Supplementary Material

Comparison of models to predict incident chronic liver disease: a systematic review

and external validation in Chinese adults

BMC Medicine

Xue Cong, BM¹, Shuyao Song, BM¹, Yingtao Li, MS¹, Kaiyang Song, BA², Cameron MacLeod, BA², Yujie Cheng, BM¹, Jun Lv, PhD^{1,3,4}, Canqing Yu, PhD^{1,3,4}, Dianjianyi Sun, PhD^{1,3,4}, Pei Pei, MSc^{1,3}, Ling Yang, PhD^{5,6}, Yiping Chen, DPhil^{5,6}, Iona Millwood, DPhil^{5,6}, Shukuan Wu, BS⁷, Xiaoming Yang, PhD⁵, Rebecca Stevens, MSc⁵, Junshi Chen, MD⁸, Zhengming Chen, DPhil⁵, Liming Li, MD^{1,3,4}, Christiana Kartsonaki, DPhil^{5,6}*#, Yuanjie Pang, DPhil^{1,4*}# on behalf of the China Kadoorie Biobank Collaborative Group**

*Corresponding author (yuanjie.p@gmail.com, christiana.kartsonaki@dph.ox.ac.uk) #Equal contributors

**The members of steering committee and collaborative group are listed in Supplementary material.

- 1. Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- 2. Medical Sciences Division, University of Oxford, Oxford OX3 9DU, United Kingdom
- 3. Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing 100191, China
- 4. Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education
- 5. Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford
- 6. Medical Research Council Population Health Research Unit at the University of Oxford, Oxford OX3 7LF, United Kingdom
- 7. Meilan Center for Disease Control and Prevention, Haikou 570100, China
- 8. China National Center for Food Safety Risk Assessment, Beijing 100022, China

Address for correspondence:

Dr. Yuanjie Pang	Dr. Christiana Kartsonaki
Department of Epidemiology & Biostatistics	Nuffield Department of Population
School of Public Health	Health
Peking University	University of Oxford
38 Xueyuan Road	Old Road Campus
Beijing, 100191, China	Oxford, OX3 7LF, UK
Tel: 86-010-82801528	Tel: 86-010-82801528
Fax: 86-010-82801530	Fax: 86-010-82801530
yuanjie.p@gmail.com	christiana.kartsonaki@dph.ox.ac.uk

Table of contents

Members of the China Kadoorie Biobank collaborative group	3
Method S1 Search strategy	4
Method S2 China Kadoorie Biobank (CKB) information	6
Method S3 The measurement and definition of CKB predictor variables	8
Method S4 ICD-10 of CLD events in CKB	11
Method S5 Predictors and equations for included models	12
Table S1 Bias assessment	20
Table S2 Predictors of prediction models for general population	22
Table S3 Predictors of prediction models for HBV infected individuals	24
Table S4 Predictors of prediction models for other populations	26
Table S5 Sensitivity analysis for PLC and HCC	28
Table S6 CLD risk model for 5-year HCC discrimination in the published literature and CKB \dots	29
Table S7 CLD risk model for 5-year CLD discrimination in the published literature and CKB	30
Table S8 CLD diseases and causes in high income countries and China in 2019	31
Table S9 Risk factors for CLD in CKB and Western populations	32
Table S10 Summary of Liver Cancer Screening Strategies	33
Fig. S1 Calibration plots of 5-year HCC risk prediction models in the CKB	35
Fig. S2 Calibration plots of 5-year CLD risk prediction models in the CKB	36
Fig. S3 Discrimination of CLD risk prediction models in the published literature and CKB	37
Fig. S4 Discrimination of HCC risk prediction models in the general population	38
Fig. S5 Discrimination of HCC risk prediction models in the HBV infected individuals	39
Fig. S6 Discrimination of CLD risk prediction models in the HBV infected individuals	40
Fig. S7 Discrimination of CLD risk prediction models in the HCV infected individuals	41
Fig. S8 Discrimination of CLD risk prediction models in the NAFLD patients	42

Members of the China Kadoorie Biobank collaborative group

International Steering Committee: Junshi Chen, Zhengming Chen (PI), Robert Clarke, Rory Collins, Yu Guo, Liming Li (PI), Jun Lv, Richard Peto, Robin Walters. International Co-ordinating Centre, Oxford: Daniel Avery, Derrick Bennett, Ruth Boxall, Sue Burgess, Ka Hung Chan, Yumei Chang, Yiping Chen, Zhengming Chen, Johnathan Clarke, Robert Clarke, Huaidong Du, Ahmed Edris Mohamed, Zammy Fairhurst-Hunter, Hannah Fry, Simon Gilbert, Alex Hacker, Mike Hill, Michael Holmes, Pek Kei Im, Andri Iona, Maria Kakkoura, Christiana Kartsonaki, Rene Kerosi, Kuang Lin, Mohsen Mazidi, Iona Millwood, Sam Morris, Qunhua Nie, Alfred Pozarickij, Paul Ryder, Saredo Said, Sam Sansome, Dan Schmidt, Paul Sherliker, Rajani Sohoni, Becky Stevens, Iain Turnbull, Robin Walters, Lin Wang, Neil Wright, Ling Yang, Xiaoming Yang, Pang Yao.

National Co-ordinating Centre, Beijing: Yu Guo, Xiao Han, Can Hou, Jun Lv, Pei Pei, Chao Liu, Canging Yu, Qingmei Xia. 10 Regional Co-ordinating Centres: Qingdao CDC: Zengchang Pang, Ruqin Gao, Shanpeng Li, Haiping Duan, Shaojie Wang, Yongmei Liu, Ranran Du, Yajing Zang, Liang Cheng, Xiaocao Tian, Hua Zhang, Yaoming Zhai, Feng Ning, Xiaohui Sun, Feifei Li. Licang CDC: Silu Lv, Junzheng Wang, Wei Hou. Heilongjiang Provincial CDC: Wei Sun, Shichun Yan, Xiaoming Cui. Nangang CDC: Chi Wang, Zhenyuan Wu, Yanjie Li, Quan Kang. Hainan Provincial CDC: Huiming Luo, Tingting Ou. Meilan CDC: Xiangyang Zheng, Zhendong Guo, Shukuan Wu, Yilei Li, Huimei Li. Jiangsu Provincial CDC: Ming Wu, Yonglin Zhou, Jinyi Zhou, Ran Tao, Jie Yang, Jian Su. Suzhou CDC: Fang Liu, Jun Zhang, Yihe Hu, Yan Lu, Liangcai Ma, Aiyu Tang, Shuo Zhang, Jianrong Jin, Jingchao Liu. Guangxi Provincial CDC: Mei Lin, Zhenzhen Lu. Liuzhou CDC: Lifang Zhou, Changping Xie, Jian Lan, Tingping Zhu, Yun Liu, Liuping Wei, Liyuan Zhou, Ningyu Chen, Yulu Qin, Sisi Wang. Sichuan Provincial CDC: Xianping Wu, Ningmei Zhang, Xiaofang Chen, Xiaoyu Chang. Pengzhou CDC: Mingqiang Yuan, Xia Wu, Xiaofang Chen, Wei Jiang, Jiaqiu Liu, Qiang Sun. Gansu Provincial CDC: Faqing Chen, Xiaolan Ren, Caixia Dong. Maiji CDC: Hui Zhang, Enke Mao, Xiaoping Wang, Tao Wang, Xi zhang. Henan Provincial CDC: Kai Kang, Shixian Feng, Huizi Tian, Lei Fan. Huixian CDC: XiaoLin Li, Huarong Sun, Pan He, Xukui Zhang. Zhejiang Provincial CDC: Min Yu, Ruying Hu, Hao Wang. Tongxiang CDC: Xiaoyi Zhang, Yuan Cao, Kaixu Xie, Lingli Chen, Dun Shen. Hunan Provincial CDC: Xiaojun Li, Donghui Jin, Li Yin, Huilin Liu, Zhongxi Fu. Liuyang CDC: Xin Xu, Hao Zhang, Jianwei Chen, Yuan Peng, Libo Zhang, Chan Qu.

Method S1 Search strategy

No.	Entry terms		
Pubr	ned		
1	"hepatocellular carcinoma"[Title/Abstract] OR "liver cancer"[Title/Abstract] OR "cirrhosis"[Title/Abstract] OR "chronic liver disease*"[Title/Abstract] OR "severe liver disease*"[Title/Abstract] (n=220,289)		
2	"risk assessment"[MeSH Terms] OR "risk prediction"[Title/Abstract] OR "risk score"[Title/Abstract] OR "risk calculation"[Title/Abstract] OR "prediction model"[Title/Abstract] OR "predict index"[Title/Abstract] OR "decision rule"[Title/Abstract] OR "discrimination"[Title/Abstract] OR "roc curve"[Title/Abstract] OR "calibration"[Title/Abstract] OR "AUC"[Title/Abstract] OR "area under the curve"[Title/Abstract] OR "scoring system"[Title/Abstract] OR "outcome prediction"[Title/Abstract] OR "risk classification"[Title/Abstract] OR "forecasting"[Title/Abstract] OR "forecast"[Title/Abstract] OR "decision tree"[Title/Abstract] OR "predictive score"[Title/Abstract] OR "validat*"[Title/Abstract] (n=1,355,701)		
3	1 AND 2 Filters: Humans (n=13,548)		
4	("prospective study"[Title/Abstract] OR "retrospective study"[Title/Abstract] OR "cohort study"[Title/Abstract] OR "case control study"[Title/Abstract] OR "prospective"[Title/Abstract] OR "retrospective"[Title/Abstract] OR "cohort"[Title/Abstract] OR "case control"[Title/Abstract] OR "case cohort"[Title/Abstract]) AND (humans [Filter]) Filters: Humans (n=1,570,078)		
5	("review"[Title] OR "letter"[Publication Type] OR "interview"[Publication Type] OR "comment"[Publication Type] OR "news"[Publication Type] OR "guideline"[Publication Type] OR "editorial"[Publication Type] OR "Bibliography"[Publication Type]) (n=2,995,276)		
6	3 AND 4 NOT 5 (n=4,021)		
7	3 Filters: meta-analysis Filters: systematic review (n=429)		
8	6 OR 7 (n=4,379)		
Emb	ase		
1	hepatocellular carcinoma.ab. or hepatocellular carcinoma.ti. or liver cancer.ab. or liver cancer.ti. or cirrhosis.ab. or cirrhosis.ti. or chronic liver disease*.ab. or chronic liver disease*.ti. or severe liver disease*.ab. or severe liver disease*.ti. (n=313,023)		
2	exp risk assessment/ (n=690,077)		
3	risk prediction.ab. or risk prediction.ti. or risk score.ab. or risk score.ti. or risk calculation.ab. or risk calculation.ti. or prediction model.ab. or prediction model.ti. or predict index.ab. or predict index.ti. or decision rule.ab. or decision rule.ti. or discrimination.ab. or discrimination.ti. or roc curve.ab. or roc curve.ti. or calibration.ab. or calibration.ti. or AUC.ab. or AUC.ti. or area under the curve.ab. or area under the curve.ti. or scoring system.ab. or scoring system.ti. or outcome prediction.ab. or risk classification.ab. or risk classification.ab. or forecast.ti. or decision tree.ab. or forecast.ab. or forecast.ti. or decision tree.ab. or predictive score.ti. or		

	validat*.ab. or validat*.ti. (n=1,502,514)	
4	2 or 3 (n=2,121,759)	
5	1 and 4 (n=31,685)	
6	limit 5 to human (n=29,515)	
7	prospective study.ab. or prospective study.ti. or retrospective study.ab. or retrospective study.ti. or cohort study.ab. or cohort study.ti. or case control study.ab. or case control study.ti. or prospective.ab. or prospective.ti. or retrospective.ab. or retrospective.ti. or cohort.ab. or cohort.ti. or case control.ab. or case control.ti. or case cohort.ab. or case cohort.ti. (n=2,953,555)	
8	limit 7 to human (n=2,768,117)	
9	review.ti. or letter.pt. or interview.pt. or comment.pt. or news.pt. or guideline.pt. or editorial.pt. or Bibliography.pt. (n=2,689,154)	
10	6 and 8 (n=10,777)	
11	10 not 9 (n=10,579)	
12	limit 6 to meta analysis (n=652)	
13	limit 6 to "systematic review" (n=808)	
14	12 or 13 (n=1,001)	
15	11 or 14 (n=11,427)	

