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Experimental Setup

Here we show the details of the experimental setup.
To encode the 2D lattice in time we consider two fiber loops shown in Figure S1(a), labeled

up channel and down channel. The length of each fiber loop is ∼ 3 (km), and one circulation of
light in the loop is equivalent to one step of the walk. Hence, we can encode the entire 2D lattice
within a time-duration (or time-delay) of ∼ 15000 (ns) without mixing time-bins in step n and step
(n + 1). As in Figure S1(b), we first encode 30 “Y”-time bins in both the up and down channel,
each of time duration 250 (ns) in a total time duration of 7500 (ns). Each “Y”-time bin is then
occupied by 30 “X”-time bins, each of time duration 7.5 (ns). At any time, the state of the system
is thus represented by a complex vector (Ux,y, Dx,y), encoded in the phase and amplitude of the
light pulse circulating in the two fiber loops. We note that in our designed allocation configuration,
in particular, the time delay durations, we have chosen shorter delays than in previous 2D synthetic
works. This is because, unlike the previously mentioned works where AOMs were used for switching,
we have used EOMs which are much faster and can accommodate shorter delays [1, 2].
To initialize the system, we inject a single pulse into the down channel of the fiber loop. We

use a continuous wave CW laser with 1550 (nm) wavelength (Optilab DFB-1551-SM-10) and by
modulation of this laser using a Thorlabs SOA (SOA1013SXS), we have generated pulses of width
∼ 6 (ns) at a repetition rate of 1 (pulse/ms). We then control the polarization of the laser with
an inline fiber polarization control (PC) before injecting the light into the down channel with a
90/10 beam splitter. Note that we use two identical 90/10 beam splitters, one for each channel.
The 90/10 beam splitter in the down channel is used to inject light into the quantum walk, whereas
the 90/10 beam splitter in the up channel is used to weakly couple light pulses out of the quantum
walk so that we can measure the pulse power after n steps of evolution using the up channel’s PD.
Note that the EDFA placed immediately prior to the up channel’s PD is merely used to amplify
the light pulses coming out of the quantum walk experiment, making it easier for the PD to detect
it.
As a pulse enters the system, by default we recognize it as entering the (x = 0, y = 0) time bin, and

thus the initial state is D0,0 = 1. The pulse then sequentially passes through a 50/50 beam splitter
denoted as ±X-beam splitter, a pair of time-varying intensity modulators (Optilab IMP-1550-20-
PM) is used to impose the correct gain/loss as each time bin (x, y) passes through it, controlled by
RF signal generated from Teledyne Lecroy arbitrary waveform generator (T3AWG3252). We then
impose a delay of 3 (m) in the up channel and no delay in the down channel. The same procedure
then repeats for Y , as shown in Figure S1(a), except the difference in delay between the up and
down channels is 100 (m).
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To combat photon loss in the walk, we use two Thorlabs erbium-doped fiber amplifiers (EDFA)
(EDFA100S), one for each channel. Before amplifying the pulse, we use wavelength division mul-
tiplexers (WDM) (DWDM-SM-1-34-L-1-2) to couple a 1543 (nm) CW laser (DFB-1543-SM-30) to
the pulses so that the spontaneous emission noise during the amplification is reduced. We decouple
the 1550 (nm) pulses from the 1543 (nm) CW laser with the same WDM after the amplification is
done. Finally, we use PC to ensure the correct linear polarization for the 1550 (nm) signal pulses.
After this, a complete quantum walk step is finished.

FIG. S1. Sketch of the complete experimental setup and encoding scheme. (a) Details of the
experiment, with continuous wave (CW) laser, polarization control (PC), wavelength division multiplexer
(WDM), photodiode (PD), beam splitter (BS), intensity modulators (X/Y-mod), erbium-doped fiber am-
plifier (EDFA) and semiconductor optical amplifier (SOA). (b) Encoding the 2D lattice in time bins in two
fiber loops. The two loops are named “up channel” and “down channel”, respectively.
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FIG. S2. Example of full evolution in a complete step. Both the up and down channels of the fiber
loops are shown. (a-g) The complete evolution within one step given that the initial state is Dx=0,y=0 = 1
and all other Ux,y and Dx,y are 0.

