## **Smart Packaging with Disposable NFC-enabled Wireless**

## **Gas Sensors for Monitoring Food Spoilage**

Atharv Naik<sup>1</sup>, Hong Seok Lee<sup>1</sup>, Jack Herrington<sup>1</sup>, Giandrin Barandun<sup>1,2</sup>, Genevieve Flock<sup>3</sup>, Firat Güder<sup>1,4</sup>\* and Laura Gonzalez-Macia<sup>1</sup>\*

<sup>1</sup> Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom

<sup>2</sup> BlakBear Ltd, 185 Tower Bridge Rd, London SE1 2UF, United Kingdom

<sup>3</sup> Combat Capabilities Development Command Soldier Center, Natick, MA 01760, United States

<sup>4</sup> Bezos Centre for Sustainable Protein, Imperial College London, London SW7 2AZ, United Kingdom

\*Corresponding Authors: <a href="mailto:guder@imperial.ac.uk">guder@imperial.ac.uk</a>, <a href="mailto:m.gonzalez-macia@imperial.ac.uk">m.gonzalez-macia@imperial.ac.uk</a>

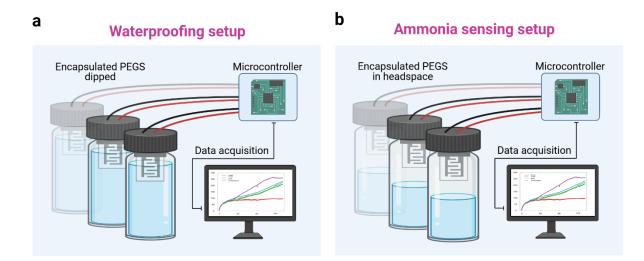

| Commercial name                                       | Short name | Material     | Thickness<br>(mm) | Biocompatibility                                                                  |
|-------------------------------------------------------|------------|--------------|-------------------|-----------------------------------------------------------------------------------|
| POREX Porous<br>PTFE Medical<br>Materials MD25        | MD25       | PTFE         | 0.19              | Use for medical applications <sup>1</sup>                                         |
| Nitto TEMISH<br>porous PTFE S-<br>NTF8031J            | TEMISH     | PTFE         | 0.13              | Applications: medical face masks, respirators, air purifiers <sup>2</sup>         |
| 3M <sup>™</sup> Medical Film<br>9832F, Polyurethane   | PU         | Polyurethane | 0.02              | Suitable for wound care dressings and wearable devices <sup>3</sup>               |
| Biaxially oriented<br>polyester (OPET)<br>film (OCLF) | mPET       | PET          | 0.0127            | Food packaging industry <sup>4</sup>                                              |
| Cellulose-based<br>compostable sealing<br>film        | Cellulose  | Cellulose    |                   | Food packaging industry <sup>4</sup>                                              |
| Polyurethane-based tattoo film                        | Tattoo     | Polyurethane |                   | Tattoo Wrap Waterproof<br>Wound Antibacterial<br>Transparent Bandage <sup>5</sup> |

Table S1. Material specifications for the membranes used to encapsulate PEGS.

<sup>1</sup>MD25 – POREX Virtek PTFE Hydrophobic Medical Venting Porous Membrane Sheets,

https://www.porex.com/product/porex-virtek-ptfe-hydrophobic-medical-venting-porous-membrane-sheetsmd25/; <sup>2</sup> https://www.nitto.com/eu/en/products/temish\_search/about/;

<sup>3</sup><u>https://www.3m.co.uk/3M/en\_GB/p/d/v000266868/;</u> <sup>4</sup>Bullseye Food Packaging <u>https://www.bfpuk.com/;</u> 5 Patrick F. Mcclernon, Russell Blette, Donna Dearinger, *Transparent breathable polyurethane film for tattoo aftercare and method*, WO 2010/042511 A1.



**Figure S1**. **a** Scheme of experimental setup used to evaluate the waterproofing properties of the encapsulation membranes (PEGS dipped into DI water). **b** Scheme of experimental setup used to measure changes in conductance over time of encapsulated PEGS placed in the headspace of a vial containing 1 mM NH4OH solution and comparison to non-encapsulated PEGS response.

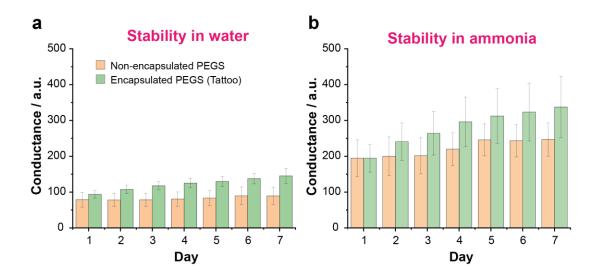



Figure S2. Stability study of non-encapsulated PEGS and PEGS encapsulated with polyurethane-based tattoo film. Sensors were continuously exposed to: **a** water, and **b** 1 mM NH<sub>4</sub>OH and the conductance changes were recorded for one week (n = 4).

**Table S2.** Breakdown of the cost for the fabrication of the NFC-enabled system integratedwith encapsulated PEGS (Tattoo film) for the monitoring of spoilage in spinach

| Component                       | Price per unit (USD) |  |
|---------------------------------|----------------------|--|
| PEGS                            | 0.02                 |  |
| 3M 9703 Conductive Tape         | 0.06                 |  |
| SIC4341 Chip                    | 0.01                 |  |
| Passive components (capacitors) | 0.01                 |  |
| Flexible PCB                    | 0.16                 |  |
| Tattoo film                     | 0.08                 |  |
| TOTAL (USD)                     | 0.35                 |  |

**Supplemental video**. Video showing the procedure for the monitoring of spoilage in bagged spinach using the NFC-enabled system integrated with encapsulated PEGS (Tattoo film). A user-friendly version app was used to communicate the level of spinach freshness by "Fresh" or "Not Fresh" messages.