs with Reduced On-Resistance using Strained Ohmic Contacts. In *International Electron Devices Meeting (IEDM)* 34.5.1–34.5.4 (IEEE, 2023).