Method S2 China Kadoorie Biobank (CKB) information

The external validation population was derived from the China Kadoorie Biobank (CKB), a large prospective Chinese population-based cohort study. The CKB study conducted the baseline survey from June 2004 to July 2008 in five urban and five rural areas of China, recruiting 512,891 adults aged 30 to 79 years¹. The survey included questionnaire assessments, physical measurements, and collection of blood samples. The questionnaire included sociodemographic characteristics, lifestyle factors, personal and family medical history, and current medication use, etc. Physical measurements included height, weight, hip and waist circumference, blood pressure, and heart rate, etc. See the table below for predictors detail. All survey staff underwent standardized training and implemented computerized data management throughout the project to ensure consistency in survey protocols across regions.

In the CKB validation population, the following individuals were included:

- General population: The total number of participants was 512,726. Individuals with baseline diagnoses of hepatitis or cirrhosis (n=6,193), cancer (n=2,578), or positive HBsAg results (n=27,285) at the baseline were excluded. The total study cohort included 478,930 individuals. For prediction models incorporating blood-based biomarkers, the sub-population analysis included 15,945 participants with GGT data, and 17,227 participants with ALT and AST data, applying the same exclusion criteria.
- 2. HBV Infected individuals: The total number of participants with positive HBsAg test was 15,552. Individuals with baseline diagnoses of hepatitis or cirrhosis (n=1,748) and cancer (n=98) at baseline were excluded, leaving 13,723 participants for the analysis. For prediction models involving blood-based biomarkers, the sub-population analysis included 394 participants with GGT and ALT data, applying the same exclusion criteria.

6

3. **Diabetes patient:** The total number of participants with diabetes was 30,301. Exclusion criteria for diabetes patients encompassed baseline diagnoses of hepatitis or cirrhosis (n=398), cancer (n=294), or positive HBsAg results (n=1,190) at the study baseline. The total number of diabetes patients included in the study was 28,540 individuals. In prediction models utilizing blood-based biomarkers, the sub-population analysis incorporated 1,540 participants with ALT biochemistry data and 1,348 participants with GGT biochemistry data, adhering to the established exclusion criteria.

The vital status of each participant was determined periodically through the China CDC's Disease Surveillance Points (DSP) system and the national health insurance system, supplemented by regular checks against local residential and health insurance records, and by annual active confirmation through street committees or village administrators. In addition, information about the occurrence of major diseases and any episodes of hospitalization was collected through linkages, using each participant's unique national identification number, with disease registries and national health insurance claims databases, which have almost universal coverage in the study areas. All events were coded using the International Classification of Diseases, 10th revision (ICD-10), by trained staff who were blinded to baseline information and reviewed centrally for consistency². The ICD-10 of chronic liver disease (CLD) events in CKB is reported in **Method S4**. The present study included incident liver disease from enrollment until December 31, 2018, by which time a total of 56,552 (11.03%) participants had died and 4,028 (0.78%) were lost to follow-up.

Predictor	Measurements	Units and definitions
Sex	Questionnaire	Female/male
Age	Questionnaire	Unit: year
Body mass index (BMI)	Formula: BMI=weight(kg)/height(m) ² . Instrument: height (self-made instrument), weight (TANITATBF-300GS body composition Unit: kg/m ² analyzer); accuracy: one decimal place.	
Waist circumference (WC)	Measurement position: midpoint level of the line between the anterior superior iliac crest and the 12th costal edge; tool: plastic soft tape; precision: one after the decimal point; measurement time: at the end of normal expiration.	Unit: cm
Waist-to-hip ratio	ratio Measurement position: maximum extension of hip; tool: soft tape; Unit: cm	
Systolic Blood Pressure (SBP)Instrument: UA-799 digital sphygmomanometer. Measurement time: sit for 5 min, repeat twice, and take the average value. If the difference is >10 mmHg, take the third measurement and average over the last two measurements.Unit: mmHg		Unit: mmHg
Diastolic blood pressure (DBP)	Same SRP Linit: mmHd	
Self-reported history of cirrhosis/chronic hepatitis	Questionnaire Question: Have you been diagnosed with cirrhosis/chronic hepatitis by a doctor in a township/district hospital?	(Yes/no)

Method S3 The measurement and definition of CKB predictor variables

Predictor	Measurements	Units and definitions
Self-reported history of diabetes	Questionnaire Question: Have you been diagnosed with diabetes by a doctor in a township/district hospital?	(Yes/no)
Newly detected diabetes during field investigation	Measurement tool: SureStep Plus System (LifeScan); Sample: Venous blood specimen. The object answered "yes" in question 1 was repeated if random blood glucose was 7.8-11.0 mmol/L.	Question 1 answered "no", the newly detected diabetes at site investigation was defined as follows: (1) random glucose value 7.0 mmol/L with fasting time 8 h; or (2) random glucose value 11.1 mmol/L with fasting time < 8 h; or (3) repeated random glucose measurement 7.0 mmol/L on the next day.
Triglyceride (TG)	Measurement of TG Beckman Chemistry Information Sheets: BLOSR6x118.04 2015-04. Beckman reagent (REF OSR6*118), analytical wavelength of primary 660 nm, secondary 800 nm, sample size of 1.6 μL, reagent volume(R1) 66 μL dilution of 57 μL, reagent volume(R2) 17 μL, dilution of 10 c.	Unit: Millimoles/Little
Total cholesterol (TC)	Reference for TC Beckman Coulter Cholesterol Chemistry Information Sheets: BLOSR6X16.07 2015-05. Beckman reagent (REF OSR6116), analyzed at primary 540 nm, secondary 600 nm, sample size of 1.6 μL, reagent volume(R1) of 24 μL, at 96 μL dilution.	Unit: Millimoles/Little
Smoking status	Questionnaire (1) Current frequency of smoking: Question 2 of I: How much time do you smoke once now? (A=non- smoking; B=occasional; C=most days; D=daily) (2) Frequency of past smoking: Question I 6: In the past, have you ever had the habit of smoking every day? (A=never; B=occasionally; C=most days; D=daily) (3) Daily smoking volume	The current daily smoker was defined as: Question 2=D (Yes/No) Quitters were defined as: Question 2=A and Question 6=B+C+D (Yes/No) Daily smoking: Tobacco content conversion: cigarette contains 1 gram of tobacco/cigarette, cigar contains 2 grams of tobacco/cigarette, grams of pipe/hookah, hand cigarette/dry tobacco are converted by the reported value.
Frequency of physical exercise	Questionnaire Question 9: In the past year, how often do you usually take a	Metabolic equivalent (MET) for different types of physical activity was taken from the 2011 Physical Activity Outline.

Predictor	Measurements	Units and definitions
	physical exercise in your spare time? (A=never or almost absent; B=1-3 times/month; C=1-2 times/week; D=3-5 times/week; E=exercise every day or almost every day)	Unit: MET-hour/day

ICD-10	Diagnosis	No. cases
нсс		
C22.0	Liver cell carcinoma	354
C22.9	Malignant neoplasm of liver and intrahepatic bile ducts, unspecified	2,916
Total		3,017
CLD		
K70	alcoholic liver disease, ALD	329
K72.0	Acute liver failure	35
K72.1	Chronic liver failure	12
K72.9	Liver failure unspecified	251
K74	fibrosis and cirrhosis of liver	2,708
K76.7	Hepatorenal syndrome	31
185.0	Esophageal varices with bleeding	103
185.9	Esophageal varices without bleeding	45
C22	Liver cancer	3,268
Total		5,565

Method S4 ICD-10 of CLD events in CKB

Method S5 Predictors and equations for included models

Predictors and equations for included models		
HCC		
1. HLI		
 Predictors: BMI, lifetime alcohol consumption, diet score, physical activity, smoking, hepatitis infection, diabetes Predictor definition: 		
 a. BMI (continuous, kg/m²), average lifetime alcohol intake (continuous, grams per day). b. Diet score (The diet score combined six dietary items including cereal fiber, red and processed meats, ratio of polyunsaturated to saturated fatty acids, margarine (used as a surrogate 		
marker for trans-fat from industrial sources), g continuous).		
 c. Physical activity (continuous metabolic equivale week). 		
 Smoking (never, former smokers quit >10 y, fo cigarettes/d, current smokers >15 cigarettes/d 	d).	
e. Hepatitis infection (yes/no), and self-reported d		
components of an HLI used in EPIC, modified		
f. Average lifetime alcohol intake was used instea	ad of alconol intake at recruitment to address	
potential bias related to reverse causality.		
(2) Equation:	Sooring dataila	
Modified HLI variable	Scoring details	
BMI (kg/m ²)	٥	
5th quintile (c30)	0	
4th quintile (26-29.9)	1	
3rd quintile (24-25.9)	2	
2nd quintile (22-23.9)	3	
1st quintile (<22)	4	
Lifetime alcohol consumption(
m: >30; w: >20	0	
m: 15-30; w: 10-20	1	
m: 5-15; w: 5-10	2	
0.1-5	3	
Never	4	
Diet score	•	
1st quintile (6-21)	0	
2nd quintile (22-25)	1	
3rd quintile (26-28)	2	
4th quintile (29-33)	3	
5th quintile (34-46)	4	
Physical activity (METs-hour/w		
1st quintile (<45)	0	
2nd quintile (46-69)	1	
3rd quintile (70-96)	2	
4th quintile (97-133)	3	
5th quintile (>=134)	4	
Smoking	A	
Current smokers, >15 cigarettes/	•	
Current smokers, <=15 cigarettes		
Former smokers, quit <=10 years		
Former smokers, quit >10 years	3	
Never	4	
Hepatitis Infection	2	
Yes	0	
No	4	
Diabetes at baseline		