Mathematical formulation of the quantum walk experiment

Here we give the most general mathematical formulation of our quantum walk. Figure S2(a-g)
shows this evolution when the input state is D0,0 = 1.
As mentioned in the previous section, the state at each step is given by a complex vector

(Ux,y, Dx,y) where x and y ranges from −15 to +15. After the first beam splitter (±X), the
state is updated to (Figure S2(b):

U
′

x,y =
1√
2
(Ux,y −Dx,y)

D
′

x,y =
1√
2
(Ux,y +Dx,y)

(S1)

After the first pair of modulators (±X modulators), we obtain:

U
′′

x,y = U
′

x,yf
(U)
x,y

D
′′

x,y = D
′

x,yf
(D)
x,y

(S2)

where f
(U/D)
x,y is the gain/loss applied to each time bin in the up/down channel by the X modulators.
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After the delay:

U
′′′

x,y = U
′′

x+1,y

D
′′′

x,y = D
′′

x−1,y

(S3)

This yields:

U
′′′

x,y =
1√
2
(Ux+1,y −Dx+1,y)f

(U)
x+1,y

D
′′′

x,y =
1√
2
(Ux−1,y +Dx−1,y)f

(D)
x−1,y

(S4)

Then, we enter the second beamsplitter (±Y ):

W
′

x,y =
1√
2
(U

′′′

x,y −D
′′′

x,y)

F
′

x,y =
1√
2
(U

′′′

x,y +D
′′′

x,y)

(S5)

After modulation (±Y modulators):

W
′′

x,y = W
′

x,yc
(U)
x,y

F
′′

x,y = F
′

x,yc
(D)
x,y

(S6)

where c
(U/D)
x,y is the gain/loss applied to each time bin in the up/down channel by the Y modulators.

After delay:

W
′′′

x,y = W
′′

x,y+1 =
1√
2
(U

′′′

x,y+1 −D
′′′

x,y+1)× c
(U)
x,y+1

F
′′′

x,y = F
′′

x,y−1 =
1√
2
(U

′′′

x,y−1 +D
′′′

x,y−1)× c
(D)
x,y−1

(S7)

(W
′′′

x,y, F
′′′

x,y) is thus the output state given the input state (Ux,y, Dx,y). Consider a pulse ending

up in time bin (x, y) at step (n+ 1). Denoting it as U
(n+1)
x,y and D

(n+1)
x,y , we have:

U (n+1)
x,y =

1

2
[(U

(n)
x+1,y+1 −D

(n)
x+1,y+1)f

(U)
x+1,y+1c

(U)
x+1,y+1 − (U

(n)
x−1,y+1 +D

(n)
x−1,y+1)f

(D)
x−1,y+1c

(U)
x−1,y+1]

D(n+1)
x,y =

1

2
[(U

(n)
x+1,y−1 −D

(n)
x+1,y−1)f

(U)
x+1,y−1c

(D)
x+1,y−1 + (U

(n)
x−1,y−1 +D

(n)
x−1,y−1)f

(D)
x−1,y−1c

(D)
x−1,y−1]

(S8)
The above equation thus describes the full evolution of the state within one step. We can obtain

lattice gain/loss pattern as shown in Figure 1(a) or in Figure 1(c) of the main text, by properly
choosing f (U/D) and c(U/D) as a function of (x, y). For example, for a bulk lattice as shown in Figure

1(a) of the main text, we choose f
(U)
x,y = αe0.175, f

(D)
x,y = αe−0.175, c

(U)
x,y = αe0.175, c

(D)
x,y = αe−0.175.

Here α is the additional loss imposed by the modulators, and we use EDFA to compensate for the
loss such that effectively, α = 1. In the experiment, we are only measuring light in the up channel,
and thus the power of pulses, or the probability distribution of the walker in the up channel, is
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Px,y ∝ |Ux,y|2. We normalize this probability distribution for all experiment data. Importantly,
we also note that while the signal-to-noise ratio is always decreasing as a function of the time step
as seen in all the static control measurements, the power intensity distribution in the lattice also
changes as a function of the degree of localization of light. This is particularly important in dynamic
control over the localization of light at the corner as well as tweezing measurements when the light
is localized at the corner after spreading.

Effective band and energy winding of the bulk model

Here we impose periodic boundary conditions for the bulk lattice as shown in Figure 1(a) of

the main text, in both X and Y directions. The modulations are f
(U)
x,y = e0.175, f

(D)
x,y = e−0.175,

c
(U)
x,y = e0.175, c

(D)
x,y = e−0.175, and thus δx = 0.175 and δy = 0.175. With this assumption, we

can therefore apply the Bloch theorem to the quantum walk evolution equation in the previous
section and introduce the Bloch vector (kx, ky). We use the ansatz Ux,y = eikxx+ikyyŨkx,ky

and

Dx,y = eikxx+ikyyD̃kx,ky for the eigenmodes of the walk. The evolution equation can now be
simplified to:

[
Ũkx,ky

D̃kx,ky

]
=

1

2

[
eikx+ikyf (U)c(U) − e−ikx+ikyf (D)c(U) −eikx+ikyf (U)c(U) − e−ikx+ikyf (D)c(U)

eikx−ikyf (U)c(D) + e−ikx−ikyf (D)c(D) −eikx−ikyf (U)c(D) + e−ikx−ikyf (D)c(D)

] [
Ũkx,ky

D̃kx,ky

]
(S9)

Since we have two discrete degrees of freedom U andD, we always obtain two different eigenvalues
for each (kx, ky) as we diagonalize the above 2× 2 matrix. We call the two eigenvalues ukx,ky and
dkx,ky

. The two effective energies are thus defined as ϵup(kx, ky) = ilog(ukx,ky
) and ϵdown(kx, ky) =

ilog(dkx,ky
).