Yes	0		
No	4		
(4) Equation in CKB:			
3.9369385+0.081874441*bmi_q			
-0.19685988*pa_q			
-0.097734815*fruit			
-0.22615716*cig_category			
-0.047279255*alcohol_cat			
-0.55157654*hepatitis			
-0.16193887*diabetes			
2.1 Wen 1-2012			
(1) Predictors: sex, age, smoking, drinking, physical activity	, diabetes		
Predictor definition:	<i>и</i>		
a. Smoking was classified by the number of pack-years	(i.e. daily cigarette quantity^duration in		
years) among every smoker.			
b. Alcohol consumption was classified into "regular drin			
on ≥3 days/week) and "occasional drinkers" (those	who consumed <2 drinks/day on		
<3 days/week). A provide a stirity: recording volume of leigure time photos.	values activity (LTDA) (i.e. the product of		
c. Physical activity: regarding volume of leisure time ph			
intensity measured as metabolic equivalent tasks [N MET-hour per week of each individual was classifie			
(3.75-7.49 MET-hour), and active (≥7.5 MET-hour;			
recommendation)	and group met the current LTFA		
(2) Equation:			
Wen 1-2012 variable	Scoring details		
Sex			
Female	0		
Male	2		
Age, year	2		
20-39	0		
40-59	2		
≥60	- 6		
Smoking, pack-years	, and the second s		
0	0		
1-9.9	1		
≥10	1		
Drinking			
None or occasional	0		
Regular	1		
Physical Activity, MET-hour			
<3.75	0		
3.75-7.49	-1		
≥7.5	-1		
Diabetes			
No	0		
Yes	2		
(3) Equation in CKB:			
-1.0610638+0.24293881*data\$age_category			
+0.31523732*data\$sex			
+0.096166441*data\$alc_category			
+0.17316124*data\$act_category			
+0.47848429*data\$diabetes			
+0.37469387*data\$cig_category			
2.2 Wen 2-2012			
(1) Predictors: sex, age, AST, ALT			
(2) Equation:			
Wen 2-2012 variable Scoring details			
Sex	—		
Female	0		
	U		

Ma		2
	e, year	
	-39	0
	-59	2
≥6		6
AS	it, IU/L	
<2	5	0
25	-39	5
40	-59	9
≥6	0	13
AL	T, IU/L	
<2	5	0
≥2	5	2
(3) Equation in Ck		
	.15651695*dat\$age_category	
+0.3586473*d	at\$sex *dat\$ALT_category	
	dat\$AST_category	
2.3 Wen 3-2012	····· <u>_</u> ····· <u>_</u> ····	
(1) Predictors: sex	, age, smoking, drinking, physical act	ivity, diabetes, AST, ALT
(2) Equation:		
	Wen 3-2012 variable	Scoring details
	Sex	
	Female	0
	Male	1
	Age, year	
	20-39	0
	40-59	2
	≥60	6
	Smoking, pack-years	
	0	0
	1-9.9	1
	≥10	1
	Drinking	
	None or occasional	0
	Regular	1
	Physical Activity, MET-hour	
	<3.75	0
	3.75-7.49	0
	≥7.5	-1
	Diabetes	
	No	0
	Yes	1
	AST, IU/L	
	<25	0
	25-39	4
	40-59	9
	≥60	12
	ALT, IU/L	12
	<25	0
L	N20	0

≥25	<u> </u>	
(3) Equation in CKB:		
-1.2300978+0.15784406*dat\$age_category		
+0.61661131*dat\$sex		
-0.21056898*dat\$ALT_category		
+0.14130867*dat\$AST_category		
+0.11230019*dat\$alc_category		
+0.089372728*dat\$act_category		
+0.024911687*dat\$diabetes		
+0.071970998*dat\$cig category		
3. DM-HCC		
(1) Predictors: age, GGT, TG		
· · ·		
(2) Equation:		
DM-HCC variable	Scoring details	
Age, years		
>65	11	
≤65	0	
GGT (IU/L)		
>80	16	
41-80	8	
≤40	0	
TG (mg/dL)		
<150	6	
≥150	0	
(3) Equation in CKB:		
-0.50559487+0.071973603*dat\$age_category		
+0.10426216*dat\$GGT_category		
+0.038324225*dat\$TG_category		
4. Li-2018		
(1) Predictors: age, gender, smoking habit, SGPT	variation of HbA1c, comorbidity, antidiabetes	
medications, antihyperlipidemia medication, Th		
Predictor definition:		
a. SGPT: serum ALT		
b. HbA1c: RPG		
	when his/her number of prescription days for each	
specific drug was greater than 3 months.	The anti diabetes medications of individual patients	
were further classified into 4 categories: n	o medication, oral anti diabetes drugs, insulin	
monotherapy, and insulin plus oral anti dia		
d. Antihyperlipidemia medications considered		
e. THR: total/high-density lipoprotein (HDL) ch		
(2) Equation:		
Age (-2 to 8)		
+Gender (0 if female, 2 if male)		
+Smoking habit (0 if no smoking, 2 if smoking)		
+SGPT (u/l) (0 if 6-45, 6 if <6 or >45)		
+Variation of HbA1c (%) (0 if <8.5, 0 if 8.5-17.	5_1 if >17_5)	
+Comorbidity (9 if Liver cirrhosis, 4 if Hepatitis B, 3 if Hepatitis C)		
+Antidiabetes medications (0 if no medication, 0 if oral only, 2 if insulin, 3 if insulin+oral agent)		
+Antihyperlipidemia medication:		
-No medication:		
-THR: male <5; female <4.5: Score 0		
-THR: male 5-9.4; female 4.5-7: Score-1		
-THR: male ≥ 9.5 ; female ≥ 7 : Score 2		
-Yes medication:		
-THR: male <5; female <4.5: Score-2		
-THR: male 5-9.4; female 4.5-7: Score-4		
-THR: male ≥9.5; female ≥7: Score-3		
(3) Equation in CKB:		
-2.0077928+1.6373314*(dat\$age_category==	"-1")	

-0.084629372*(dat\$age_category=="0") +1.5179949*(dat\$age_category=="1")	
+1.355421*(dat\$age_category=="2")	
+1.378663*(dat\$age_category=="3")	
+1.3509516*(dat\$age_category=="4")	
+1.7908917*(dat\$age_category=="5")	
+2.0393897*(dat\$age_category=="6")	
+2.2834965*(dat\$age_category=="7")	
-2.4928856*(dat\$age_category=="8")	
+0.37026501*dat\$sex	
-0.009137821*dat\$smoke_category	
+0.2810228*dat\$SGPT_category+	
0.76331689*dat\$HbA1c_category	
+0.39906606*dat\$comorbidity_category	
-2.095294*dat\$antidiabetes_category	
-0.064815973*dat\$THR_category	
5. Sinn-2020	
 Predictors: age, gender, body mass index, smoking, diabetes,t Predictor definition: 	otal cholesterol, ALI
a. BMI was classified according to Asian-specific criteria (unde	erweight, BMI of <18.5 kg/m ^{2,} normal
weight, BMI of 18.5 to 22.9 kg/m ² ; overweight, BMI of 23 to	
	ס בד.ט וווי, מווע טטכפכ, Divii בעס
kg/m²).	
b. Pre-hypertension was defined as a systolic blood pressure	130-<140 mmHg or a diastolic blood
pressure 85-<90 mmHg at the baseline screening.	
c. Hypertension was defined as the presence of at least one I	10-I13 or I15 code during the year
preceding the screening, or a systolic blood pressure 140	
90 mmHg at the baseline screening.	5 1
d. Pre-diabetes was defined as a fasting glucose level of 100-	<126 mg/dL at the baseline
screening. Diabetes was defined as the presence of at lea	st one ETT-ET4 code of a lasting
glucose level of 126 mg/dL at the baseline screening.	
e. Dyslipidaemia was defined as the presence of an E78 code	or a total cholesterol level of >240
mg/dL at the baseline screening.	
f. ALT level was classified into three groups: low (<30 U/L for	males and <20 U/L for females),
mildly elevated (30-89 U/L for males and 20-59 U/L for fen	
males and 60 U/L for females)	
g. Current alcohol consumption was categorized into none or i	modest (<30 α/day in men and <20
	noucat (-au gruay in men anu -20
g/day in women).	
(2) Equation:	
DM-HCC variable	Scoring details
Age	
<50	0
50-59	3
60-69	
>70	6
≥70	
Sex	6 7
	6
Sex	6 7
Sex Female Male	6 7 0
Sex Female Male Smoking	6 7 0 2
Sex Female Male Smoking Never	6 7 0 2 0
Sex Female Male Smoking Never Past	6 7 0 2 0 0
Sex Female Male Smoking Never Past Current	6 7 0 2 0
Sex Female Male Smoking Never Past Current Diabetes	6 7 0 2 0 0
Sex Female Male Smoking Never Past Current	6 7 0 2 0 0
Sex Female Male Smoking Never Past Current Diabetes	6 7 0 2 0 0 1
Sex Female Male Smoking Never Past Current Diabetes No diabetes Pre-diabetes	6 7 0 2 0 0 1 1 0 0
Sex Female Male Smoking Never Past Current Diabetes No diabetes Pre-diabetes Diabetes	6 7 0 2 0 0 1 0
Sex Female Male Smoking Never Past Current Diabetes No diabetes Pre-diabetes Diabetes Total cholesterol(mg/dL)	6 7 0 2 0 0 1 1 0 0 1
Sex Female Male Smoking Never Past Current Diabetes No diabetes Pre-diabetes Diabetes Total cholesterol(mg/dL) <200	6 7 0 2 0 0 1 1 0 0 1 2
Sex Female Male Smoking Never Past Current Diabetes No diabetes Pre-diabetes Diabetes Diabetes Zotal cholesterol(mg/dL) <200 ≥200	6 7 0 2 0 0 1 1 0 0 1
Sex Female Male Smoking Never Past Current Diabetes No diabetes Pre-diabetes Diabetes Total cholesterol(mg/dL) <200	6 7 0 2 0 0 1 1 0 0 1 2
Sex Female Male Smoking Never Past Current Diabetes No diabetes Pre-diabetes Diabetes Total cholesterol(mg/dL) <200 ≥200	6 7 0 2 0 0 1 1 0 0 1 2

	Mildly elevated	2
	Elevated	6
(3)	Equation in CKB:	
	-1.0888972+0.15591552*age_category	
	+0.44051948*sex	
	-0.042037495*current_smoking	
	-0.053377929*Diabetes	
	+0.159525*ALT_category	
	+1.3294444*Total_cholesterol	
	Cao-2021	
(1)	Predictor: age, sex, liver diseases in mother, BMI, alcohol consumption, p Predictor definition:	sychological trauma
	a. Liver diseases in mothers: including liver cancer, chronic hepatitis B, a	nd other liver disease
(2)		
(~)	F(t)=1-S(t)exp(f,M);	
	$f,M=0.058\times(age in years)$	
	$+0.879 \times (Female=0, Male=1)$	
	+0.608 × (liver diseases in mother: Yes=1, No=0)	
	+0.380 × (BMI<25=1, BMI ≥25=0)	
	+0.753 × (alcohol consumption ≥550 g/week ethanol: Yes=1, No=0)	
	+0.480 × (psychological trauma: Yes=1, No=0)-4.010.	
1.1	CLivD score(nonlab)	
(1)		king status, sex*GGT.
	sex*smoking status	
(2)		
	data\$modellab <-(-6.7922721+0.044744302*data\$AGE	
	+0.32961593*(data\$WHR*10)+0.19860813*data\$ALCOHOL	
	-0.0082096868*pmax(data\$ALCOHOL-0.1,0)^3	
	+0.010575035*pmax(data\$ALCOHOL-1,0)^3	
	-0.002004756*pmax(data\$ALCOHOL-3,0)^3	
	-0.00033998925*pmax(data\$ALCOHOL-9,0)^3	
	-2.0602882e-05*pmax(data\$ALCOHOL-	
	33,0)^3+0.011813962*data\$GGT+0.18721469*(data\$SEX=="2")	
	+0.55249734*(data\$DIABETES=="1")	
	+0.74679941*(data\$SMOKING=="1")	
	+0.0054325769*data\$GGT*(data\$SEX=="2")	
	-0.64903176*(data\$SEX=="2")*(data\$SMOKING=="1"))	
(3)	Equation in CKB:	
	-1.7996042-0.13849959*data\$alcohol_week	
	+0.0081373039*pmax(data\$alcohol_week-1,0)^3	
	-0.016951927*pmax(data\$alcohol_week-3,0)^3	
	+0.0090844935*pmax(data\$alcohol_week-5,0)^3	
	-0.00025840613*pmax(data\$alcohol_week-9,0)^3	
	-1.1464752e-05*pmax(data\$alcohol_week-33,0)^3	
	+0.050087058*data\$age	
	+0.45957616*data\$whr	
	+0.42501114*data\$diabetes	
	-0.27723986*data\$smoking	
	-0.52580546*data\$sex	
	+0.017439031*data\$smoking*data\$sex	
1.2	CLivD score(lab)	
(1)	Predictors: age, WHR, alcohol use (spline variable), diabetes, smoking sta	atus, sex*smoking status
(2)	Equation:	
	data\$modeInonIab <-(-8.0940103+0.044177151*data\$AGE+0.48927753*	
	+0.19222894*data\$ALCOHOL-0.00015029544*pmax(data\$ALCOHOL-0.	
	0.0021265611*pmax(data\$ALCOHOL-1,0)^3+0.0029832769*pmax(data\$	
	0.00068765143*pmax(data\$ALCOHOL-9,0)^3-1.8769011e-05*pmax(data	a\$ALCOHOL-
	33,0)^3+0.69669285*(data\$DIABETES=="1")	

	+0.75968055*(data\$SMOKING=="1")
	+0.63248362*(data\$SEX=="2")-0.59146649*(data\$SMOKING=="1")*(data\$SEX=="2"))
	Equation in CKB:
	-1.0759261-0.04427105*data\$alcohol_week
	+4.3147139e-05*pmax(data\$alcohol_week-0.1,0)^3
	-9.0209853e-05*pmax(data\$alcohol_week-15,0)^3
	+5.0565399e-05*pmax(data\$alcohol_week-30,0)^3
	-3.502685e-06*pmax(data\$alcohol_week-48,0)^3
	+0.044255473*data\$age
	-1.1958386*data\$whr
	+0.01055964*data\$ggt
	-0.49321834*data\$sex +0.030192835*data\$diabetes
	+0.099859348*data\$smoking +0.0041691027*data\$ggt*data\$sex
	-0.077726792*data\$sex*data\$smoking
2. BA	
<u> </u>	Predictors: BMI, AST, ALT, T2DM
	Equation: (1 if BMI >28 kg/m²)
	+(2 if AST/ALT ratio >0.8)
	+(2 if AS1/ALT faile >0.8) +(1 if T2DM)
	Equation in CKB:
	-0.66609144-0.1319787*data\$bmi_c
	+0.33679484*data\$diabetes c
	+0.34728017*data\$ast c
3. dA	
	Predictors: age, ALT, AST
	Equation:
	dataset\$riskscore1<-10.129915+0.039811813*dataset\$AGE
	+0.25387407*dataset\$ALT
	-0.0023607234*pmax(dataset\$ALT-11,0)^3
	+0.0079492072*pmax(dataset\$ALT-17,0)^3
	-0.0076811579*pmax(dataset\$ALT-22,0)^3
	+0.0021985068*pmax(dataset\$ALT-30,0)^3
	-0.00010583268*pmax(dataset\$ALT-58,0)^3
	+3.5333535*dataset\$astalt
	-7.3473709*pmax(dataset\$astalt-0.63,0)^3
	+32.911587*pmax(dataset\$astalt-0.92,0)^3
	-44.937707*pmax(dataset\$astalt-1.14,0)^3
	+21.786619*pmax(dataset\$astalt-1.41,0)^3
	-2.4131284*pmax(dataset\$astalt-2.13,0)^3
	Equation in CKB:
	-10.334179-0.12283087*data\$ALT
	+0.0004243091*pmax(data\$ALT-0.1,0)^3
	-0.0012106484*pmax(data\$ALT-11,0)^3
	+0.00090314578*pmax(data\$ALT-17,0)^3
	-0.00031645783*pmax(data\$ALT-22,0)^3
	+0.00023916006*pmax(data\$ALT-30,0)^3
	-3.9508734e-05*pmax(data\$ALT-58,0)^3
	+10.649273*data\$astalt
	-4.8201285*pmax(data\$astalt-0.1,0)^3
	+7.4526922*pmax(data\$astalt-0.63,0)^3
	+10.855356*pmax(data\$astalt-0.92,0)^3
	-21.971644*pmax(data\$astalt-1.14,0)^3
	+10.031624*pmax(data\$astalt-1.41,0)^3
	-1.5478998*pmax(data\$astalt-2.13,0)^3
	+0.03380337*data\$AGE
4. C/	
_	

- Predictors: age, sex, income, chronic hepatitis C, diabetes mellitus, statin exposure, antiplatelet exposure, smoking, ALT, GGT Predictor definition:
 - a. Income: medical aid <25%, low income=25-50%, intermediate=50-75%
 - b. Disease history: chronic hepatitis C; diabetes mellitus
 - c. Defined statin exposure as having filled at least 2 prescriptions within a six-month period,
 - d. Aspirin exposure as a prescription for at least once within 2 years prior to the index date
 - e. Smoking: smoking was based on the current status (i.e. yes or no) by patient health questionnaires
 - f. GGT*alcohol consumption:
 - g. Drinking: alcohol drinking was based on the current status (i.e. yes or no) by patient health questionnaires
 - h. Normal GGT: 3-50 U/L

(2) Equation:

- 0.677*(male)
- +0.085*(age)
- +0.310*(medical aid/<25%)
- +0.249*(low income)
- +0.146*(intermediate income)
- +0.066*(chronic hepatitis C)
- +0.406*(diabetes mellitus)
- -0.426*(statin exposure)
- +0.025*(antiplatelet exposure)
- +0.230*(smoking)+0.539*(ALT >35)
- +0.079*(normal GGT and drinking or abnormal GGT and & nondrinking)
- +0.532*(abnormal GGT and drinking)+0.426
- P(t)=1-S0(t)exp(risk score-0.43)

Table S1 Bias assessment

No	Study		ROB	}		A	pplicability		(Overall
NO	Study	Participants	Predictors	Outcome	Analysis	Participants	Predictors	Outcome	ROB	Applicability
1	Fredrik Åberg (2022)	Low	Low	Low	Low	Low	Low	Low	Low	Low
2	Vincent Wai-Sun Won (2010)	Low	Low	Low	High	Low	Low	Low	High	Low
3	Hwai-I Yan (2010)	Low	Low	Low	Unclear	Low	Low	Low	Unclear	Low
4	Man-Fung Yuen (2009)	Low	Low	Low	Unclear	Low	Low	Low	Unclear	Low
5	Hwai-I Yang (2011)	Low	Unclear	Low	Unclear	Low	Low	Low	Unclear	Low
6	Masayuki Kurosaki (2012)	Low	Unclear	Low	High	Low	Low	Low	High	Low
7	Takehiro Michikawa (2012)	Low	Low	Unclear	Unclear	Low	Low	Low	Unclear	Low
8	Chi-Pang Wen (2012)	Low	Low	Low	Unclear	Low	Low	Low	Unclear	Low
9	Juan Carlos Gavilán (2013)	Low	Unclear	Low	High	Low	Low	Low	High	Low
10	Mei-Hsuan Lee (2013)	Low	Unclear	Low	Unclear	Low	Low	Low	Unclear	Low
11	Yu-Ju Lin (2013)	Low	Low	Low	High	Low	Low	Low	High	Low
12	Mei-Hsuan Lee (2014)	Low	Low	Low	High	Low	Low	Low	High	Low
13	Talita Duarte-Salles (2016)	Low	Unclear	Low	Unclear	Low	Low	Low	Unclear	Low
14	Beomseok Suh (2015)	Low	Unclear	Low	Unclear	Low	Low	Low	Unclear	Low
15	Chunsun Fan (2019)	Low	Unclear	Unclear	High	Low	Low	Low	High	Low
16	Won Keun Si (2016)	Low	Unclear	Low	High	Low	Low	Low	High	Low
17	Adeel A. Butt (2017)	Low	Unclear	High	Unclear	Low	Low	Low	High	Low
18	Wei-Yi Kao (2017)	Low	Unclear	Unclear	Unclear	Low	Low	Low	Unclear	Low
19	M. A. Konerman (2017)	Low	Low	Low	Unclear	Low	Low	Low	Unclear	Low
20	Yeon Seok Seo (2017)	Low	Unclear	Low	High	Low	Low	Low	High	Low
21	Hwai-I Yang (2016)	Low	Low	Low	Low	Low	Low	Low	Low	Low
22	Tsai-Chung Li (2018)	Low	Low	Low	Unclear	Low	Low	Low	Unclear	Low
23	Lilian Yan Liang (2021)	Low	Low	Low	High	Low	Low	Low	High	Low
24	Dong Hyun Sinn (2020)	Low	Low	Low	High	Low	Low	Low	High	Low
25	Dong Hyun Sinn (2019)	Low	Low	High	High	Low	Low	Low	High	Low
26	Fredrik Åberg (2021)	Low	Unclear	Low	Unclear	Low	Low	Low	Unclear	Low
27	Yuting Wang (2021)	Low	Low	Unclear	High	Low	Low	Low	High	Low
28	Mathias Daheim (2016)	Unclear	Unclear	Unclear	High	Low	Low	Low	High	Low