We further consider the four bulk patches in Figure S3(b) and show that they exhibit different
non-Hermitian topological invariants, namely the winding of the effective energy ϵup/down(kx, ky)
in the complex plane. Without loss of generality, we always pick two loops in the Brillouin zone:
lv = {kx ≡ π/4, ky ∈ [−π → π]} and lh = {ky ≡ π/4, kx ∈ [−π → π]}, as shown in Figure
S3(a). For each bulk panel in Figure S3(b), as one varies (kx, ky) along lv and lh, the corresponding
complex energy ϵ(kx, ky) can finish a single loop in the complex plane, either in the clockwise
or counterclockwise direction. The winding direction of ϵ(lv) and ϵ(lh) forms the non-Hermitian
topological invariant of the bulk. Note that we have suppressed the unimportant label up and down
since ϵup(li) and ϵdown(li) always wind in the same direction. We note that the formation of corner
skin modes in our semi-infinite system is guaranteed by the non-trivial winding in the complex
energy plane. In particular, the four domains with different complex hoppings exhibit different
directions of winding. At an interface between domains with different windings, we observe skin
modes, as shown in Fig.1d in the main text. This phenomenon is similar to that of Hermitian
topological systems where two regions with different winding numbers (or topological invariants)
show edge modes.
A detailed discussion of the robustness of the corner skin modes is available in Ref. [3].
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FIG. S3. Bulk band non-Hermitian topology. (a) For each bulk patch, we choose two oriented loops
in the Brillouin zone: lh = {ky ≡ π/4, kx ∈ [−π → π]} and lv = {kx ≡ π/4, ky ∈ [−π → π]}. Each loop li
then contributes to two individual complex energy winding loops ϵup(li) and ϵdown(li) winding in the same
direction. We calculate this winding for all four patches in (b), corresponding to positive or negative δx
and δy. (c-f) The topological invariant is the winding direction of the directed curve ϵ(lh) and ϵ(lv) in the
complex energy plane, which can either be clockwise or counterclockwise.

Localized eigenmodes at the presence of boundary and corner

As shown in Figure 1(d) in the main text, the averaged spatial profile of the eigenmodes of the
walk is localized at the corner. In Figure 1(c) of the main text we have chosen δx = δy = 0.175, but
the feature of the spatial profile persists for any δx = δy > 0. Here in Figure S4 of the supplementary
section, we show the average eigenmode spatial profile for δx = δy = 0.03, 0.06, 0.09, 0.12, 0.15 and
0.18. As one increases δx = δy, we observe that the averaged spatial profile becomes more localized.
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FIG. S4. Averaged eigenmode spatial profile for different non-Hermitian parameters δx = δy.
We adopt the lattice geometry as in Figure S3(b). From left to right we take values 0.03, 0.06, 0.09, 0.12, 0.15
and 0.18.

FIG. S5. Evolution of probability distribution for non-Hermitian parameters δx = δy = 0,
showing diffusive spreading. (a) Probability distribution evolution, where the snapshots are taken
at time step 1, 5, 9, 13, respectively. (b) Evolution of averaged displacement < r2 >=< x2 + y2 >=∑

x,y Px,y(x
2 + y2) for time step from 1, 3, 5, 7, 9, 11, 13 and 15.

This explains the gradual tapering of the walker’s probability distribution as one increases/decreases
the non-Hermitian parameter in time, as shown in Figure 3(a) in the main text.

Static control supplementary data

Here we present additional experimental results for the quantum walk with no dynamical control.
We first show that, with δx = δy = 0, the walker diffusively spreads into the bulk of the lattice, as
shown in Figure S5(a), where the probability distribution of the walker is plotted for step 1, 5, 9, 13.
The averaged displacement, defined as < r2 > (n) =

∑
x,y Px,y(n)(x

2 + y2), is plotted in Figure
S5(b), for step 1, 3, 5, 7, 9, 11, 13 and 15. Here Px,y is the probability distribution of the walker at
time step n.
Furthermore, as mentioned in the main text, the funneling of light happens wherever the walker

is initialized, assuming the lattice gain-loss pattern shown in Figure 1(c) of the main text. This is
manifestly shown in Figure S6, where we always choose the initial state to be Dx=0,y=0 = 1, but
lattice corner is located at (10,−10), (10, 10) and (−10,−10), respectively.
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FIG. S6. Funneling and stabilization of light starting from arbitrary bulk patches. Light is
always initialized at (x, y) = (0, 0), but the corner position is held fixed at (a) (10,−10), (b) (10, 10) and
(c) (−10,−10). For each panel, the top row is probability distributions collected at step 1, 9, 17, 21 of the
experiment, and the bottom row is the corresponding simulation results.
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