Na	Study		ROB			A	Applicability		(Overall
No	Study	Participants	Predictors	Outcome	Analysis	Participants	Predictors	Outcome	ROB	Applicability
29	Ae Jeong Jo (2022)	Low	Low	Low	High	Low	Low	Low	High	Low
30	Hannes Hagström (2019)	Low	Unclear	Low	Unclear	Low	Low	Low	Unclear	Low
31	Dong Hyun Sinn (2016)	High	Unclear	Low	High	Low	Low	Low	High	Low
32	Chansik An (2021)	Low	Low	Low	Low	Low	Low	Low	Low	Low
33	Chengxiao Yu (2021)	Low	Low	Low	High	Low	Low	Low	High	Low
34	Thanachote Kamalapirat (2021)	Low	Unclear	Unclear	High	Low	Low	Low	High	Low
35	Alessandra Porto de Macedo Costa (2022)	Low	Unclear	Low	High	Low	Low	Low	High	Low
36	Nada Assi (2018)	Low	Low	Unclear	Unclear	Low	Low	Low	Unclear	Low
37	Tai-Chung Tseng (2017)	Low	Unclear	Low	Unclear	Low	Low	Low	Unclear	Low
38	Philip J. Johnson (2022)	Low	Unclear	Low	Low	Low	Low	Low	Low	Low
39	Do Young Kim (2013)	Low	Unclear	Low	High	Low	Low	Low	High	Low
40	Monica A. Konerman (2019)	Low	Unclear	High	High	Low	Low	Low	High	Low
41	An K. Le (2021)	Low	Low	Low	Unclear	Low	Low	Low	Unclear	Low
42	Maomao Cao (2021)	Low	Low	Unclear	Unclear	Low	Low	Low	Unclear	Low
43	Hannes Hagström (2019)	Low	Low	Unclear	High	Low	Low	Low	High	Low
44	Jae Seung Lee (2021)	Low	Unclear	Low	High	Low	Low	Low	High	Low
45	Thierry Poynard (2019)	Low	Unclear	Low	High	Low	Low	Low	High	Low
46	Jonathan Thomas (2022)	Low	Low	Unclear	Unclear	Low	Low	Low	Unclear	Low
47	Grace Lai-Hung Wong (2014)	Low	Unclear	Low	High	Low	Low	Low	High	Low
48	Thierry Poynard (2021)	Low	Unclear	Unclear	Unclear	Low	Low	Low	Unclear	Low
49	Hsiao-Hsien Rau (2016)	Low	Low	Low	Unclear	Low	Low	Low	Unclear	Low
50	Seung Hwan Shin (2015)	Low	Unclear	Low	High	Low	Low	Low	High	Low
51	Namyoung Paik (2018)	Low	Unclear	Unclear	Unclear	Low	Low	Low	Unclear	Low
52	Kyu Sik Jung (2015)	Low	Unclear	Low	Unclear	Low	Low	Low	Unclear	Low
53	Mi Young Jeon (2018)	Low	Unclear	Low	Unclear	Low	Low	Low	Unclear	Low
54	Mahmoud Abu-Amara (2016)	Low	Unclear	Unclear	Unclear	Low	Low	Low	Unclear	Low
55	W. P. Brouwer (2017)	Low	Unclear	Low	Unclear	Low	Low	Low	Unclear	Low
56	Zhongxian Poh (2016)	Low	Unclear	Low	High	Low	Low	Low	High	Low
57	Namkyu Kang (2021)	Low	Low	Low	High	Low	Low	Low	High	Low

	Demog	graphic			Life	estyle									Bl	ood-bas	ed biom	arkers						
Model -	Age	Sex	Alcohol	BMI	Diet	PA	Smoking	WHR	Diabetes	AFP	ALB	ALP	ALT	AST	BIL	GGT	Glu	HBsAg	HBeAg	HBV DNA	тс	TG	PLT	Others
AGED	\checkmark	\checkmark											\checkmark						\checkmark	\checkmark				
An-2021	\checkmark	\checkmark		\checkmark					\checkmark				\checkmark			\checkmark			\checkmark	\checkmark	\checkmark			income etc.‡
CKB-PLR	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark								\checkmark							Family history of cancer etc.§
CLivD (lab)	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark							\checkmark								
CLivD (non-lab)	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark															
dAAR	\checkmark												\checkmark	\checkmark										
Duarte-Salles 1- 2016										\checkmark														OPN
Duarte-Salles 2- 2016										\checkmark		\checkmark		\checkmark		\checkmark								OPN
Duarte-Salles 3- 2016												\checkmark		\checkmark		\checkmark								
Duarte-Salles 4- 2016												\checkmark		\checkmark		\checkmark								OPN
Elaborate Base Model	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark															height, general health status
HLI			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark															hepatitis
LCR1	\checkmark	\checkmark														\checkmark								APOA1, Hp, A2M
LCR2	\checkmark	\checkmark								\checkmark						\checkmark								APOA1, Hp, A2M
LFS											\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark								
LFS+lifestyle signature LFS+metabolic			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark								V							hepatitis Metabolic
signature Metabolic signature													V			V								signature¶ Metabolic
-	,	,							,									,						signature¶ coffee
Michikawa	\checkmark		V	\checkmark					\checkmark									N						consumption, Anti-HCV Ab
Parsimonious Base Model	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark															general health status
Sinn-020	\checkmark	\checkmark					\checkmark		\checkmark				\checkmark								\checkmark			
Sung(established)- 2012								\checkmark					\checkmark				\checkmark					\checkmark	\checkmark	
Sung(new)-2012								\checkmark					\checkmark				\checkmark					\checkmark	\checkmark	
Wen 1-2012	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark															
Wen 1'-2012	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark															
Wen 2-2012	\checkmark	\checkmark											\checkmark	\checkmark										

Table S2 Predictors of prediction models for general population

Madal	Demog	raphic			Life	estyle									BI	ood-base	ed biom	arkers						Othors
Model	Age	Sex	Alcohol	BMI	Diet	PA	Smoking	WHR	Diabetes	AFP	ALB	ALP	ALT	AST	BIL	GGT	Glu	HBsAg	HBeAg	HBV DNA	тс	ΤG	PLT	Others
Wen 2'-2012	\checkmark	\checkmark											\checkmark	\checkmark										
Wen 3-2012	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark				\checkmark	\checkmark										
Wen 3'-2012	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark				\checkmark	\checkmark										
Wen 4-2012	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark				\checkmark						
Wen 4'-2012	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark				\checkmark						
Wen 5'-2012	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark				\checkmark						Anti-HCV Ab

: Income, family history of chronic liver disease, disease history (chronic liver disease, chronic hepatitis virus infection, HIV infection, dyslipidemia, or schizophrenic/delusional disorders or mental disorders due to psychoactive substance use)

§: Family history of cancer, residential area, education, disease history (cancer, gallstone or gallbladder disease), cirrhosis

¶: Glutamic acid, Hexoses, SMC16:1, SM(OH)C14:1, SM(OH)C22:2, LysoPC aC28:1, PC aeC30:2

A2M: alpha2 - macroglobulin; AAR: aspartate-to-alanine aminotransferase ratio; AFP: alpha-fetoprotein; ALB: Albumin; ALP: alkaline phosphatase; ALT: alanine transaminase; Anti-HCV Ab: Anti-Hepatitis C Virus Antibody; APOA1: apolipoprotein A1; AST: aspartate transaminase; BIL:Bilirubin; GGT: gamma-glutamyl transferase; Glu: Glutamic acid; HBeAg: Hepatitis B e Antigen; HBsAg: Hepatitis B Surface Antigen; Hp: haptoglobin; PA: physical activity; PLT: Platelet count; TC: total cholesterol; TG concentration: triglyceride concentration; WC: waist circumference; WHR: waist-to-hip rate

	Demo	graphic		Lifesty	le	Perso	onal and family	y history			E	Blood-ba	ased bio	markers			
Model	Age	Sex	Alcohol	BMI	Smoking	Diabetes	Cirrhosis	Family history	AFP	ALB	ALT	AST	GGT	HBeAg	HBV DNA	PLT	Others
Cao-2021	\checkmark	\checkmark	\checkmark	\checkmark				√‡									Psychological trauma
CAP-B Score	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark					\checkmark		\checkmark				income, CHC, statin exposure, anitplatelet exposure
D²AS	\checkmark	\checkmark									\checkmark			\checkmark	\checkmark		·
GAG-HCC	\checkmark	\checkmark					\checkmark								\checkmark		core promoter mutations
GAG-HCC (non-core promoter mutations)	\checkmark	\checkmark					\checkmark								\checkmark		
Le-2021	\checkmark	\checkmark				\checkmark					\checkmark	\checkmark		\checkmark			antiviral treatment
Lee-2013	\checkmark	\checkmark						\checkmark			\checkmark			\checkmark	\checkmark		
Liang score	\checkmark	\checkmark													\checkmark		FIB-4
Lin-Model I	\checkmark	\checkmark								\checkmark	\checkmark			\checkmark	\checkmark		
Lin-Model II	\checkmark	\checkmark							\checkmark		\checkmark	\checkmark	\checkmark				alpha-1 globulin
Lin-Model III	\checkmark	\checkmark							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		alpha-1 globulin
LSM-HCC	\checkmark									\checkmark					\checkmark		Liver stiffness
LSPS																\checkmark	Liver stiffness, spleen diameter
MALE-ABCD	\checkmark								\checkmark				\checkmark				
Methylation Profile																	three methylated sites§
Model 1-regression model	\checkmark	\checkmark	\checkmark					\checkmark			\checkmark			\checkmark			
Model 2-regression model	\checkmark	\checkmark	\checkmark					\checkmark			\checkmark			\checkmark	\checkmark		
Model 3-regression model	\checkmark	\checkmark	\checkmark					\checkmark			\checkmark			\checkmark	\checkmark		HBV genotype
NGM1-HCC	\checkmark	\checkmark	\checkmark					\checkmark			\checkmark			\checkmark			
NGM2-HCC	\checkmark	\checkmark	\checkmark					\checkmark			\checkmark			\checkmark	\checkmark		
NGM3-HCC	\checkmark	\checkmark	\checkmark					\checkmark			\checkmark			\checkmark	\checkmark		HBV genotype
REACH-B	\checkmark	\checkmark									\checkmark			\checkmark	\checkmark		
REACH-B IIa	\checkmark	\checkmark									\checkmark			\checkmark	\checkmark		
REACH-B IIb	\checkmark	\checkmark									\checkmark			\checkmark			
RWS-HCC	\checkmark	\checkmark					\checkmark		\checkmark								
Sinn-2019	\checkmark	\checkmark					\checkmark				\checkmark			\checkmark		\checkmark	
Transient elastography-based risk estimation	\checkmark	\checkmark													\checkmark		liver stiffness

Table S3 Predictors of prediction models for HBV infected individuals

Model	Demoç	graphic		Lifesty	e	Perso	onal and family	history			I	Blood-ba	ised bio	markers			Others
Model	Age	Sex	Alcohol	BMI	Smoking	Diabetes	Cirrhosis	Family history	AFP	ALB	ALT	AST	GGT	HBeAg	HBV DNA	PLT	Others
Won-2010	\checkmark						\checkmark			\checkmark					\checkmark		

Liver diseases in mothers
 cg00300879, cg06872964, and cg07080864
 AFP: α-Fetoprotein; ALB: Albumin; ALT: Alanine Aminotransferase; AST: Aspartate Aminotransferase; CHC: chronic Hepatitis C; GGT: Gamma-Glutamyl Transferase; PLT: Platelet

Table S4 Predictors of prediction models for other populations

	Demog	raphic	L	ifestyle	F	Personal and	family history	1			Blo	od-base	d bion	narkers			
Model	Age	Sex	BMI	Smoking	Diabetes	Cirrhosis	Hepatitis	Fatty liver	ALB	ALT	AST	AFP	BR	GGT	HBsAg	PLT	other
ANN-model 1	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark									alcoholic cirrhosis etc.‡
ANN-model 2	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark									alcoholic cirrhosis etc.§
ANN-model 3	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark									nonalcoholic cirrhosis etc.¶
CNN																	
CRS																	seven SNPs
CS boosting model																	
DM-HCC	\checkmark													\checkmark			TG
GRU																	
Li-2018	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark							Hba1C, antidiabetes medication, antihyperlipidemia medication and THR
HCC-4 Risk Score	\checkmark											\checkmark				\checkmark	gammaglobulin
HCC-RS	\checkmark	\checkmark			\checkmark				\checkmark	\checkmark	\checkmark		\checkmark			\checkmark	Cardiovascular disease etc.•
Liver Volume Index longitudinal boosting														\checkmark			Volume Index
model																	
longitudinal Cox model	,	1				1	1	,									
LR-model 1	V	V				N	V	V									alcoholic cirrhosis etc.‡
LR-model 2	V	V				N	\checkmark	V									alcoholic cirrhosis etc.§
LR-model 3	V	V				V	\checkmark	\checkmark			,					,	nonalcoholic cirrhosis etc.¶
LS-Based Model 1	V										V					V	Liver Stiffness
LS-Based Model 2	1										V					V	Liver Stiffness
LS-Based Model 3	\checkmark										\checkmark					\checkmark	Liver Stiffness
LSTM																	
Kurosaki-2012	V								V							\checkmark	
Lee-2014	\checkmark					\checkmark				\checkmark	\checkmark						HCV RNA and HCV Genotype

‡: alcoholic cirrhosis, nonalcoholic cirrhosis, alcoholic hepatitis, viral hepatitis, other types of chronic hepatitis, alcoholic fatty liver disease, other types of fatty liver disease and hyperlipidemia

§: alcoholic cirrhosis, alcoholic hepatitis, alcoholic fatty liver disease

¶: nonalcoholic cirrhosis, viral hepatitis, other types of chronic hepatitis, other types of fatty liver disease, and hyperlipidemia

•: Cardiovascular disease, Colorectal cancer, Lung cancers, Urinary/renal malignancies, Cervical cancer, Breast cancer, Lymphoma, Chronic kidney disease, Osteopenia, Osteoporosis, Hypertension, Anticoagulants, ACEI/ARB, Antiplatelet agents, Beta blockers, Histamine-2 receptor antagonist, Insulin, Immunosuppressant, Sulphonylurea, Thiazides, Other lipid-lowering agents, Other oral hypoglycaemic agents, Proton pump inhibitor, Potassium sparing diuretics, Statins, Loop diuretics, Metformin, NSAID AFP: α-Fetoprotein; ALB: Albumin; ALT: Alanine Aminotransferase; AST: Aspartate Aminotransferase; BR: Bilirubin; GGT: Gamma-Glutamyl Transferase; HBsAg: Hepatitis B surface antigen; HbA1c: Hemoglobin A1c; PLT: Platelet; TG: Triglycerides

Table S5 Sensitivity analysis for PLC and HCC

Medel	Demulation	Time horizon	PLC	(C22)	HCC (C2	2.0+C22.9)	нсс	(C22.0)
Model	Population	(years)	Events/total	C-index	Events/total	C-index	Events/total	C-index
HLI	General	10	1,888/478,930	0.65 (0.64-0.67)	1,709/478,930	0.68 (0.67-0.70)	163/478,930	0.68 (0.63-0.73)
Wen 1-2012	General	5	875/478,930	0.72 (0.71-0.74)	793/478,930	0.72 (0.70-0.74)	71/478,930	0.76 (0.71-0.81)
Wen 1-2012	General	10	1,888/478,930	0.72 (0.70-0.73)	1,709/478,930	0.72 (0.70-0.73)	163/478,930	0.76 (0.72-0.80)
DM-HCC (all)	General	5	30/15,818	0.69 (0.60-0.79)	26/15,818	0.68 (0.57-0.79)	3/15,818	0.71 (0.60-0.82)
Li-2018 (all)	General	3	17/17,227	0.80 (0.70-0.90)	12/17,227	0.83 (0.75-0.92)	1/17,227	0.98 (0.98-0.98)
Li-2018 (all)	General	5	32/17,227	0.75 (0.66-0.83)	28/17,227	0.76 (0.68-0.84)	3/17,227	0.92 (0.85-0.99)
Li-2018 (all)	General	10	80/17,227	0.74 (0.68-0.79)	72/17,227	0.74 (0.68-0.80)	8/17,227	0.91 (0.84-0.98)
Sinn-2020	General	5	32/17,227	0.69 (0.60-0.77)	28/17,227	0.70 (0.61-0.78)	3/17,227	0.90 (0.81-0.99)
Sinn-2020	General	10	80/17,227	0.67 (0.61-0.73)	72/17,227	0.66 (0.60-0.72)	8/17,227	0.86 (0.77-0.95)
Wen 2-2012	General	5	32/17,227	0.68 (0.59-0.77)	28/17,227	0.70 (0.62-0.79)	3/17,227	0.82 (0.67-0.97)
Wen 2-2012	General	10	80/17,227	0.67 (0.61-0.73)	72/17,227	0.67 (0.61-0.74)	8/17,227	0.81 (0.66-0.96)
Wen 3-2012	General	5	32/17,227	0.69 (0.60-0.78)	28/17,227	0.71 (0.62-0.80)	3/17,227	0.98 (0.95-0.99)
Wen 3-2012	General	10	80/17,227	0.68 (0.62-0.73)	72/17,227	0.68 (0.61-0.74)	8/17,227	0.85 (0.69-0.99)

Madal	Demulation	Time		Development	cohort	Published exte	ernal validation cohort		СКВ
Model	Population	horizon	Area	Events/total	C-index (95% CI)	Events/total	C-index (95% CI)	Events/total	C-index_(95% CI)
нсс									
DM-HCC (all)	General	5	EAS	-	-	-	-	26/15,818	0.68 (0.57-0.79)
Li-2018 (all)	General	3	EAS	-	-	-	-	12/17,227	0.83 (0.75-0.92)
Li-2018 (all)	General	5	EAS	-	-	-	-	28/17,227	0.76 (0.68-0.84)
Sinn-2020	General	5	EAS	-	-	-	-	28/17,227	0.70 (0.61-0.78)
Wen 1-2012	General	5	EAS	-	-	-	-	793/478,930	0.72 (0.70-0.74)
Wen 2-2012	General	5	EAS	-	-	-	-	28/17,227	0.70 (0.62-0.79)
Wen 3-2012	General	5	EAS	-	-	-	-	28/17,227	0.71 (0.62-0.80)
Cao-2021	HBV infected	3	EAS	203/110,536	0.73 (0.64-0.82)	-	-	141/13,723	0.75 (0.72-0.79)
Cao-2021	HBV infected	5	EAS	-	-	-	-	250/13,723	0.74 (0.71-0.78)
DM-HCC	T2D	5	EAS	36/2,364	0.86 (0.85-0.88)	-	-	2/1,348	0.75 (0.44-0.99)
Li-2018	T2D	5	EAS	493/21,149	0.80 (0.77-0.83)	-	-	2/1,490	0.99 (0.99-0.99)

Table S6 CLD risk model for 5-year HCC discrimination in the published literature and CKB

Model	Denulation	Time	Development cohort			Published exte	ernal validation cohort	СКВ	
	Population	horizon	Area	Events/total	C-index (95% CI)	Events/total	C-index (95% CI)	Events/total	C-index_(95% CI)
CLD									
BARD	General	5	EUR	-	-	232/75,303	0.57 (0.52-0.63)	74/17,227	0.55 (0.51-0.59)
dAAR	General	5	EUR	89/18,067	0.80 (0.74-0.85)	343/126,941	0.74 (0.71-0.77)	74/17,227	0.74 (0.68-0.81)
CAP-B	HBV infected	3	EAS	5,781/401,745	0.78 (0.78-0.78)	-	-	8/394	0.91 (0.83-0.98)
CAP-B	HBV infected	5	EAS	10,278/401,745	0.78 (0.78-0.78)	-	-	11/394	0.81 (0.67-0.94)

Table S7 CLD risk model for 5-year CLD discrimination in the published literature and CKB

Discourse and sources	High inco	ome countries	China	
Diseases and causes	Number	Percent	Number	Percent
Liver cancer (total)	261,313	-	290,373	-
alcohol use	62,969	24%	25,488	9%
nepatitis B	52,212	20%	193,969	67%
hepatitis C	118,240	45%	41,078	14%
NASH	15,984	6%	12,831	4%
other causes	11,908	5%	17,007	6%
Cirrhosis and other chronic liver diseases (total)	161,286,494	-	427,983,626	-
alcohol use	3,421,267	2%	2,417,135	1%
hepatitis B	11,557,512	7%	111,315,938	26%
hepatitis C	10,550,277	7%	19,023,979	4%
NAFLD	134,191,713	83%	293,409,373	69%
other causes	1,565,725	1%	1,817,200	0%

Table S9 Risk factors for CLD in CKB and Western populations

Risk factors	CKB liver cancer	CKB cirrhosis	CUP liver cancer	
Alcohol per 10 g/day	1.11 (1.07-1.14) ³	1.18 (1.14-1.22) ⁴	1.04 (1.02-1.06)	
BMI per 5 kg/m²	1.05 (0.94-1.15) ⁵	-	1.30 (1.16-1.46)	
Diabetes	1.49 (1.30-1.70) ⁶	1.81 (1.57-2.09)	-	
Physical activity	0.81 (0.71-0.93)	0.76 (0.66-0.88)	0.54 (0.23-1.29)	
Smoking	1.29 (1.16-1.42) ⁷	1.08 (0.95-1.23)	-	

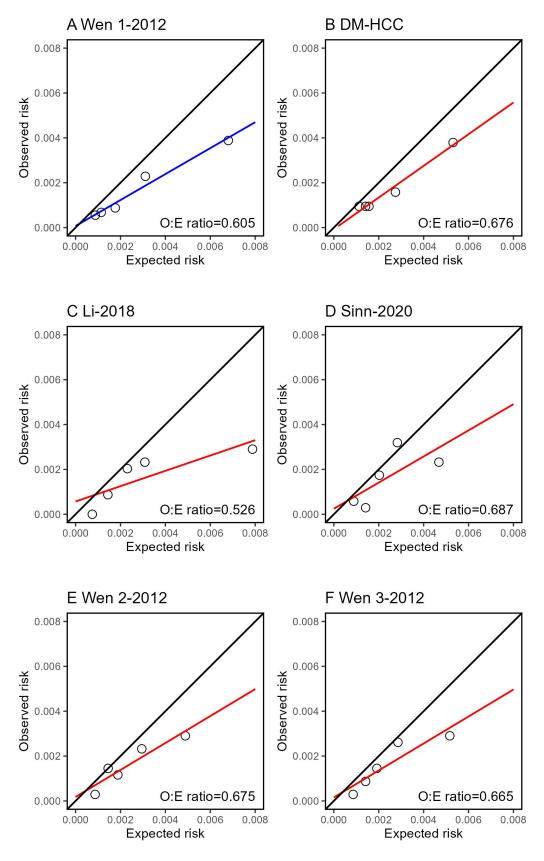
	EASL ⁸	AASLD ⁹	China screening strategy ¹⁰
Population	 Cirrhotic patients, Child-Pugh stage A and B Cirrhotic patients, Child-Pugh stage C awaiting liver transplantation Non-cirrhotic HBV patients at intermediate or high risk of HCC^a (according to PAGE-B^b classes for Caucasian subjects, respectively 10- 17 and ≥18 score points) Non-cirrhotic F3 patients, regardless of aetiology may be considered for surveillance based on an individual risk assessment 	-Alcohol associated cirrhosis -Nonalcoholic steatohepatitis -Other etiologies	 Males aged 45-74 and females aged 50-74 who meet at least one of the following criteria: 1. Positive Hepatitis B surface antigen (HBsAg) 2. History of HCV infection 3. History of liver cirrhosis 4. A first-degree/second-degree relative with a history of liver cancer
Method	Abdominal ultrasound	Ultrasound and AFP	Serum alpha-fetoprotein (AFP) test and abdominal ultrasound
Frequency	Every six months	Every six months	

a Patients at low HCC risk left untreated for HBV and without regular six months surveillance must be reassessed at least yearly to verify progression of HCC risk.

b PAGE-B (Platelet, Age, Gender, hepatitis B) score is based on decade of age(16-29=0, 30-39=2, 40-49=4, 50-59=6, 60-69=8, \geq 70=10), gender(M=6, F=0) and platelet count (\geq 200,000/II=0, 100,000-199,999/II=1, <100,000/II=2): a total sum of \leq 9 is considered at low risk of HCC(almost 0% HCC at five years) a score of 10-17 at intermediate risk(3% incidence HCC at five years) and \geq 18 is at high risk(17% HCC at five years).

c Endemic country as defined by AASLD hepatitis B virus guidance.

d Surveillance can be initiated as early as third decade of life given median age 46 years at HCC diagnosis.


e Other risk calculators can be considered, although PAGE-B has been validated in Western populations on antiviral therapy.

EASL: European Association for the Study of the Liver; AASLD: American Association for the Study of Liver Diseases

References

- 1. Chen Z, Chen J, Collins R, Guo Y, Peto R, Wu F, Li L: China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up. Int J Epidemiol 2011, 40(6):1652-1666.
- 2. Yang G, Rao C, Ma J, et al. Validation of verbal autopsy procedures for adult deaths in China. Int J Epidemiol. 2006;35(3):741-748.
- 3. Im PK, Wright N, Yang L, Chan KH, Chen Y, Guo Y, et al. Alcohol consumption and risks of more than 200 diseases in Chinese men. Nat Med. 2023;29(6):1476-86.
- 4. Im PK, Millwood IY, Kartsonaki C, Guo Y, Chen Y, Turnbull I, et al. Alcohol drinking and risks of liver cancer and non-neoplastic chronic liver diseases in China: a 10-year prospective study of 0.5 million adults. BMC Med. 2021;19(1):216.
- 5. Pang Y, Kartsonaki C, Guo Y, Chen Y, Yang L, Bian Z, et al. Central adiposity in relation to risk of liver cancer in Chinese adults: A prospective study of 0.5 million people. Int J Cancer. 2019;145(5):1245-53.
- 6. Pang Y, Kartsonaki C, Turnbull I, Guo Y, Clarke R, Chen Y, et al. Diabetes, Plasma Glucose, and Incidence of Fatty Liver, Cirrhosis, and Liver Cancer: A Prospective Study of 0.5 Million People. Hepatology. 2018;68(4):1308-18.
- Chan KH, Wright N, Xiao D, Guo Y, Chen Y, Du H, et al. Tobacco smoking and risks of more than 470 diseases in China: a prospective cohort study. Lancet Public Health. 2022;7(12):e1014-e26.
- 8. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182-236.
- 9. Singal AG, Llovet JM, Yarchoan M, Mehta N, Heimbach JK, Dawson LA, et al. AASLD practice guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology. 2023.
- 10. [Guideline for stratified screening and surveillance of primary liver cancer(2020 Edition)]. Zhonghua Gan Zang Bing Za Zhi. 2021;29(1):25-40.

Blue color represents models with non-lab predictors, while red color indicates models that include lab predictors.

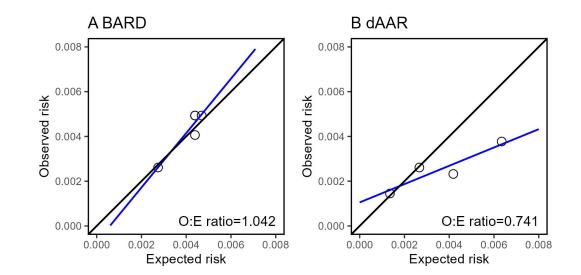
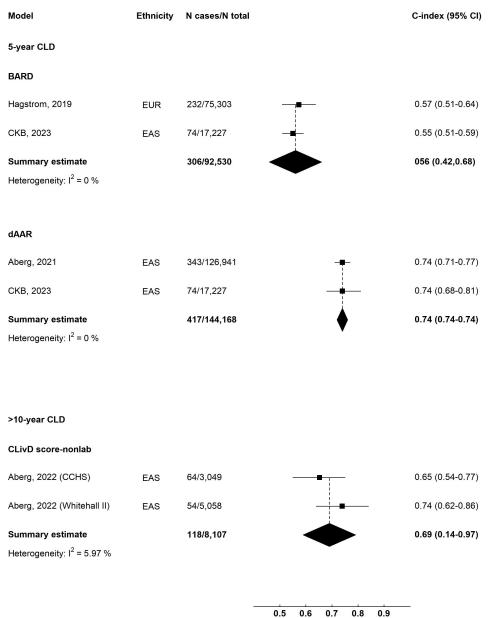
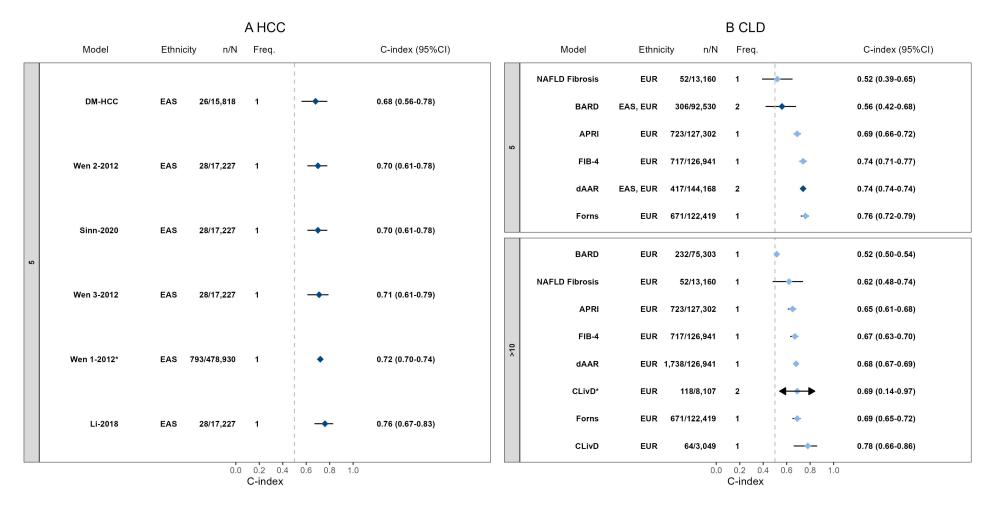




Fig. S2 Calibration plots of 5-year CLD risk prediction models in the CKB

Fig. S3 Discrimination of CLD risk prediction models in the published literature and CKB

C-index (95% Cl)

Fig. S4 Discrimination of HCC risk prediction models in the general population

An asterisk (*) represents a predictive model comprising all non-lab predictors. Dark blue color denotes models externally validated in CKB, while light blue color represents models not externally validated in CKB. "Ethnicity" represents the development population, and "Freq." represents the model's external validation frequency. The REAL-B model was not included due to the population being post-treatment or intervention liver disease patients.

Fig. S5 Discrimination of HCC risk prediction models in the HBV infected individuals

	Model	Ethnie	city n/N	Freq.		C-index (95%CI)
\$5	AGED PAGE-B mPAGE-B THRI Cao-2021* LSM-HCC REACH-BE CU-HCC NGM2-HCC NGM1-HCC REACH-B IIb GAG-HCC REACH-B IIa mREACH-B IIa GALAD D2AS	EAS EAS,other EAS EAS EAS EAS,EUR,other EAS,EUR EAS EAS EAS EAS EAS EAS EAS EAS EAS EAS	90/2,524 NA/5,202 90/2,524 276/41,169 NA/4,271 NA/15,829 NA/6,690 70/2,105 70/2,105 NA/3,482 195/3,413 NA/3,482 NA/4,271 90/2,524 31/1,521	1 5 1 3 4 14 6 1 3 2 3 4 1 3		0.58 (0.53-0.63) 0.72 (0.69-0.75) 0.73 (0.69-0.76) 0.76 (0.72-0.79) 0.76 (0.73-0.79) 0.77 (0.72-0.82) 0.78 (0.73-0.82) 0.78 (0.71-0.85) 0.79 (0.74-0.83) 0.81 (0.77-0.85) 0.93 (0.34-0.99) 0.82 (0.03-0.99) 0.91 (0.48-0.99) 0.83 (0.82-0.84) 0.84 (0.81-0.87) 0.91 (0.76-0.97)
Q	PAGE-B mPAGE-B FIB-4 AGED LSM-HCC Cao-2021* APRI REACH-B CU-HCC CAMD* LS AASL REACH-B IIb GAG-HCC APRI+FIB4 REACH-B IIa mREACH-B IIa mREACH-B IIa MREACH-B IIa MREACH-B IIa MREACH-B IIA CASPRI Liang ASPRI US+FIB-4 D2AS	EAS EAS EAS EAS EAS EAS EAS EAS EAS EAS	86/3,449 20/2,208 NA/2,219 87/1,663 NA/4,755 250/13723 54/1,233 NA/15,648 NA/11,079 20/2,208 18/227 20/2,208 NA/3,482 262/9,907 36/1,006 NA/3,482 262/9,907 36/1,006 NA/3,482 S47/4,286 18/227 NA/986 13/507	2 1 3 1 5 1 2 11 7 1 1 1 3 4 1 3 5 1 1 1 1		0.72 (0.61-0.80) 0.72 (0.56-0.84) 0.73 (0.63-0.81) 0.73 (0.67-0.78) 0.74 (0.71-0.77) 0.75 (0.38-0.94) 0.76 (0.71-0.81) 0.76 (0.71-0.81) 0.76 (0.61-0.86) 0.77 (0.60-0.88) 0.77 (0.61-0.88) 0.78 (0.73-0.83) 0.78 (0.73-0.83) 0.79 (0.74-0.83) 0.79 (0.67-0.88) 0.82 (0.71-0.89) 0.83 (0.75-0.89) 0.88 (0.73-0.95)
5-10	PAGE-B LSM-HCC CU-HCC REACH-B D2AS mREACH-B	EAS EAS EAS EAS EAS EAS	66/1,241 NA/2,963 NA/1,722 NA/1,722 15/507 NA/2,963	1 3 2 2 1 3	+	0.71 (0.66-0.76) 0.74 (0.63-0.83) 0.74 (0.56-0.86) 0.78 (0.01-0.99) 0.78 (0.63-0.88) 0.79 (0.70-0.86)
10	Cao-2021* AGED REACH-B Log APRI RWS-HCC REACH-B IIb CU-HCC REACH-B IIa GAG-HCC FIB-4 Ishak fibrosis PAGE-B PAGE-B+Ishak	EAS EAS EUR EAS EAS EUR EUR EUR EUR EAS EAS	532/13723 87/1,663 NA/6,681 15/557 NA/NA NA/3,482 15/557 NA/3,482 85/2,662 15/557 15/557 15/557 15/557		0.4 0.6 0.8 1.0	0.73 (0.71-0.75) 0.74 (0.68-0.79) 0.79 (0.75-0.82) 0.81 (0.67-0.90) 0.84 (0.72-0.91) 0.78 (0.73-0.83) 0.84 (0.66-0.93) 0.80 (0.78-0.82) 0.86 (0.02-0.99) 0.86 (0.60-0.96) 0.87 (0.78-0.93) 0.91 (0.68-0.98) 0.92 (0.73-0.98)
				C-inde	x	

An asterisk (*) represents a predictive model comprising all non-lab predictors. Dark blue color denotes models externally validated in CKB, while light blue color represents models not externally validated in CKB. "Ethnicity" represents the development population, and "Freq." represents the model's external validation frequency. The REAL-B model was not included due to the population being post-treatment or intervention liver disease patients.

HCC

Fig. S6 Discrimination of CLD risk prediction models in the HBV infected individuals

CLD

	Model	Ethnicity	n/N	Freq.		C-index (95%CI)
	си-нсс	EAS	142/1,308	1		0.70 (0.62-0.76)
	REACH-B	EAS	142/1,308	1		0.72 (0.65-0.78)
	PAGE-B	EAS	83/1,241	1	I _↓ -	0.70 (0.62-0.77)
<5	LSM-HCC	EAS	225/2,549	2	•	0.78 (0.78-0.78)
v	GAG-HCC	EAS	142/1,308	1		0.75 (0.68-0.81)
	Le-2021	EAS	475/4,552	1	1 1 1	0.82 (0.78-0.85)
	mREACH-B	EAS	225/2,549	2	↓ ◆ →	0.81 (0.41-0.96)
	CAP-B	EAS	8/394	1	-+	0.91 (0.80-0.96)
	CU-HCC	EAS	142/1,308	1	· -•-	0.70 (0.64-0.75)
	REACH-B	EAS	142/1,308	1		0.70 (0.64-0.75)
	PAGE-B	EAS	83/1,241	1		0.72 (0.66-0.77)
	LSM-HCC	EAS	225/2,549	2	i	0.75 (0.58-0.87)
5	GAG-HCC	EAS	142/1,308	1	1 1 -	0.76 (0.71-0.80)
	Le-2021	EAS	475/4,552	1		0.79 (0.76-0.82)
	mREACH-B	EAS	225/2,549	2	¦ ∢ ✦▶	0.78 (0.23-0.98)
	CAP-B	EAS	11/394	1	·	0.81 (0.63-0.91)
	PAGE-B	EAS	83/1,241	1		0.70 (0.65-0.76)
5-10	LSM-HCC	EAS	83/1,241	1		0.74 (0.68-0.79)
	mREACH-B	EAS	83/1,241	1	· •	0.75 (0.70-0.80)
	Log APRI	EUR	40/557	1	·	0.69 (0.57-0.79)
	REACH-B	EUR	40/557	1		0.70 (0.58-0.80)
	си-нсс	EUR	40/557	1	¦	0.73 (0.61-0.83)
	CAP-B	EAS	28/394	1		0.77 (0.67-0.84)
_	lshak fibrosis	EUR	40/557	1	_ _	0.78 (0.69-0.85)
10	FIB-4	EUR	40/557	1	·	0.79 (0.66-0.88)
	Le-2021	EAS	475/4,552	1	1	0.77 (0.74-0.80)
	GAG-HCC	EUR	40/557	1		0.82 (0.74-0.88)
	PAGE-B	EUR	40/557	1		0.86 (0.78-0.91)
	PAGE-B+Ishak	EUR	40/557	1	·	0.87 (0.80-0.92)
>10	FIB-4	EAS	105/1,241	1		0.75 (0.69-0.80)
			0.0	0.2 0.4 C-index		

An asterisk (*) represents a predictive model comprising all non-lab predictors. Dark blue color denotes models externally validated in CKB, while light blue color represents models not externally validated in CKB. "Ethnicity" represents the development population, and "Freq." represents the model's external validation frequency. The REAL-B model was not included due to the population being post-treatment or intervention liver disease patients.

Fig. S7 Discrimination of CLD risk prediction models in the HCV infected individuals

				////00		
	Model	Ethnic	ity n/N	Freq.		C-index (95%CI)
	MELD	EUR	171/42,232	2	·	0.63 (0.52-0.72)
<5	Child-Pugh	EUR	171/42,232	2 —		0.66 (0.40-0.85)
Ÿ	Konerman-2017	EUR	NA/1,860	2		0.68 (0.33-0.90)
	FIB-4	EUR	171/42,232	2	I ◆	0.82 (0.81-0.84)
	MELD	EUR	122/21,116	1		0.62 (0.57-0.67)
5	Child-Pugh	EUR	122/21,116	1	! -	0.64 (0.59-0.68)
LC)	Lee-2014	EAS	95/1,051	2	· · · · · · · · · · · · · · · · · · ·	0.72 (0.50-0.87)
	FIB-4	EUR	122/21,116	1	I - ◆	0.82 (0.77-0.85)
	APRI	EUR	45/854	1	·	0.69 (0.61-0.76)
5-10	FRONA	EUR	45/854	1		0.73 (0.66-0.79)
~	FIB-4	EUR	45/854	1		0.76 (0.70-0.81)
				C-index B CLD		
	Model	Ethnic	ity n/N	Freq.		C-index (95%CI)
	MELD	EUR	495/42,232	2		0.75 (0.58-0.87)
<5	Konerman-2017	EUR	333/1,860	2		0.77 (0.62-0.87)
	FIB-4	EUR	495/42,232	2	I I - ∳- I	0.85 (0.80-0.89)
5	MELD	EUR	313/21,116	1	• • •	0.70 (0.67-0.73)
	FIB-4	EUR	313/21,116	1	•	0.83 (0.81-0.85)
			0.0	0.2 0.4 C-index	0.6 0.8 1.0	

A HCC

An asterisk (*) represents a predictive model comprising all non-lab predictors. Dark blue color denotes models externally validated in CKB, while light blue color represents models not externally validated in CKB. "Ethnicity" represents the development population, and "Freq." represents the model's external validation frequency. The REAL-B model was not included due to the population being post-treatment or intervention liver disease patients.

Fig. S8 Discrimination of CLD risk prediction models in the NAFLD patients

	Model	Ethnicity	n/N	Freq.		C-index (95%CI)			
	LS-Based Model 3	EAS	18/934	2	•	0.72 (0.70-0.74)			
~2 ~	LS-Based Model 1	EAS	18/934	2		0.76 (0.74-0.78)			
	LS-Based Model 2	EAS	18/934	2	1 1 1	0.78 (0.75-0.80)			
	LS-Based Model 3	EAS	18/934	2		0.73 (0.72-0.73)			
2	LS-Based Model 1	EAS	18/934	2		0.77 (0.58-0.89)			
	LS-Based Model 2	EAS	18/934	2	•	0.78 (0.77-0.80)			
	0.0 0.2 0.4 0.6 0.8 1.0 C-index								
				B CLD					
	Model	Ethnicity	n/N	Freq.		C-index (95%CI)			
5	dAAR	EUR	53/479	1	I◆	0.84 (0.66-0.94)			
	APRI	EUR	53/479	1	i	0.80 (0.73-0.86)			
	dAAR	EUR	53/479	1	i	0.81 (0.72-0.87)			
10	NAFLD Fibrosis	EUR	53/479	1	1 	0.82 (0.75-0.87)			
	FIB-4	EUR	53/479	1	·	0.82 (0.75-0.87)			
	APRI	EUR	76/646	1		0.66 (0.59-0.72)			
	BARD	EUR	76/646	1	i	0.69 (0.62-0.75)			
>10	NAFLD Fibrosis	EUR	NA/646	1	·	0.73 (0.66-0.78)			
	FIB-4	EUR	76/646	1		0.73 (0.66-0.79)			
	dAAR	EUR	NA/NA	2	·	0.78 (0.64-0.87)			
	0.0 0.2 0.4 0.6 0.8 1.0 C-index								

A HCC

An asterisk (*) represents a predictive model comprising all non-lab predictors. Dark blue color denotes models externally validated in CKB, while light blue color represents models not externally validated in CKB. "Ethnicity" represents the development population, and "Freq." represents the model's external validation frequency. The REAL-B model was not included due to the population being post-treatment or intervention liver disease patients.